# Terramor Outdoor Luxury Campground Expanded EAF Narrative

Town of Saugerties, New York

December 6, 2022

## List of Exhibits

| Exhibit A:<br>Exhibit B: | Updated Environmental Assessment Form;<br>Aerial Image of Project Site;                                                                                                                   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exhibit C:               | Cut/Fill Diagram, dated December 1, 2022;                                                                                                                                                 |
| Exhibit D:               | Geotechnical Engineering Report, prepared by Terracon, dated December 5, 2022;                                                                                                            |
| Exhibit E:               | Wastewater Collection and Disposal Memorandum, prepared by C.T. Male, dated November 30, 2022;                                                                                            |
| Exhibit F:               | Water Supply, Treatment and Distribution Memorandum, prepared by CT Male, dated November 30, 2022;                                                                                        |
| Exhibit G:               | Air Quality Report, prepared by Ramboll Environmental and Health, dated December 2, 2022; ,                                                                                               |
| Exhibit H:               | Indiana Bat and Northern Long Eared Bat Habitat and Acoustical Survey, dated October 5, 2022;                                                                                             |
| Exhibit I:               | NYSDEC Email from Frank Benedetto, NYSDEC Environmental Analyst 1, Division of Environmental Permits, dated November 2, 2022; US Fish & Wildlife Correspondence, dated November 15, 2022; |
| Exhibit J:               | Visual Impact Assessment, prepared by The LA Group, dated November 2022;                                                                                                                  |
| Exhibit K:               | NYSOPRHP Correspondence, dated February 10, 2022;                                                                                                                                         |
| Exhibit L:               | GPI Technical Memorandum, Summer Traffic Counts, dated August 30, 2022;                                                                                                                   |
| Exhibit M:               | Central Hudson Will Serve Letter, dated September 15, 2022;                                                                                                                               |
| Exhibit N:               | Noise Assessment Report, prepared by Alliance Technical Group, dated November 11, 2022;                                                                                                   |

#### Please also find enclosed:

- 1) Terramor Catskills, Site Plans, prepared by The LA Group, dated last revised December 2, 2022 (the "Site Plans"); and
- 2) Stormwater Pollution Prevention Plan ("SWPPP"), prepared by The LA Group, dated last revised on December 2, 2022 (one copy has been provided).

### **Evaluation of Potential Environmental Impacts**

#### PROPOSED ACTION

Terramor, an affiliate of Kampgrounds of America, ("Applicant" or "Terramor"), is the owner of property located at Route 212, in the Town of Saugerties, New York (Tax IDs: 27.2-8-32.110 and 27.2-8-28) (collectively the "Project Site"), proposes to develop the Project Site into a state of the art campground and with accessory amenities and structures (the "Project"). The Project Site is approximately 77.5-acres. The Project includes 75 camping sites, lodge, welcome center, pool with cabana, wellness tent, and employee housing. The Project will utilize private on-site wells and a proposed wastewater treatment plant ("WWTP"). The Project Site is located in the Medium Density Residential "MDR" and Gateway Overlay District "GOD" zoning districts. The Project is fully compliant with the Town of Saugerties Zoning Code ("Zoning Code") and does not require any area variances. On June 2, 2022 the Town of Saugerties Building Inspector") determined that the proposed use is a "campground" which is permitted by site plan approval and special use permit in the MDR zoning district. The Project also includes a lot consolidation application.

The Project advances the Town of Saugerties's goal to promote economic and cultural vitality by building on available natural resources as recreational opportunities. The Project will promote tourism and economic development in the Town's NYS Route 212 GOD district and develop the vacant Project Site into an outdoor recreational opportunity that will increase tourism and economic development in the region.

The Project Sponsor offers the following occupancy data for the Board's considerations, which provides total maximum occupancy of the campground. Further, to assess the realistic occupancy at the proposed campground, the Project Sponsor has used occupancy data for its existing operations at its Bar Harbor, Maine location considering that full occupancy is unlikely to be reached because guests typically rent out larger units without intending full occupancy of the unit.

The Bar Harbor location has 65 operating campsites with an average length of stay of 3 nights and an average of 3.75 guests within a 5-person campsite and 1.91 guests in a 2-person campsite. The proposed Project will have 75 operating campsites with a maximum occupancy of 240 guests. Based on the occupancy data from Bar Harbor, the Project can expect the following realistic daily occupancy:

| Мау       | 40% Occupancy | 79 guests  |  |  |
|-----------|---------------|------------|--|--|
| June      | 70% Occupancy | 139 guests |  |  |
| July      | 82% Occupancy | 163 guests |  |  |
| August    | 80% Occupancy | 159 guests |  |  |
| September | 75% Occupancy | 149 guests |  |  |
| October   | 68% Occupancy | 135 guests |  |  |

#### Catskills Occupancy Estimate

|  | Yearly Total | 824 guests |
|--|--------------|------------|
|--|--------------|------------|

As demonstrated above, at its busiest time, the Project would likely not reach its 240 guest maximum daily occupancy. That said, all reports and studies have been prepared under a worst case scenario circumstance of full occupancy.

This document, referred to as the "Expanded EAF," is designed to facilitate the Town of Saugerties Planning Board's review of potential environmental impacts pursuant to the New York State Environmental Quality Review Act ("SEQRA"). *See* Exhibit A [EAF]. This Expanded EAF will reference prior environmental reports and studies submitted by Terramor and has enclosed recent and revised environmental reports for the Planning Board's review. As detailed below, the proposed project will not result in any potential significant adverse environmental impacts.

#### SEQRA COMPLIANCE AND INVOLVED AND INTERESTED AGENCIES

The Project's potential environmental impacts must be reviewed pursuant to SEQRA and its implementing regulations in 6 NYCRR Part 617 (collectively, "SEQRA"). The Project is a Type I action pursuant to 6 NYCRR § 617. The Planning Board has declared its intent to be lead agency pursuant to SEQRA and will conduct a coordinated environmental review. As such, on July 18, 2022, notice of the Planning Board's intent to serve as lead agency for the Project's SEQRA review has been circulated to all Involved and Interested agencies, including the following:

- Town of Saugerties Building Inspector;
- Town of Saugerties Highway Department;
- Town of Saugerties Water and Sewer Department;
- Town of Saugerties Conservation Advisory Commission;
- Ulster County Planning Department;
- Ulster County Health Department;
- New York State Department of Environmental Conservation;
- New York State Department of Transportation;
- New York State Office of Parks, Recreation and Historic Preservation;
- New York State Department of Health;
- Woodstock Ambulance;
- Woodstock Fire Company No. 5;
- Centerville Fire Company;
- Diaz Memorial Ambulance Services; and
- United States Army Corp. of Engineers.

#### **EVALUATION OF POTENTIAL ENVIRONMENTAL IMPACTS**

The lead agency must consider the criteria for determining the significance of potential environmental impacts from the Project as set forth in the SEQRA regulations at 6 NYCRR § 617.7(c). To do this, the lead agency reviews all relevant information and completes Parts 2 and 3 of the FEAF to provide the basis for its SEQRA determination. As demonstrated below, we respectfully submit that the Project will not result in any significant adverse environmental impact and therefore a SEQRA Negative Declaration is warranted.

#### 1. Impact on Land

The Project will develop the approximately 77.5-acre Project Site into a campground. Of the 77.5-acres, only 23.66 acres will be physically disturbed, leaving approximately 53.84 acres undeveloped. The Project Site is nearby both residential and commercial uses at the corner of Route 212 and Glasco Turnpike. The Project Site is nearby the Red Onion, Peace Love Havanese, Cutting Edge Spray Foam Services, South Peak Veterinary Hospital, and Lang Media Graphics. *See* **Exhibit B** [Aerial Image]. The Project will use three out of six existing on-site wells constructed for a previously approved, abandoned residential subdivision.

The Project Site will include limited excavation in the areas of the proposed structures. As noted in the FEAF 55% of disturbed area will be on slopes 0-10%, 35% on slopes 10-15%, and 10% on slopes greater than 15%. The average depth to the water table is greater than 6 feet. The average depth to bedrock on the Project Site is approximately 1-2 feet. The Project does not include any mining or dredging. The Project Sponsor does not require any blasting at this time. It is anticipated that limited rock hammering may be required for the pool area and utility trenches where bedrock is shallow. To the extent that any blasting is required, which is not anticipated, it will be done in accordance with all local, State and federal regulations. Noise impacts from the potential limited rock hammering will be temporary in nature and conducted during approved construction hours.

The Project Sponsor has prepared a "Cut/Fill Diagram" dated December 1, 2022, which was generated using the current grading and drainage plan estimates. *See* **Exhibit C** [Cut/Fill Diagram]. As noted in the Cut/Fill Diagram, the Project will require approximately 13, 866 cubic yards of "fill" material to achieve finished grades. This would include general fill, stone sub-base materials and pavement materials. All fill be will sourced in compliance with all local, State and Federal regulations.

The Project Sponsor has also retained Terracon who has prepared a Geotechnical Engineering Report, dated December 5, 2022. *See* **Exhibit D** [Geotechnical Engineering Report]. The Geotechnical Engineering Report presents the findings of the subsurface exploration program and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, and pavements for the proposed project. Based on the subsurface conditions found in the Geotechnical Engineering Report investigations, the following general conclusions have been prepared and will serve as Project mitigation:

- 1) New foundations and floor slabs may be supported upon undisturbed native soils, weathered rock, or on imported Structural Fill which is placed over the native soils/rock;
- 2) Based on the results of limited laboratory testing performed and our observation of the soil samples collected, it should be assumed that portions of the coarse-grained soils may be suitable for re-use as Structural Fill on site. Additional laboratory testing of bulk samples should be performed prior to the start of construction to confirm the suitability of the on-site soils for use as Structural Fill; and
- 3) The static groundwater level at the time of our investigations appears to be below the planned foundation excavation levels. If perched water is encountered during construction, it is expected that standard sump and pump methods should be sufficient for its removal. Dewatering is a means and methods consideration for the contractor.

See Exhibit D [Geotechnical Engineering Report]. All construction will be done in accordance with the Geotechnical Engineering Report and its specific findings.

The Project's land disturbance is more than one acre and therefore a Stormwater Pollution Prevention Plan("SWPPP") has been prepared in accordance with requirements under the NYSDEC SPDES General Permit for Stormwater Discharges. *See* Enclosed, Stormwater Pollution Prevention Plan, prepared by The LA Group, dated July 1, 2022 and revised December 2, 2022. Erosion and Sediment Control plans prepared for the project provide measures designed in accordance with the NYSDEC Standards and Specifications for Erosion and Sediment Control in order to mitigate potential impacts associated with erosion. The Project will also create 4.94 acres of new impervious surfaces on the Project Site. The Project Sponsor has provided grading and drainage plans including stormwater management devices designed in accordance with the NYS Stormwater Management Design Manual to mitigate potential impacts related to stormwater runoff from new impervious surfaces. Together, the plans and the SWPPP demonstrate that all erosion and stormwater management controls are consistent with the NYSDEC SPDES General Permit for Stormwater Discharges and therefore will mitigate potential impacts to land during construction and operations. *See* Site Plans, Erosion and Sediment Control Plans (sheets L-3.1 through L-3.9), Grading and Drainage Plans (sheets L-4.1 through L-4.9). These measures shall be followed to mitigate any potential significant environmental impacts related to land.

Based on the above, the Project will not result in any significant adverse impacts on land.

#### 2. Impact of Geological Features

There are no unique landforms on the Project Site that will be impacted by the Project. Accordingly, the Project is not anticipated to have any significant adverse impact on geological features.

#### 3. Impact on Surface Water

The SWPPP sets forth all stormwater management practices and demonstrates that no significant adverse environmental impacts will result from the Project. Mitigation measures provided in the Project SWPPP shall be followed to avoid any potential environmental impact related to stormwater.

During and after construction of the Project, stormwater will be managed, treated and discharged in accordance with the requirements set forth in NYSDEC State Pollution Discharge Elimination System ("SPDES") general stormwater permit and the Project's SWPPP. In addition to the SWPPP, the Site Plans demonstrate that drainage and erosion control measures will be implemented during and after construction to mitigate any potential impacts. *See* Site Plans, Sheets L-4.1 through L-4.9 and associated construction details reference on those plans. The Project's Site Plans and SWPPP are designed to comply with all applicable NYSDEC and Town of Saugerties requirements for managing stormwater during and after construction.

During Project construction, erosion and sediment control, soil stabilization, dewatering and pollution prevention measures will be installed, implemented, and maintained on the Project Site as set forth in the SWPPP to minimize the discharge of erosion of sediment and prevent a violation of the State's water quality standards. These measures are designed to limit erosion of land by controlling the flow of water until permanent stormwater control measures are installed and pervious surfaces are stabilized with vegetation and/or buildings and parking areas. Measures will include, but not be limited to installation of silt-fencing to control movement of disturbed soils; stockpiling soils and vegetative soil stabilization; seeding and mulching of all disturbed surfaces; dust control (as necessary); and ongoing inspection and maintenance of erosion control measures to ensure their effectiveness until all disturbed surfaces are stabilized. All erosion and sediment control measures are designed to comply with the New York State

Standards and Specifications for Erosion and Sediment Control, dated November 2016.

Post-construction stormwater management practices for the Project as set forth in the SWPPP are designed to conform to applicable requirements in the NYSDEC general stormwater permit and the standards provided by the New York State Stormwater Management Design Manual ("Design Manual") (dated January 2015). The Project is designed, through the SWPPP, to provide for the installation, implementation, and maintenance of permanent stormwater management practices to meet the standards in the Design Manual so that discharges comply with the State's water quality and quantity standards.

Specifically, post-construction, the Project's stormwater management system will collect stormwater runoff from the Project Site through a series of open swales and convey the water to the proposed stormwater management practices depicted on the Site Plans. Sediments and other contaminants in the run-off will be treated as described in the SWPPP to ensure the stormwater discharges meet applicable water quality standards and have minimal impacts on the downstream jurisdictional tributary and wetlands. Stormwater management practices, including stormwater management pocket ponds and an infiltration basin, have been located mostly in the interior of the Project Site, as depicted on the Site Plans. As required by the NYSDEC stormwater regulations, the peak rate of run-off from the Project Site will be the same or less than peak rate of run-off under the existing conditions.

The Project Site does include federal wetlands regulated by the US Army Corps of Engineers ("ACOE"). The Project will disturb 0.39 acres of ACOE regulated wetlands, which will require a Nationwide permit from the ACOE. The wetland disturbances are the result of the proposed access drives (including emergency access). Because the proposed federal wetland disturbance is over .10 of an acre, Terramor will be required to mitigate wetland impacts. Impacts to wetlands will be mitigated through purchase of credits in Ducks Unlimited's Mid-Hudson in-lieu fee mitigation bank. According to Dr. Patrick Raney, Manager of Conservation Services for Ducks Unlimited, this new in-lieu fee mitigation bank has been approved by the review committee staff. *See* Terramor August 2, 2022 Planning Board Submission, ACOE/Ducks Unlimited Correspondence.

Terramor has also requested a Jurisdictional Determination from the ACOE on July 8, 2022, and a Nationwide permit application for the Project will be filed with the Army Corps shortly.

Because the Project Site does not have a connection to municipal sewer, all wastewater generated by the Project will be handled through an Amphidrome system. *See* Exhibit E [Wastewater Collection and Disposal Memorandum, prepared by C.T. Male, dated November 30, 2022 ("WWTP Engineering Report")]. The WWTP Engineering report confirms an average wastewater flow of 14,895 GPD. Please note that the reduction in wastewater flow is the result of an analysis of actual water use at another Terramor Resort as recorded in the summer of 2022, which results in unit water use per guest of 36 gallons per day. The 36 gallons per day per guest water use includes all amenities including employees/employee housing, a lodge and a pool. To be conservative, design flows for the amenities at this location are calculated in addition to the guest unit water use. *See* Exhibit E [WWTP Engineering Report]. This revision has been preliminarily reviewed by the Ulster County Department of Health ("UCDOH") and provides a more realistic use of water for the Project.

Due to the shallow bedrock, the proposed method of treating and disposing of wastewater from the development is with a packaged WWTP. This basis of design technical memo uses the Amphidrome System Packaged WWTP which is a growth biologically active filter (BAF) which can provide BOD

reduction, nitrification, denitrification, phosphorus reduction and filtration of suspended solids in a single reactor. The wastewater from the lodge is conveyed to a grease trap prior to flowing by gravity to a pump station to reduce the levels of fats, oils, and grease at the WWTP. Please note that the Amphidrome System Packaged WWTP may be placed above or below ground. The details of whether the system will be submerged is pending.

The Project Sponsor has had pre-application conference with the NYSDEC related to the required SDPES permit to discharge treated effluent to the intermittent stream located on the interior of the Project Site. The preliminary design of the Amphidrome System assumes typical effluent limits for discharging to an intermittent stream from the NYSDEC Manual for Design for Intermediate Sized Wastewater Treatment Systems, which have been provided in the WWTP Engineering Report. *See* Exhibit E, [WWTP Engineering Report]. Final effluent limitations will be provided upon receiving the Project's SPDES permit and will ensure that no significant environmental impacts will result from the Project's WWTP. The proposed WWTP will comply with all NYSDEC regulations and effluent limitations and will also comply with all required Ulster County Health Department ("UCHD") regulations.

Based on the above, with the above proposed mitigation, the Project will not result in any significant environmental impacts related to surface water.

#### 4. Impact on Groundwater

The Project Site is not serviced by municipal sewer or water. Therefore, the Project will include private on-site WWTP and wells. Related to potential impacts to groundwater from the proposed WWTP, please refer to the above Section (3) related to impacts on surface water, which demonstrates that all wastewater will be collected and treated for discharge into an onsite intermittent stream in accordance with NYSDEC effluent limitations.

The Project will be serviced by 3 of the six existing wells for potable water. The anticipated water demand for the Project is 14,895 gallons per day. *See* **Exhibit F** [Water Supply, Treatment and Distribution Memo, prepared by CT Male, dated November 30, 2022 ("Well Report")]. Please note that the reduction in water usage is the result of an analysis of actual water use at another Terramor campground in Bar Harbor as recorded in the summer of 2022, which results in unit water use per guest of 36 gallons per day. The 36 gallons per day per guest water use includes all amenities including employees/employee housing, a lodge and a pool. To be conservative, design flows for the amenities at this location (shown above) are calculated in addition to the guest unit water use.

Step testing and stabilized drawdown testing completed in October and November of 2022 suggests that the 3 wells have capacities of 4 GPM (5,760 GPD), 7 GPM (10,080 GPD), and 8 GPM (11,520 GPM). Based on the initial results of the yield testing, these three wells have the capacity to serve the proposed development according to the calculated average daily design flows. *See* **Exhibit F** [Well Report].

#### Impact of Well Use on Neighboring Wells

During yield testing, the water level in four (4) neighboring wells was monitored to determine if water use on the Terramor site will impact water levels in the wells on the neighboring properties. Results of the well tests on neighboring properties, which was done in consultation with the UCDOH, indicates that the neighboring wells will not be impacted by the water usage resulting from the Project. *See* **Exhibit F** [Well Report].

#### Well Treatment

Well water was collected and sampled per the Ulster County DOH/NYSDOH requirements during the well yield testing to determine the raw water quality. Results of the sampling and water quality testing per NYSDOH requirements determine the final treatment requirements. Analytical results from two of the three wells are attached to the Well Report. **Exhibit F** [Well Report]. Analytical results from the third well have not been finalized and will be provided upon the Project Sponsor obtaining the results.

Results of the testing available at two wells indicate that various forms of filtration will be required to address turbidity, iron, and manganese. The filtered water will be disinfected per the requirements of the NYSDOH/UCDOH. Analytical results for PFOA and PFOS showed detections of the compounds, but at concentrations below the New York State maximum contaminant level. **Exhibit F** [Well Report]. The design for the source, treatment and distribution systems will be submitted to the UCDOH for review and approval and designed to ensure that no significant environmental impacts result of the proposed on-site private wells.

Based on the above, the Project will not result in any significant adverse impacts related to groundwater.

#### 5. Impact on Flooding

The Project will not have any significant adverse impacts on flooding. No portion of the project site falls within a designated floodway, 500-year of 100-year floodplain. *See* **Exhibit A** [EAF].

Based on the above, the Project will not result in any adverse impacts related to flooding.

#### 6. Impacts on Air

The Project will not result in any significant adverse impacts on air quality. The Project does not include any regulated air emissions sources. Terramor has retained Ramboll Environmental and Health to prepare an air quality report. Ramboll has prepared an air quality report dated, November 30, 2022 (the "Air Quality Report"), which demonstrates that no significant environmental impacts will result from the Project and that the Project meets the requirement in Zoning Code 245-34(D)(2) related to smoke emissions and air pollution. *See* Exhibit G [Air Quality Report].

The Air Quality Report specifically addresses the following special use permit standards in Zoning Code 245-34(D)(2):

- (g) Smoke. No emission shall be permitted of a shade equal to or darker than Ringelmann Smoke Chart No. 2.
- (h) Odors. No emission of odorous gases or other matter shall be permitted in a quantity or of a type that permits it to be detectable, other than by instrument, at the property line.
- (i) Other forms of air pollution. No emission of fly ash, dust, smoke, vapors, gases or other forms
  of air pollution shall be permitted which can jeopardize human health, animal or vegetable life or
  which otherwise contributes to the deterioration of or detracts from adjacent properties. This
  includes construction-related dust and odors.

 (s) Nuisances. The proposed use shall not be more objectionable to nearby property owners or occupants by reason of noise, fumes, vibration or lighting than would be the operations of a permitted use.

The Air Quality Report assessed the potential for air quality impacts and compliance with the special use permit standards noted above in relation to all operations of the Project, including the proposed campfires.

In short, the Air Quality Report found that the Project will achieve compliance with the special use permit standards and that no potential significant environmental impact will result. Specifically, the Air Quality Report finds that:

- Campfires at the proposed facility will only be allowed to use untreated wood as fuel and each campfire will be attended. We note that the Zoning Code does not reference how Ringelmann determinations will be made (e.g., methodology, certified readers, newer opacity techniques) and our experience suggests that regulatory opacity readings on campfire smoke on the property may not be possible. Regardless, it is not anticipated that project campfires would result in Ringelmann Smoke Chart No. 2 (i.e., 40% opacity) or greater levels because the campfires will only be using untreated wood as fuel, which would minimize dense and/or darker smoke associated with incomplete diesel combustion and larger-scale mixed-fuel open burning.
- Ulster County is an attainment area for primary and secondary federal PM10 and PM2.5 standards and there are no specific Clean Air Act requirements for PM control measures on campfires to attain or maintain these health standards in this area. Thus, it would not be expected that the campfire wood smoke from the project would jeopardize human health (i.e., no exceedances of the primary PM standards) or animal / vegetable life or decreased visibility (i.e., no exceedances of the secondary PM standards). 6 NYCRR 215.3(c) exempts wood-only campfires from open burning regulatory requirements. In addition, the project campfires are located in a wooded area. Vegetation is a known mitigation of PM concentrations. For example, reductions of fine particulate concentrations of 55-88% have been reported, particularly at lower windspeeds when concentrations are expected to be higher (e.g., not dispersed to lower concentrations by the wind).
- It is not anticipated that wood smoke fumes from the project would be a nuisance because they are dispersed over the project area, vegetation in the project area would reduce wood smoke compound concentrations, the campfires are only fueled by untreated wood (eliminating potential nuisance compounds), and distances to all but five of the fire pits are over 100' from the property line (two of which are at least 50' and three are at least 75' from the property line).
- Ramboll's analysis is confined to the potential fume impacts from the campfire woodsmoke. Campfires at the proposed facility will only be allowed to use untreated wood as fuel, minimizing or eliminating certain odorous emissions. In addition, the project campfires are located in a wooded area. Vegetation is a known mitigation of PM concentrations, including organic aerosol compounds.11 For example, reductions of fine particulate concentrations of 55-88% have been reported, particularly at lower windspeeds when concentrations are expected to be higher (e.g., not dispersed to lower concentrations by the wind).12 This should also reduce any potential fumes. We note that fireplace and residential outdoor fire pits are not restricted in Saugerties.

Thus, similar wood smoke odors are likely already in the area. It is not anticipated that wood smoke fumes from the project would be a nuisance because they are dispersed over the project area, vegetation in the project area would reduce wood smoke compound concentrations, the campfires are only fueled by wood (eliminating potential nuisance compounds), and distances to all but five of the fire pits are over 100' from the property line (two of which are at least 50' and three are at least 75' from the property line).

Based on the above assessment, we find that project's use of campfires would not have appreciable impacts on air quality or odor, in part because the project design includes multiple mitigating effects ((e.g., use of untreated wood only for campfires, vegetation around camping spaces, setbacks between camping spaces and the property boundary, etc.).

Based on the above, the Project will not result in any significant adverse impacts related to air quality.

#### 7. Impact on Plants and Animals

The Project will not have any significant adverse impact on plants or animals. There is no rare vegetation on the Project Site according to NYSDEC and U.S. Fish and Wildlife Services (FWS). As noted in the EAF, **Exhibit A,** the Project Site has several pockets of bat habitat areas where Terramor has minimized development sufficiently to protect the bats' habitat.

Terramor has retained Edgewood Environmental Consulting, LLC ("Edgewood") to review potential impacts to the Indiana Bat and Northern Long-Eared Bat. Edgewood has prepared an Indiana Bat and Northern Long Eared Bat Habitat and Acoustical Survey, dated October 5, 2022 and annexed hereto as **Exhibit H** (the "Habitat and Acoustical Survey"). Importantly, the Habitat and Acoustical Survey found that the Project "may actually open up more habitat for bats by creating new access roads, paths, and openings in which bats may forage or traverse current non-habitat areas." *See* **Exhibit H** [Habitat and Acoustical Survey, p. 15].

The Habitat and Acoustical Survey made the following findings:

- Bat Habitat Suitability: Edgewood's bat habitat assessment revealed that most of the Terramor Catskills Site was dominated by a hemlock-northern hardwoods ecological community with a dense understory that was not suited to bat flight, foraging, or roosting. However, there were 6 distinct patches of ecological communities including successional northern hardwoods, red maple-hardwood swamp, and hemlock-hardwood swamp, that were connected by unpaved roads and by offsite habitats that provided about 16.3 acres of potential roost, foraging, and transit habitat, with another 1.2 acres of potential transit habitat in the unpaved roads, for a total of 17.5 acres of potential bat habitat. Water resources were potentially available to bats in the hemlock-hardwood swamp and red maple-hardwood swamp wetlands along the western side of the Site and in the small headwater stream that is located near the entrance to the site from Saugerties-Woodstock Road. Other water resources exist on the Site, but are inaccessible to bats, as they are surrounded by dense understory brush
- Presence of Listed Species: Multiple calls of northern long-eared bat, a threatened species, and Indiana bat, an endangered species, were auto-classified by Kaleidoscope Pro at multiple sampling sites and nights, with MLE p-values <0.05. Per Federal Protocol requirements, all bat call sonograms for the sampling site and sampling night by which such calls were classified were

manually/visually reviewed by an experienced bat call identifier to either confirm or refute the software-based species classification to avoid mis-classifications. Visual vetting refuted the classification of all Northern Long-eared Bat calls, but confirmed 5 Indiana Bat calls from Bat Detector 5, which was located at an edge between mature successional northern hardwood forest and red maple-hardwood swamp at the north end of the Site. The indicators used to manually classify Indiana Bat calls all have ranges that overlap with those of the Little Brown Bat, but the ranges of the calls that were manually vetted from this Site were well within the metrics indicating Indiana Bat, so the manual identifications were considered accurate. It was therefore considered probable that Indiana Bat was present in the north end of this Site. Northern Long-eared Bat occurrence was determined to be unlikely as no calls identified as Northern Long-eared Bat were manually confirmed.

- Mitigation: Given the above, Edgewood has proposed the following mitigation to avoid any significant impact related to the Indiana and Norther Long Eared Bat:
  - 1) Tree clearing should be minimized and should only be conducted during the bat hibernation season (November through March) to avoid direct take of roosting bats.
  - 2) Outdoor lighting should be at low level (e.g., bollard lighting, rather than overhead lights).
  - 3) Outdoor lighting near edges between cleared areas and remaining forest stands should be motion-sensor lights that do not stay illuminated all night.
  - 4) Chemical pesticides must not be used onsite, especially in water bodies.
  - 5) Noise should be minimized at night to avoid changing bat behavior within the Site (e.g., night-time quiet hours may be implemented at the campsite at reasonable hours).
  - 6) Pets should be kept on leashes when outdoors and not allowed to run free.
  - 7) Campfire rings should be spaced away from wooded areas to keep smoke from campfires away from potential roost areas.

Terramor and Edgewood have had meetings with the NYSDEC and the United State Fish & Wildlife and discussed the Habitat and Acoustical Survey. The NYSDEC confirmed by email that the limited development of the areas concurrent with bat habitats is sufficient to address Article 11 permit and that "[t]he Department supports the management recommendations found in the report to avoid any potential impacts." **Exhibit I** [NYSDEC Email from Frank Benedetto, NYSDEC Environmental Analyst 1, Division of Environmental Permits, dated November 2, 2022].

Similarly, November 9, 2022 Edgewood met with regulators at the US Fish & Wildlife for discussion of the Habitat and Acoustical Report and the proposed bat mitigation. Based on the meeting, supplemental information was provided to the US Fish & Wildlife dated November 15, 2022. **Exhibit I** [US Fish & Wildlife Correspondence, dated November 15, 2022]. The US Fish & Wildlife Correspondence outlines the following proposed mitigation to avoid any potential environmental impact:

- Disturbance and tree clearing within potential bat habitat areas and near the acoustic detection of Indiana bat has been minimized. This will minimize human activity and disturbance in occupied and potential bat habitat areas.
- All necessary tree clearing will occur between November 1 and March 31, when bats are hibernating offsite. This will avoid incidental direct take of roosting bats from tree cutting during summer roosting season.

- Outdoor lighting will either be shielded to cast light below the horizontal plane, or will be low level (bollard) lighting to keep light near ground level.
- Outdoor lighting adjacent to wooded potential bat habitat areas will be motion-sensor lights to avoid illuminating forest edges all night.
- Chemical pesticides will not be used onsite, especially in or near water bodies.
- Quiet hours in the campsite will be enforced between 10 pm and 7 am, minimizing human disturbance of the area even when it is occupied.
- Outside fenced designated areas, pets will be required to be kept on leashes when outdoors and will not be allowed to run free.
- Campfire rings will be confined to developed areas of the site, away from wooded potential bat habitat. This will prevent smoke from disturbing roosting and foraging bats at night.

We will inform the Town once a response from US Fish & Wildlife is obtained.

Based on the above, with proposed mitigation, the Project will not result in any significant adverse impacts related to plants or animals.

#### 8. Impact on Agricultural Resources

The Project Site is not within an Agricultural District. There are no active farm operations on the Project Site or within 500 feet of the Project Site.

Based on the above, the Project will not result in any significant adverse environmental impacts related to agricultural resources.

#### 9. Impact on Aesthetic Resources

The LA Group has prepared a Visual Impact Assessment dated November 2022. *See* Exhibit J [Visual Impact Assessment]. The Visual Impact Assessment considers existing conditions, viewshed analyses, identification of sensitive receptors within the surrounding area from which the Project may be visible, and impact assessments for representative viewpoints. A field study utilizing weather balloons to mark the location of the project site was conducted on October 7, 2022. Additional potential receptors were examined on October 21, November 2 and November 3, 2022. The "study area" consists of lands in the Towns of Saugerties, Woodstock, Hunter, Hurley, Kingston, and Ulster within a five-mile radius surrounding the Project Site. The methodology used for the evaluation of potential visual impacts generally follows NYS DEC's Assessing and Mitigating Visual Impacts (NYSDEC Program Policy DEP-00-2) And NYS APA's Visual Analysis Methodology policy with a few adjustments.

The Visual Impact Assessment explicitly investigates the potential impact of the Project on all sensitive receptors (including scenic, aesthetic, historic, recreational, residences and natural resources) identified as having potential views into the Project Site. Visual Impact Assessment demonstrates that the Project will not cause a significant undue adverse visual impact.

Visual impact is assessed in terms of the anticipated change in visual resources, including whether there would be a change in character or quality of the view with respect to significant scenic and aesthetic resources. The zone of potential visibility map based on both topography and existing vegetation (Figure

6) showed that potential views into the Project would be very limited. Field reconnaissance and digital simulations verified that the proposed project will be minimally visible from the surrounding area.

Of the viewpoints studied, only those related to the State-designated Overlook Mountain Trail are considered significant aesthetic resources according to the NYSDEC Visual Policy. The neighboring properties (Isaacs, Buck and Monchik Properties) and public roads (NYS Route 212 and Cottontail Lane) were investigated in this report as local concerns. This goes above and beyond the NYSDEC requirements for Visual Impact Assessment, but was appropriate to include in order to provide a complete assessment of the Project.

The only viewpoints from which any component of the proposed Project may be visible are:

- 1) VP-T1 (filtered views of tents from the Isaacs Property);
- 2) VP-T2 (filtered views of tents from the Buck Property);
- 3) VP-T3 (filtered views of tents from the Monchik Property);
- 4) VP-L2, VP-L3, and VP-L4 (views of the Entry Drive from NYS Route 212);
- 5) VP-L5 and VP-L6 (views of the emergency access drive from Cottontail Lane); and
- 6) VP-OM1, VP-OM2, VP-OM3, VP-OM4, VP-OM5, and VP-OM6 (filtered views of the Lodge, Pavilion, Welcome Center, General Manager's House, ground plane, and roadway from the Overlook Mountain Fire Tower and scenic overlooks).

The results of this analysis indicate that the Project will not result in any significant undue adverse impacts to visual resources within the 5-mile radius study area.

Campsites will be visible to varying degrees from neighboring private properties on Raybrook Drive. While views of tents from the Buck property will be nearly entirely screened, there will be views that include tents from the Isaacs and Monchik properties. However, intervening vegetation to remain, along with proposed screen plantings, while not totally blocking views into tents from the Isaacs and Monchik property lines, provide views that are in general harmony with the character and appearance of the surrounding neighborhood and of the Town of Saugerties and will not adversely affect the general welfare of the inhabitants of the Town.

Based on the above, the Project will not result in any significant adverse impacts to aesthetic resources.

#### 10. Impact on Historic and Archeological Resources

The Project was submitted to the New York State Office of Parks, Recreation & Historic Preservation ("NYSOPRHP") for review of potential impacts to historic and archaeological impacts. On February 10, 2022, after a review of the Project, NYSOPRHP determined that "no properties, including archaeological and/or historic resources, listed in or eligible for New York State and National Registers of Historic Places will be impacted by this project." **Exhibit K** [NYSOPRHP Correspondence].

Based on the above, the Project will not result in any significant adverse impacts to historic or archaeological resources.

#### 11. Impact on Open Space and Recreation

The Project will not result in any loss of recreational opportunities, or any reduction of an open space resource designated in a governmental open space plan. The Project Site is in a zoning district intended

for commercial development such as the Project. Campgrounds are a permitted use in the MDR zoning district. In fact, the Project meets Goals #5, #9 and #13 of the Comprehensive Plan to draw tourism built on the availability of natural resources in the community, such as the nearby Catskill Forest Preserve and associated trails.

The Project Site is currently privately owned and has never been used for lawful public recreation. The Project Site is not designated open space.

Based on the above, the Project will not result in any significant adverse impact on open space and recreational resources.

#### **12.** Impact on Critical Environmental Areas

The Project Site does not contain any listed CEAs. Nor are any CEAs located adjacent to the Project Site.

Based on the above, the Project will not result in any significant adverse impact on CEAs.

#### 13. Impact on Transportation

The Applicant retained Greenman-Pedersen, Inc. ("GPI") to perform a Traffic Impact Study, dated June 2022, (the "TIS"), which demonstrated that the Project will not have a significant adverse impact on local traffic in the Town of Saugerties. *See* GPI, Traffic Impact Study, Terramor Catskills Campground, June 2022. The study area for the TIS was determined by GPI, based on anticipated traffic volumes and directionality, and includes the following intersections:

- 1) NY Route 212 at Glasco Turnpike (CR 32) (4-leg intersection with two-way stop control on minor approaches); and
- 2) NY Route 212 at the proposed campground entrance (3-leg intersection with minor street stop control only)

The TIS made the following findings:

- 1) Trip Generation was conducted assuming 85 occupied campsites to estimate the trip generation potential of the 75-campsites plus on-site staff lodging. Trip generation is estimated to be 17 vehicles in the AM peak hour and 22 vehicles in the PM peak hour.
- 2) Measured travel speeds indicate that the 85th percentile operating speed along NY Route 212 is 52.7 mph southbound and 59.0 mph northbound. Based on these speeds, the design speeds assumed for sight distance purposes were 55 mph southbound and 60 mph northbound.
- 3) The crash rate at NY Route 212 and Glasco Turnpike was found to be five and a half times higher than the state-wide average for comparable intersections, and the NY Route 212 road segment adjacent to the proposed site is about twice the statewide average. In both cases, reducing northbound travel speeds would likely help to reduce the crash rate, as would tree trimming and clearing on the east side of the intersection.

Related to the above, the TIS concluded that a reduction in northbound speed would be beneficial but is not required to avoid a significant environmental impact. The traffic generated by the

proposed site will not noticeably change the crash rate within the area. The TIS will be under review by the NYSDOT for a final determination as speed limits are within the sole discretion of the NYSDOT.

4) Sight distance measurements were taken at the proposed driveway location and it was found that intersection sight distance guidelines were fully met looking north, but there were some limitations looking south. Recommendations to improve this condition include tree trimming and clearing south of the proposed site, shifting the 45-mph speed zone transition located near the site to a point 1,500 feet south of the site, and the installation of a radar speed feedback sign northbound in advance of the site.

Related to the above, the TIS finds that while this would be beneficial it is not required to avoid a significant environmental impact and thus not required mitigation. The TIS concludes that, even without the above, "stopping sight distance requirements are still met looking south, which should still produce reasonably safe traffic operations." *See* TIS at 8-9. The TIS will be reviewed by the NYSDOT and final mitigation determined by the NYSDOT, the agency with sole discretion over the State highways.

- 5) Per guidelines from NYSDOT and the Institute of Traffic Engineers, trip generation of less than 100 vehicles is typically not sufficient to impact level of service and generally does not require a traffic study.
- 6) Highway capacity analysis confirmed that NY Route 212 and Glasco Turnpike in the build condition operates at the same level of service as in the no-build condition. In both cases, no movement operates worse than LOS C.
- 7) For the proposed driveway along NY Route 212, a single entering lane and a single exiting lane will result in LOS B or better operations for all traffic movements.
- 8) Turn Lane warrants were conducted to determine the need for either a left turn lane or a right turn lane at the site driveway. In both cases, warrants were not met and neither type turn lane is justified.

The TIS concluded that, based on the analysis, the proposed Terramor campground will not significantly impact traffic operations within the study area. Levels of service are not expected to change, and queuing will not be significant. Further review by the NYSDOT will be required and will confirm required mitigation to ensure that no significant impact to traffic will result from the Project.

Importantly, even though the original traffic volume information was based on a winter traffic count (February 2022), a second traffic count was conducted in the summer (August 2022) to ensure the analyzed traffic volumes were reasonable for all seasons. *See* **Exhibit L** [GPI Technical Memorandum, Summer Traffic Counts, dated August 30, 2022]. The summer count showed a maximum of 574 vehicles at the NYS Route 212 and Glasco Turnpike intersection and an analysis of 779 vehicles at the intersection was used in the Study. As such, the study represents a conservative estimate of traffic operations for both the winter and summer conditions.

Based on the above, with proposed mitigation, the Project will not result in any significant adverse impacts on transportation or parking.

#### 14. Impact on Energy

While a new demand for energy will result from the Project it will not be significant. The Project will require the use of energy—specifically 400,000 kW—for heating, cooling, lighting, and other purposes. This energy usage will be similar in amount to the energy used for other commercial and residential development in the Town, County, and across the State. The required electric will be serviced by Central Hudson. Central Hudson have provided a will serve letter, dated September 15, 2022, that they are committed to serving the Project's electric supply. *See* Exhibit M [Central Hudson Will Serve Letter]. Please note that there is no gas service in this area.

The Project will not require a new, or an upgrade to the existing, service lines or substation.

Based on the above, the Project will not result in any significant adverse impacts on energy.

#### 15. Impact on Noise, Odor and Light

No significant adverse light, noise or odor impacts are expected from the Project. The Project is not a manufacturing or industrial facility and will not produce any odors. During construction, any noise and odor impacts from construction equipment will be temporary, of short duration, and non-significant.

#### Odor

Related to odor, the Air Quality Report from Ramboll specifically analyzed whether the Project, inclusive of the campfires would result in a potential odor impact. *See* Exhibit G [Air Quality Report]. Specifically, the Air Quality Report noted compliance with Zoning Code 245-34D(h), which requires that "[n] o emission of odorous gases or other matter shall be permitted in a quantity or of a type that permits it to be detectable, other than by instrument, at the property line." The Air Quality Report states that "[i]t is not anticipated that wood smoke fumes from the project area would reduce wood smoke compound concentrations, the campfires are only fueled by untreated wood (eliminating potential nuisance compounds), and distances to all but five of the fire pits are over 100' from the property line (two of which are at least 50' and three are at least 75' from the property line)." *See* Exhibit G [Air Quality Report]. As such, the proposed camp fires resulting from the Project are in compliance with the special use permit standards related to campgrounds.

Further, the Project does not include a State regulated air emission source or involve any activity that will have more than a minimal impact on air quality. Similarly, the Project will not require any deliveries or use of large semi trailer trucks. The Project will only utilize delivery box trucks for any deliveries needed for the Project. All vehicles will be subject to NYSDEC regulations governing vehicle idling which prohibits vehicle idling for longer than 5 minutes. The idling regulations may be enforced by the NYSDEC Environmental Conservation Officers and other state and local police. Further, as noted in the Impact on Transportation discussion, all studied intersections will continue to operate at overall acceptable levels of service and efficiency so there will not be unnecessary idling due to traffic delays while exiting the Property. The Project is not a manufacturing or industrial facility.

All solid waste will be collected by a private waste hauling company and disposed of in accordance with all applicable rules and regulations. The Project will recycle applicable solid waste.

All ventilation related to the restaurant will be compliant with all New York State regulations and the building will be well ventilated. The Red Onion Restaurant abuts three of the residential properties and is within the 200' buffer of the Project site. The 350' distance between the existing residential property lines and Lodge dining facility on the Project Site, as well as the treelined buffer, will mitigate any odors.

#### Lighting

Terramor has proposed minimal lighting on the Project Site which is set forth in the lighting plan submitted within the Site Plan. New energy-efficient lighting will be utilized throughout the Project Site. Exterior site lighting will be designed to comply with the Zoning Code and to be the minimum necessary while ensuring safe and secure commercial uses. All proposed lighting will be downward facing and will minimize sky glow and light pollution from the Project Site. Where appropriate, lighting fixtures will be of a full cutoff type or provided with shields to reduce glare and light pollution. The lighting is consistent with the Project Site's rural setting. As with odor, the intervening vegetation will prevent any stray lighting from entering neighboring properties. Based on the photometric data shown on Site Plan sheets L7.1-L7.3, illumination from light fixtures will not exceed 0.0 footcandles at the property lines.

As noted in the Habitat and Acoustical Survey and the US Fish & Wildlife correspondence, the following lighting mitigation is proposed:

- Outdoor lighting will either be shielded to cast light below the horizontal plane, or will be low level (bollard) lighting to keep light near ground level.
- Outdoor lighting adjacent to wooded potential bat habitat areas will be motion-sensor lights to avoid illuminating forest edges all night.

See Exhibit H and I [Habitat and Acoustical Survey and the US Fish & Wildlife Correspondence].

#### Noise

Related to noise, the Planning Board and members of the public expressed concern over the noise related to the proposed campsite. Terramor enlisted the services of Alliance Source Testing to prepare a Noise Assessment Report to demonstrate that the project will comply with the Zoning Code requirement that the Project not result in sound levels greater than 70 dBA at Project Site boundaries. *See* Exhibit N [Alliance Technical Group, Noise Assessment Report, dated November 11, 2022].

The Noise Assessment Report found that the Project will comply with the noise requirements in Zoning Code § 245-11(I) and 245-34(D)(2)(d), which limits noise to 70 dba at the property line.

The Noise Assessment Report also analyzed the potential impact of noise utilizing the NYSDEC's program policy document "Assessing and Mitigating Noise Impacts." In addition to the Town's Zoning Requirements, the NYSDEC policy states that predicted increases in the ambient sound level over 6 dBA at a noise-sensitive receptor due to Project operations would indicate a potential significant adverse noise impact and recommendation for mitigation. On the other hand, predicted increases in the ambient sound level of 6 dBA or lower would indicate no significant adverse noise impact or need for mitigation.

Here, the Noise Assessment Report determined that "the predicted increase in ambient sound levels was 3 dBA or less at all receptors, which is well within the noise impact significance criteria of 6 dBA. Therefore,

Project operations are predicted to result in no significant adverse noise impact on the community and no mitigation is needed." See Exhibit N [Noise Assessment Report].

Nevertheless, noise mitigation has been installed to eliminate potential impacts to endangered bats, which includes that the Project's quiet hours will be enforced between 10 pm and 7 am.

Based on the above, the Project will not result in any significant adverse impacts involving noise, odor, or light.

#### 16. Impact on Human Health

No significant impacts to human health are anticipated from the Project because all construction and operational activities will be undertaken in accordance with and in compliance with all pertinent environmental and land development regulations and related permit and approval procedures and requirements.

Based on the above, the Project will not result in any significant adverse impacts on human health.

#### **<u>17.</u>** Consistency with Community Plans

The Project will facilitate development goals in the GOD zoning district for Route 212 in compliance with the Town of Saugerties Comprehensive Plan and is a permitted use in the MDR zoning district. The Comprehensive Plan calls for commercial development that incorporates the following principles, which are furthered by this Project:

- Promote high standards of design and construction for both public and private facilities. See Town of Saugerties Comprehensive Plan, Goal #5 Recommendation 5.3.
- Diversify the economic base by encouraging businesses to locate in the area. See Town of Saugerties Comprehensive Plan, Goal #9 Recommendation 9.2.
- Encourage tourist activities that highlight Saugerties' rich history and cultural vitality such as Artist Studio Tour and Shout Out Saugerties. Goal #13 Recommendation 13.7.
- Promote visitor friendly business practices to enhance attractiveness of Saugerties as a tourist destination. See Town of Saugerties Comprehensive Plan, Goal #13 Recommendation 13.8.
- Tourism in the area should build upon the assets of Saugerties and the Catskill Region including the mountains, the Hudson River, and the history of the area. See Town of Saugerties Comprehensive Plan, Goal 13 Recommendation 13.1.

As evidenced by Project plans and architectural designs, the Project will be a state-of-the-art campground facility and is not your typical RV park. Most importantly, the Campground will bring approximately 996 tourists (at estimated capacity) yearly to the Town of Saugerties and the Catskill region, which will diversity the Town's tax base and bring recreational economic opportunities to the Town.

Based on the above, the Project will not have a significant adverse impact on the Town of Saugerties's community plans.

#### 18. Consistency with Community Character

The Project Site is nearby both residential and commercial uses at the corner of Route 212 and Glasco Turnpike. The Project Site is nearby the Red Onion, Peace Love Havanese, Cutting Edge Spray Foam Service, South Peak Veterinary Hospital, and Lang Media Graphics. *See* Exhibit B [Aerial Image].

The Project is in the MDR zoning district that permits the proposed campground with amenities. Per the Zoning Code, the MDR district "is intended to extend the benefit of rural environment while living relatively close to educational, cultural, recreational, business, employment, transportation, and other compatible and interdependent land uses where county and state highways are easily accessible." Zoning Code 245-6(B). The Project seeks to develop 75 camping units on the 77.5 acres Project Site in compliance with the MDR's intent to provision for recreational uses in the MDR zone.

A portion of the Project Site is within the GOD overlay district, which intent is to "enhance the attractiveness of gateway areas in Saugerties for visitors and residents. To further this purpose, these regulations establish a design context to be followed by applicants in the design of projects and to be followed by the Planning Board as part of the special use permit and site plan approval processes." Zoning Code 245-6(L). Here, the Project's architecture has been designed to be both rustic and compatible with the surrounding area and surrounding commercial and residential uses. The Proposed structures and signage related to the Project meet the design goals of the GOD district and therefore the Project is responsible commercial development, compliant with the intent to the MDR and GOD zoning districts, as well as the Comprehensive Plan.

Based on the above, the Project will not result in a significant adverse impact on the community character of the Town of Saugerties.

#### **Conclusion**

Based on the above, the Project has been designed to avoid all potential environmental impacts and therefore a SEQRA Negative declaration is warranted. We look forward to working with the Town of Saugerties on this exciting new Project that will increase economic development and promote a vibrant Saugerties by building on the natural resources in the community.



#### **Instructions for Completing Part 1**

**Part 1 is to be completed by the applicant or project sponsor.** Responses become part of the application for approval or funding, are subject to public review, and may be subject to further verification.

Complete Part 1 based on information currently available. If additional research or investigation would be needed to fully respond to any item, please answer as thoroughly as possible based on current information; indicate whether missing information does not exist, or is not reasonably available to the sponsor; and, when possible, generally describe work or studies which would be necessary to update or fully develop that information.

Applicants/sponsors must complete all items in Sections A & B. In Sections C, D & E, most items contain an initial question that must be answered either "Yes" or "No". If the answer to the initial question is "Yes", complete the sub-questions that follow. If the answer to the initial question is "No", proceed to the next question. Section F allows the project sponsor to identify and attach any additional information. Section G requires the name and signature of the applicant or project sponsor to verify that the information contained in Part 1 is accurate and complete.

#### A. Project and Applicant/Sponsor Information.

Name of Action or Project:

Terramor Catskills

Project Location (describe, and attach a general location map):

NY Route 212 near Osnas Lane, and Glasco Turnpike near Cottontail Lane

Brief Description of Proposed Action (include purpose or need):

Kampgrounds of America Inc. d/b/a Terramor Outdoor Resort proposes to construct a 75-tent glamping campground. In addition to the 75 tents with their individual bathroom facilities, the campground will also include a lodge building with food and beverage services for resort guests, a swimming pool area, event lawn pavilion and a wellness tent. Maintenance and operations facilities to support the resort will consist of a maintenance and laundry building, covered golf cart storage, employee housing for 32 employees (30 occupied & 2 for extra capacity if needed) and a manager's residence.

Primary vehicular access will be via NY Route 212 with a welcome center building proposed along the access drive before reaching the Lodge. Secondary golf cart access will be available for employees and employee accompanied guests. Pedestrian hiking trails are also proposed within the property. Secondary road access for emergency vehicles will be provided via a gated drive off of the end of Cottontail Lane. Separate parking areas will be provided for each cluster of tents, at the Lodge, at the welcome center, and in the maintenance area.

Utilities will include on-site potable water wells, centralized wastewater collection and disposal, and NYSDEC-compliant stormwater management devices. Site landscaping and and limited exterior lighting are also proposed.

| Name of Applicant/Sponsor:                                                          | Telephone: (202) 689-7771         E-Mail: ahelmi@terramoroutdoorresort.com |                                       |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------|
| Kampgrounds of America Inc. d/b/a Terramor Outdoor Resort (Ahmed Helmi & Kim White) |                                                                            |                                       |
| Address: 550 North 31st Sreet                                                       |                                                                            |                                       |
| City/PO: Billings                                                                   | State: MT                                                                  | Zip Code: 59101                       |
| Project Contact (if not same as sponsor; give name and title/role):                 | Telephone: 518-487-7600<br>E-Mail: cgotlieb@woh.com                        |                                       |
| Whiteman Osterman & Hanna, attn. Charles Gotlieb, Esq.                              |                                                                            |                                       |
| Address:                                                                            | 1                                                                          | · · · · · · · · · · · · · · · · · · · |
| One Commerce Plaza                                                                  |                                                                            |                                       |
| City/PO:                                                                            | State:                                                                     | Zip Code:                             |
| Albany                                                                              | NY                                                                         | 12260                                 |
| Property Owner (if not same as sponsor):                                            | Telephone:                                                                 |                                       |
| same as applicant/sponsor                                                           | E-Mail:                                                                    |                                       |
| Address:                                                                            |                                                                            |                                       |
| City/PO:                                                                            | State:                                                                     | Zip Code:                             |

#### **B.** Government Approvals

| B. Government Approvals, F<br>assistance.)                                                                             | unding, or Spor                         | nsorship. ("Funding" includes grants, loans, t                                                              | ax relief, and any othe                                  | er forms of financial                               |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|
| Government Ent                                                                                                         | ity                                     | If Yes: Identify Agency and Approval(s)<br>Required                                                         | Applicat<br>(Actual or                                   |                                                     |
| a. City Counsel, Town Board,<br>or Village Board of Trustees                                                           |                                         |                                                                                                             |                                                          |                                                     |
| b. City, Town or Village<br>Planning Board or Commiss                                                                  |                                         | Town Planning Board Special Use Permit, Site<br>Plan Approval, Lot Consolidation                            | Sketch Plan Conference<br>Applications filed July 5      |                                                     |
| c. City, Town or<br>Village Zoning Board of Ap                                                                         |                                         |                                                                                                             |                                                          |                                                     |
| d. Other local agencies                                                                                                | ∐Yes <b>Z</b> No                        |                                                                                                             |                                                          |                                                     |
| e. County agencies                                                                                                     | <b>Yes N</b> o                          | County Planning Section 439 Advisory Opinion,<br>Ulster County Health Department                            | Town referred to UCPB<br>UC DOH Pre-Ap meetin            |                                                     |
| f. Regional agencies                                                                                                   | <b>Yes Z</b> No                         |                                                                                                             |                                                          |                                                     |
| g. State agencies                                                                                                      | <b>V</b> Yes No                         | NYSDOT, NYSDEC                                                                                              | NYSDEC Pre-Aps 7/29<br>NYSDOT 7/7/22                     | /22 & 8/1/22,                                       |
| h. Federal agencies                                                                                                    | <b>Z</b> Yes No                         | US Army Corps of Engineers                                                                                  | Approved Jurisdictional<br>request submitted 7/8/2       |                                                     |
| i. Coastal Resources.<br><i>i</i> . Is the project site within a                                                       | a Coastal Area, c                       | or the waterfront area of a Designated Inland W                                                             | /aterway?                                                | □Yes <b>Z</b> No                                    |
| <i>ii</i> . Is the project site located <i>iii</i> . Is the project site within a                                      |                                         | with an approved Local Waterfront Revitaliza<br>Hazard Area?                                                | tion Program?                                            | □ Yes☑No*<br>□ Yes☑No                               |
| C. Planning and Zoning                                                                                                 | he Town of Saug                         | erties does not have an approved LWRP. The                                                                  | Village of Saugerties I                                  | nas a 1985 approved LW                              |
| C.1. Planning and zoning act                                                                                           | ions.                                   |                                                                                                             |                                                          |                                                     |
| • If Yes, complete section                                                                                             | e granted to enalons C, F and G.        | mendment of a plan, local law, ordinance, rule<br>ole the proposed action to proceed?                       | -                                                        | Yes ZNo                                             |
|                                                                                                                        | tion C.2 and con                        | nplete all remaining sections and questions in l                                                            | Part 1                                                   |                                                     |
| C.2. Adopted land use plans.                                                                                           | ( <u>z *</u> , , *1)                    |                                                                                                             | · · · · · · · · · · · · · · · · · · ·                    |                                                     |
| where the proposed action w                                                                                            | ould be located?                        |                                                                                                             | -                                                        | <b>⊠</b> Yes⊡No                                     |
| If Yes, does the comprehensive would be located?                                                                       | plan include spo                        | ecific recommendations for the site where the p                                                             | proposed action                                          | □Yes <b>Z</b> No                                    |
|                                                                                                                        |                                         | ocal or regional special planning district (for e ated State or Federal heritage area; watershed            |                                                          | ∐Yes <b>⊠</b> No                                    |
|                                                                                                                        |                                         |                                                                                                             |                                                          |                                                     |
| <ul> <li>c. Is the proposed action locate<br/>or an adopted municipal far<br/>If Yes, identify the plan(s):</li> </ul> |                                         | ially within an area listed in an adopted munic<br>1 plan?                                                  | ipal open space plan,                                    | <b>⊘</b> Yes⊡No                                     |
| The Town's municipal Open Sp<br>located within the Catskill Mountain I<br>itself was found in this Plan.               | bace Plan was ado<br>Physiographic Area | pted in 2010 and includes mapping of the entire Tow<br>a and a designated Important Natural Area in the 201 | n, including the project si<br>0 Plan. No specific refer | te. The project site is<br>ence to the project site |
|                                                                                                                        |                                         |                                                                                                             |                                                          |                                                     |

C.3. Zoning a. Is the site of the proposed action located in a municipality with an adopted zoning law or ordinance. **ℤ**Yes**□**No If Yes, what is the zoning classification(s) including any applicable overlay district? Moderate Density Residential (MDR) zoning district, and the southern portion of the site that includes frontage on NYS Route 212 is within a Gateway Overlay Zone. b. Is the use permitted or allowed by a special or conditional use permit? Ves No c. Is a zoning change requested as part of the proposed action? Yes Z No If Yes, *i*. What is the proposed new zoning for the site? C.4. Existing community services. a. In what school district is the project site located? Saugerties Central School District b. What police or other public protection forces serve the project site? Saugerties Police Department, Ulster County Sheriff's Office, NYS Police c. Which fire protection and emergency medical services serve the project site? Centerville File Department, Diaz Memorial Ambulance Service d. What parks serve the project site? Cantine Field, Kiwanis Ice Arena, Saugerties Village Beach, Overlook Mountain, Catskill Park Forest Preserve lands

#### **D.** Project Details

| D.1. Proposed and Potential Development                                                                                 |                                                                 |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| a. What is the general nature of the proposed action (e.g., residential, in components)? commercial glamping campground | industrial, commercial, recreational; if mixed, include all     |
| b. a. Total acreage of the site of the proposed action?                                                                 | 77.51 acres                                                     |
| b. Total acreage to be physically disturbed?                                                                            | 23.66 acres (includes 5.94 acres of possible selective          |
| c. Total acreage (project site and any contiguous properties) owned                                                     | tree removal for siting tents and trails)                       |
| or controlled by the applicant or project sponsor?                                                                      | 77.51 acres                                                     |
| c. Is the proposed action an expansion of an existing project or use?                                                   | 🗖 Yes 🔽 No                                                      |
| i. If Yes, what is the approximate percentage of the proposed expans                                                    |                                                                 |
| square feet)? % Units:                                                                                                  |                                                                 |
| d. Is the proposed action a subdivision, or does it include a subdivision                                               | on? Yes ZNo                                                     |
| If Yes,                                                                                                                 | includes consolidation of 2 lots into single lot                |
| i. Purpose or type of subdivision? (e.g., residential, industrial, comme                                                | nercial; if mixed, specify types)                               |
| ii Ia a abuta/aanaamatian lawant amanaa do                                                                              |                                                                 |
| <i>ii.</i> Is a cluster/conservation layout proposed?<br><i>iii.</i> Number of lots proposed?                           | □Yes □No                                                        |
| <i>iv.</i> Minimum and maximum proposed lot sizes? Minimum                                                              | Maximum                                                         |
|                                                                                                                         |                                                                 |
| e. Will the proposed action be constructed in multiple phases?                                                          |                                                                 |
| <i>i</i> . If No, anticipated period of construction:                                                                   | 14 months                                                       |
| ii. If Yes:                                                                                                             |                                                                 |
| Total number of phases anticipated                                                                                      |                                                                 |
| Anticipated commencement date of phase 1 (including demol                                                               |                                                                 |
| <ul> <li>Anticipated completion date of final phase</li> </ul>                                                          |                                                                 |
|                                                                                                                         | monthyear                                                       |
| Generally describe connections or relationships among phases                                                            | es, including any contingencies where progress of one phase may |
|                                                                                                                         | es, including any contingencies where progress of one phase may |
| Generally describe connections or relationships among phases                                                            | es, including any contingencies where progress of one phase may |

| f. Does the proje                                                                                                                             | ct include new resid                         | lential uses?          |                        |                                                  | <b>⊿</b> Yes No     |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|------------------------|--------------------------------------------------|---------------------|
| If Yes, show nur                                                                                                                              | nbers of units prope                         | sed.                   |                        |                                                  | Employee Housing    |
|                                                                                                                                               | One Family                                   | <u>Two Family</u>      | Three Family           | Multiple Family (4 or more )                     | (accessory use)     |
| Initial Phase                                                                                                                                 | 1 mgr. res.                                  |                        |                        | 4 @ 6 each & 2 @ 4 each; (32)                    | (0000000) ( 000)    |
| At completion                                                                                                                                 |                                              |                        |                        | ······································           |                     |
| of all phases                                                                                                                                 | same                                         |                        | ······                 | same                                             |                     |
|                                                                                                                                               |                                              |                        |                        |                                                  | <b>⊘</b> Yes No     |
| g. Does the prop                                                                                                                              | osed action include                          | new non-residentia     | l construction (inc    | luding expansions)?                              | M 1 62 140          |
|                                                                                                                                               | r of structures 89, ir                       |                        |                        |                                                  |                     |
| ii. Dimensions                                                                                                                                | (in feet) of largest p                       | roposed structure:     | <u>30'3"</u> height;   | 66'0" width; and <u>111'0"</u> length            |                     |
| iii. Approximate                                                                                                                              | e extent of building                         | space to be heated o   | or cooled:             | 15090 square feet                                |                     |
| h. Does the prop                                                                                                                              | osed action include                          | construction or oth    | er activities that wi  | ll result in the impoundment of any              | <b>Yes No</b>       |
|                                                                                                                                               |                                              |                        |                        | lagoon or other storage?                         |                     |
| If Yes,                                                                                                                                       |                                              |                        |                        |                                                  |                     |
|                                                                                                                                               | e impoundment:                               |                        |                        | ·                                                |                     |
| <i>ii</i> . If a water imp                                                                                                                    | poundment, the prin                          | cipal source of the    | water:                 | Ground water Surface water stre                  | eams Other specify: |
| iii. If other than                                                                                                                            | water, identify the ty                       | ype of impounded/c     | ontained liquids ar    | nd their source.                                 |                     |
|                                                                                                                                               | - C /3                                       | 1 1 .                  | X7 1                   | 1511 15 0                                        |                     |
|                                                                                                                                               | e size of the propose<br>of the proposed dam |                        | Volume:                | million gallons; surface area:<br>height; length | acres               |
|                                                                                                                                               |                                              |                        | n or impounding s      | tructure (e.g., earth fill, rock, wood, co       | norete).            |
|                                                                                                                                               | method/materials                             | tor the proposed da    | in or impounding s     |                                                  | morete).            |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
| D.2. Project Op                                                                                                                               | oerations                                    |                        |                        |                                                  |                     |
|                                                                                                                                               |                                              | any evaluation mi      | ning or dradaing       | luring construction, operations, or bot          | h? Yes No           |
|                                                                                                                                               |                                              |                        |                        | s or foundations where all excavated             |                     |
| materials will                                                                                                                                |                                              | ation, grading of the  |                        | s of foundations where all excavated             |                     |
| If Yes:                                                                                                                                       | <i>(((((((((((((</i>                         |                        |                        |                                                  |                     |
|                                                                                                                                               | urpose of the excava                         | ation or dredging?     |                        |                                                  |                     |
| ii. How much ma                                                                                                                               | aterial (including ro                        | ck, earth, sediments   | , etc.) is proposed    | to be removed from the site?                     |                     |
| <ul> <li>Volume</li> </ul>                                                                                                                    | e (specify tons or cu                        | bic yards):            | , , , , , ,            |                                                  |                     |
| Over w                                                                                                                                        | hat duration of time                         | ?                      |                        |                                                  |                     |
| iii. Describe natu                                                                                                                            | ire and characteristi                        | cs of materials to be  | e excavated or dred    | lged, and plans to use, manage or disp           | ose of them.        |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
| 1 337/11 (1 1                                                                                                                                 |                                              |                        | . 1 1 0                |                                                  |                     |
| IV. Will there be<br>If yes, descr                                                                                                            | e onsite dewatering                          | or processing of ex-   | cavated materials?     |                                                  | ∐Yes_No             |
| II yes, desei                                                                                                                                 | 100.                                         |                        |                        |                                                  |                     |
| v What is the t                                                                                                                               | otal area to be dredg                        | red or excavated?      |                        | acres                                            |                     |
|                                                                                                                                               | naximum area to be                           |                        | time?                  | acres                                            |                     |
|                                                                                                                                               | be the maximum de                            |                        |                        |                                                  |                     |
|                                                                                                                                               | avation require blas                         |                        | r ureaging:            | itti                                             | Yes No              |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
|                                                                                                                                               |                                              |                        |                        |                                                  |                     |
| b. Would the pro                                                                                                                              | posed action cause                           | or result in alteratio | n of, increase or de   | ecrease in size of, or encroachment              | <b>√</b> Yes No     |
|                                                                                                                                               | ing wetland, waterb                          |                        |                        |                                                  |                     |
| If Yes:                                                                                                                                       | ,                                            |                        |                        | -                                                |                     |
| i. Identify the wetland or waterbody which would be affected (by name, water index number, wetland map number or geographic                   |                                              |                        |                        |                                                  |                     |
| description): A total of 0.39 acres of impacts to federal wetlands near Route 212, the wetland near Cottontail Lane, and for an internal road |                                              |                        |                        |                                                  |                     |
|                                                                                                                                               | crossing. No State (D                        | EC) regulated wetland  | ls will be impacted as | there are none on the site.                      |                     |
|                                                                                                                                               | Terramor will purcha                         | se wetland mitigation  | credits through Duc    | ks Unlimited for their in-lieu fee Mid Huds      | on mitigation bank. |

| <i>ii.</i> Describe how the proposed action would affect that waterbody or wetland, e.g. excavation, fill, placement of st alteration of channels, banks and shorelines. Indicate extent of activities, alterations and additions in square feet | ructures, or<br>t or acres: |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| For surface waters, a bottomless arch culvert will be installed over the Class B stream near Route 212. Footings and headwaills will                                                                                                             |                             |  |  |
| be located outside of the stream channel. The arch culvert will span 42 feet of stream channel. Two 30 inch HDPE culverts will be                                                                                                                |                             |  |  |
| installed at the driveway crossing on the way to maintenance. The culverts will occupy 45 feet of intermittent stream b                                                                                                                          | ottom.                      |  |  |
|                                                                                                                                                                                                                                                  |                             |  |  |
| <i>iii.</i> Will the proposed action cause or result in disturbance to bottom sediments?                                                                                                                                                         | <b>∑</b> Yes <b>N</b> o     |  |  |
| If Yes, describe: Bottom sediments may be temporarily disturbed during installation of the culverted road crossing                                                                                                                               |                             |  |  |
| <i>iv.</i> Will the proposed action cause or result in the destruction or removal of aquatic vegetation?<br>If Yes:                                                                                                                              | Ves ZNo                     |  |  |
|                                                                                                                                                                                                                                                  |                             |  |  |
| <ul> <li>acres of aquatic vegetation proposed to be removed:</li> <li>expected acreage of aquatic vegetation remaining after project completion;</li> </ul>                                                                                      |                             |  |  |
| <ul> <li>purpose of proposed removal (e.g. beach clearing, invasive species control, boat access):</li> </ul>                                                                                                                                    |                             |  |  |
| • purpose of proposed removal (e.g. seach clearing, invasive species control, boat access).                                                                                                                                                      |                             |  |  |
| proposed method of plant removal:                                                                                                                                                                                                                |                             |  |  |
| if chemical/herbicide treatment will be used, specify product(s):                                                                                                                                                                                |                             |  |  |
| v. Describe any proposed reclamation/mitigation following disturbance:                                                                                                                                                                           |                             |  |  |
| All areas of disturbance outside of the footprint of the crossing will be stabilized with vegetation following culvert installation. Also, DL                                                                                                    |                             |  |  |
| c. Will the proposed action use, or create a new demand for water?                                                                                                                                                                               | <b>V</b> Yes No             |  |  |
| If Yes:                                                                                                                                                                                                                                          |                             |  |  |
| <i>i</i> . Total anticipated water usage/demand per day: 14,895 gallons/day                                                                                                                                                                      |                             |  |  |
| ii. Will the proposed action obtain water from an existing public water supply?                                                                                                                                                                  | Yes 🛛 No                    |  |  |
| If Yes:                                                                                                                                                                                                                                          |                             |  |  |
| Name of district or service area:                                                                                                                                                                                                                |                             |  |  |
| • Does the existing public water supply have capacity to serve the proposal?                                                                                                                                                                     | Ves No                      |  |  |
| • Is the project site in the existing district?                                                                                                                                                                                                  | □ Yes□ No                   |  |  |
| • Is expansion of the district needed?                                                                                                                                                                                                           | Yes No                      |  |  |
| • Do existing lines serve the project site?                                                                                                                                                                                                      | ☐ Yes ☐ No                  |  |  |
| iii. Will line extension within an existing district be necessary to supply the project?                                                                                                                                                         | Yes ZN0                     |  |  |
| If Yes:                                                                                                                                                                                                                                          |                             |  |  |
| <ul> <li>Describe extensions or capacity expansions proposed to serve this project:</li> </ul>                                                                                                                                                   |                             |  |  |
|                                                                                                                                                                                                                                                  |                             |  |  |
| Source(s) of supply for the district:                                                                                                                                                                                                            |                             |  |  |
| iv. Is a new water supply district or service area proposed to be formed to serve the project site?                                                                                                                                              | Z Yes□No                    |  |  |
| If, Yes:                                                                                                                                                                                                                                         | <b>—</b> —                  |  |  |
| Applicant/sponsor for new district: KOA d/b/a Terramor                                                                                                                                                                                           |                             |  |  |
| Date application submitted or anticipated: <u>anticipated spring 2023</u>                                                                                                                                                                        |                             |  |  |
| <ul> <li>Proposed source(s) of supply for new district: groundwater</li> </ul>                                                                                                                                                                   |                             |  |  |
| v. If a public water supply will not be used, describe plans to provide water supply for the project:                                                                                                                                            |                             |  |  |
| on-site wells                                                                                                                                                                                                                                    |                             |  |  |
| vi. If water supply will be from wells (public or private), what is the maximum pumping capacity:20 gallons/                                                                                                                                     | minute.                     |  |  |
| d. Will the proposed action generate liquid wastes?                                                                                                                                                                                              | <b>Z</b> Yes No             |  |  |
| If Yes:                                                                                                                                                                                                                                          |                             |  |  |
| <i>i</i> . Total anticipated liquid waste generation per day: 14,895 gallons/day                                                                                                                                                                 |                             |  |  |
| <i>i</i> . Total anticipated liquid waste generation per day:14,895 gallons/day<br><i>ii</i> . Nature of liquid wastes to be generated (e.g., sanitary wastewater, industrial; if combination, describe all compo                                | nents and                   |  |  |
| approximate volumes or proportions of each):                                                                                                                                                                                                     |                             |  |  |
| sanitary wastewater                                                                                                                                                                                                                              |                             |  |  |
|                                                                                                                                                                                                                                                  |                             |  |  |
| <i>iii.</i> Will the proposed action use any existing public wastewater treatment facilities?<br>If Yes:                                                                                                                                         | ☐Yes <b>Z</b> No            |  |  |
|                                                                                                                                                                                                                                                  |                             |  |  |
| <ul> <li>Name of wastewater treatment plant to be used:</li> <li>Name of district:</li> </ul>                                                                                                                                                    |                             |  |  |
| <ul> <li>Name of district:</li> <li>Does the existing wastewater treatment plant have capacity to serve the project?</li> </ul>                                                                                                                  |                             |  |  |
| <ul> <li>Is the project site in the existing district?</li> </ul>                                                                                                                                                                                |                             |  |  |
| <ul> <li>Is expansion of the district needed?</li> </ul>                                                                                                                                                                                         |                             |  |  |
| - 15 oxpansion of the district needed?                                                                                                                                                                                                           | ∐Yes <b>N</b> o             |  |  |

| • Do existing sewer lines serve the project site?                                                                                                                                                                                                                                   | ∐Yes <b>Z</b> No         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| • Will a line extension within an existing district be necessary to serve the project?                                                                                                                                                                                              | □Yes <b>[</b> ]No        |
| If Yes:                                                                                                                                                                                                                                                                             |                          |
| <ul> <li>Describe extensions or capacity expansions proposed to serve this project:</li> </ul>                                                                                                                                                                                      |                          |
|                                                                                                                                                                                                                                                                                     |                          |
|                                                                                                                                                                                                                                                                                     |                          |
| iv. Will a new wastewater (sewage) treatment district be formed to serve the project site?                                                                                                                                                                                          | <b>☑</b> Yes <b>□</b> No |
| If Yes:                                                                                                                                                                                                                                                                             |                          |
| Applicant/sponsor for new district: KOA d/b/a Terramor                                                                                                                                                                                                                              |                          |
| Date application submitted or anticipated: <u>anticipate early 2023</u>                                                                                                                                                                                                             |                          |
| <ul> <li>What is the receiving water for the wastewater discharge? <u>currently unclassified tributary, possibly Class B stream</u></li> <li>v. If public facilities will not be used, describe plans to provide wastewater treatment for the project, including species</li> </ul> |                          |
| receiving water (name and classification if surface discharge or describe subsurface disposal plans):                                                                                                                                                                               | irying proposed          |
| The WWTP effluent outfall was relocated from the stream near Route 212 to the stream in the center of the property that leaves the s                                                                                                                                                | ite via a culvert under  |
| Cottontal Lane. This is an intermittent, currently unclassified stream that is tributary to Plattekill Creek. DEC will classify when permi                                                                                                                                          | t application is made.   |
| vi. Describe any plans or designs to capture, recycle or reuse liquid waste:                                                                                                                                                                                                        |                          |
| none proposed                                                                                                                                                                                                                                                                       |                          |
|                                                                                                                                                                                                                                                                                     |                          |
| e. Will the proposed action disturb more than one acre and create stormwater runoff, either from new point                                                                                                                                                                          | <b>⊿</b> Yes No          |
| sources (i.e. ditches, pipes, swales, curbs, gutters or other concentrated flows of stormwater) or non-point                                                                                                                                                                        | MI 1 CS 1100             |
| source (i.e. sheet flow) during construction or post construction?                                                                                                                                                                                                                  |                          |
| If Yes:                                                                                                                                                                                                                                                                             |                          |
| <i>i</i> . How much impervious surface will the project create in relation to total size of project parcel?                                                                                                                                                                         |                          |
| Square feet or 4.94 acres (impervious surface)                                                                                                                                                                                                                                      |                          |
| Square feet or 77.51 acres (parcel size)                                                                                                                                                                                                                                            |                          |
| ii. Describe types of new point sources. no uncontrolled point sources                                                                                                                                                                                                              |                          |
|                                                                                                                                                                                                                                                                                     |                          |
| iii. Where will the stormwater runoff be directed (i.e. on-site stormwater management facility/structures, adjacent pr                                                                                                                                                              | operties,                |
| groundwater, on-site surface water or off-site surface waters)?                                                                                                                                                                                                                     |                          |
| Developed areas of the site will be directed to proposed stormwater management practices including pocket ponds, porous as<br>infiltration basin                                                                                                                                    | phalt, and an            |
| If to surface waters, identify receiving water bodies or wetlands:                                                                                                                                                                                                                  |                          |
| Existing on-site wetlands                                                                                                                                                                                                                                                           | ·····                    |
|                                                                                                                                                                                                                                                                                     |                          |
| Will stormwater runoff flow to adjacent properties? All developed areas will flow to management practices                                                                                                                                                                           | Yes No                   |
| <i>iv.</i> Does the proposed plan minimize impervious surfaces, use pervious materials or collect and re-use stormwater?                                                                                                                                                            | ☑ Yes ☐ No               |
| f. Does the proposed action include, or will it use on-site, one or more sources of air emissions, including fuel                                                                                                                                                                   | <b>V</b> Yes No          |
| combustion, waste incineration, or other processes or operations?                                                                                                                                                                                                                   |                          |
| If Yes, identify:                                                                                                                                                                                                                                                                   |                          |
| i. Mobile sources during project operations (e.g., heavy equipment, fleet or delivery vehicles)                                                                                                                                                                                     |                          |
| Construction equipment, construction materials deliveries,                                                                                                                                                                                                                          |                          |
| ii. Stationary sources during construction (e.g., power generation, structural heating, batch plant, crushers)                                                                                                                                                                      |                          |
|                                                                                                                                                                                                                                                                                     |                          |
| <li>iii. Stationary sources during operations (e.g., process emissions, large boilers, electric generation)<br/>none identified other then wood campfires</li>                                                                                                                      |                          |
|                                                                                                                                                                                                                                                                                     |                          |
| g. Will any air emission sources named in D.2.f (above), require a NY State Air Registration, Air Facility Permit,                                                                                                                                                                  | □Yes <b>[</b> No         |
| or Federal Clean Air Act Title IV or Title V Permit?                                                                                                                                                                                                                                |                          |
| If Yes:<br><i>i</i> . Is the project site located in an Air quality non-attainment area? (Area routinely or periodically fails to meet                                                                                                                                              | □Yes□No                  |
| ambient air quality standards for all or some parts of the year)                                                                                                                                                                                                                    |                          |
| <i>ii.</i> In addition to emissions as calculated in the application, the project will generate:                                                                                                                                                                                    |                          |
| Tons/year (short tons) of Carbon Dioxide (CO <sub>2</sub> )                                                                                                                                                                                                                         |                          |
| <ul> <li>Tons/year (short tons) of Nitrous Oxide (N<sub>2</sub>O)</li> </ul>                                                                                                                                                                                                        |                          |
| Tons/year (short tons) of Perfluorocarbons (PFCs)                                                                                                                                                                                                                                   |                          |
| <ul> <li>Tons/year (short tons) of Sulfur Hexafluoride (SF<sub>6</sub>)</li> </ul>                                                                                                                                                                                                  |                          |
| Tons/year (short tons) of Carbon Dioxide equivalent of Hydroflourocarbons (HFCs)                                                                                                                                                                                                    |                          |
| Tons/year (short tons) of Hazardous Air Pollutants (HAPs)                                                                                                                                                                                                                           |                          |
|                                                                                                                                                                                                                                                                                     |                          |

| If Yes: methane provide the second se | nt manufacturer confirmed aerobic process<br>oduction/emissions.<br>oject design (e.g., combustion to generat                                                                                                                                            | e heat or       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| <ul> <li>Will the proposed action result in the release of air pollutants from open-air open quarry or landfill operations?</li> <li>If Yes: Describe operations and nature of emissions (e.g., diesel exhaust, rock par</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | · · —                                                                                                                                                                                                                                                    | res 🗹 No        |
| <ul> <li>i. When is the peak traffic expected (Check all that apply): Morning</li> <li>Randomly between hours of to</li> <li>ii. For commercial activities only, projected number of truck trips/day and type of the truck trips.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PM Peak = 22 trips/hour<br>Evening Weekend<br>(e.g., semi trailers and dump trucks):                                                                                                                                                                     | ′es <b>∏</b> No |
| <ul> <li><i>iv.</i> Does the proposed action include any shared use parking?</li> <li><i>v.</i> If the proposed action includes any modification of existing roads, creation on <u>An entrance drive will be constructed using the Route 212 frontage. A secondary, emer</u></li> <li><i>vi.</i> Are public/private transportation service(s) or facilities available within ½ mil</li> <li><i>vii.</i> Will the proposed action include access to public transportation or accommod or other alternative fueled vehicles? EV charging stations will be installed at <i>viii.</i> Will the proposed action include plans for pedestrian or bicycle accommodation pedestrian or bicycle routes?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Net increase/decrease +<br>I y<br>f new roads or change in existing access<br>regency access will be constructed from Cotto<br>e of the proposed site? Y<br>ations for use of hybrid, electric Y<br>parking areas.<br>ions for connections to existing Y |                 |
| <ul> <li>k. Will the proposed action (for commercial or industrial projects only) generate r for energy?</li> <li>If Yes: <ol> <li>Estimate annual electricity demand during operation of the proposed action:</li> <li>400,000 kWh</li> </ol> </li> <li>ii. Anticipated sources/suppliers of electricity for the project (e.g., on-site combus other): <ul> <li>grid/local utility</li> </ul> </li> <li>iii. Will the proposed action require a new, or an upgrade, to an existing substation</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | stion, on-site renewable, via grid/local u                                                                                                                                                                                                               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Friday: 7:00 AM - 10:00 PM<br>: 7:00 AM - 10:00 PM<br>7:00 AM - 10:00 PM                                                                                                                                                                               |                 |

| m. Will the proposed action produce noise that will exceed existing ambient noise levels during construction,                                                                                                                                                                 | <b>V</b> Yes                     | No           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------|
| operation, or both?                                                                                                                                                                                                                                                           |                                  |              |
| If yes:<br><i>i</i> . Provide details including sources, time of day and duration:                                                                                                                                                                                            |                                  |              |
| <u>Construction vehicles, construction equipment, power tools, etc. operating during weekday work days, generally 8:00 AM to 5:0</u>                                                                                                                                          | 0 PM. So                         | und          |
| sources expected during operations will include campers, cars and golf carts. There will be enforced quiet hours between 10 PM and                                                                                                                                            | 7 AM.                            |              |
| <i>ii.</i> Will the proposed action remove existing natural barriers that could act as a noise barrier or screen?                                                                                                                                                             | <b>V</b> Yes                     | No           |
| Describe: Some currently treed areas will be cut for such things as the lodge area, activity lawns, wellness pavilion, maintenand area and for the access drive. Ample perimeter vegetation will remain and provide sound attenuation. See project not                        | <u>ce and ope</u><br>bise study. | rations      |
| n. Will the proposed action have outdoor lighting?                                                                                                                                                                                                                            | V Yes                            | 1No          |
| If yes:                                                                                                                                                                                                                                                                       |                                  |              |
| <i>i</i> . Describe source(s), location(s), height of fixture(s), direction/aim, and proximity to nearest occupied structures:                                                                                                                                                |                                  |              |
| along roads 25' tall light pole with hooded fixtures, wooden bollard with hooded fixture 3' tall mounting height, tree mounted downlight<br>areas, open lawns) the nearest tent to nearby residences is 204 feet with an intervening wooded area. See project lighting plans. | s in select a                    | areas (grill |
| <i>ii.</i> Will proposed action remove existing natural barriers that could act as a light barrier or screen?                                                                                                                                                                 | <b>V</b> Yes                     | No           |
| Describe: See the response above regarding tree removal and sound. Vegetation to remain will screen project lighting.                                                                                                                                                         |                                  |              |
|                                                                                                                                                                                                                                                                               |                                  |              |
| o. Does the proposed action have the potential to produce odors for more than one hour per day?                                                                                                                                                                               | Z Yes                            | No           |
| If Yes, describe possible sources, potential frequency and duration of odor emissions, and proximity to nearest                                                                                                                                                               | <b>N</b> I cs                    | JINO         |
| occupied structures:                                                                                                                                                                                                                                                          |                                  |              |
| Wood campfires can happen at all hours. Typically the peak time is between 6:00 and 9:00 PM and some during 8:00 to 10:00 A                                                                                                                                                   | M The sh                         | ortest       |
| distance between the proposed tents and the nearest residence (Monchik residence) is +/- 204 feet. At the Bar Harbor Terramor facili                                                                                                                                          | ty, approxir                     | nately       |
| 25% of guests have campfires at their tents.                                                                                                                                                                                                                                  |                                  | •••          |
| p. Will the proposed action include any bulk storage of petroleum (combined capacity of over 1,100 gallons)                                                                                                                                                                   | <b>ℤ</b> Yes [                   | No           |
| or chemical products 185 gallons in above ground storage or any amount in underground storage?<br>If Yes:                                                                                                                                                                     |                                  |              |
| <i>i</i> . Product(s) to be stored liquid propane                                                                                                                                                                                                                             |                                  |              |
| <i>ii.</i> Volume(s) <u>30,000 gal per unit time</u> <u>year</u> (e.g., month, year) <u>3,000 gallons of storage refilled 10 times</u>                                                                                                                                        | or year                          |              |
| <i>iii.</i> Generally, describe the proposed storage facilities:                                                                                                                                                                                                              | лет усат                         |              |
| three (3) aboveground 1,000 gallon LP gas storage tanks - 1 each for the Lodge, pool and maintenance areas                                                                                                                                                                    |                                  |              |
| q. Will the proposed action (commercial, industrial and recreational projects only) use pesticides (i.e., herbicides,                                                                                                                                                         | V Yes                            | No           |
| insecticides) during construction or operation?                                                                                                                                                                                                                               | -                                |              |
| If Yes:                                                                                                                                                                                                                                                                       |                                  |              |
| <i>i</i> . Describe proposed treatment(s):                                                                                                                                                                                                                                    |                                  |              |
| Treatments will be made for mosquito and tick control 2 to 3 times a year. Non-chemical pesticides will be used                                                                                                                                                               | •                                |              |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                         |                                  |              |
|                                                                                                                                                                                                                                                                               |                                  |              |
| ii. Will the proposed action use Integrated Pest Management Practices?                                                                                                                                                                                                        | Z Yes                            | INo          |
| r. Will the proposed action (commercial or industrial projects only) involve or require the management or disposal                                                                                                                                                            |                                  |              |
| of solid waste (excluding hazardous materials)?                                                                                                                                                                                                                               |                                  |              |
| If Yes:                                                                                                                                                                                                                                                                       |                                  |              |
| i. Describe any solid waste(s) to be generated during construction or operation of the facility:                                                                                                                                                                              |                                  |              |
| Construction: 192 tons per year (unit of time)                                                                                                                                                                                                                                |                                  |              |
| • Operation : 160 tons per year (unit of time)                                                                                                                                                                                                                                |                                  |              |
| ii. Describe any proposals for on-site minimization, recycling or reuse of materials to avoid disposal as solid waste:                                                                                                                                                        |                                  |              |
| Construction: dedicated dumpster for recycling scrap, ordering proper sizes and quantities of construction materials                                                                                                                                                          |                                  |              |
| Operation: cardboard, glass and metals recycling                                                                                                                                                                                                                              |                                  |              |
|                                                                                                                                                                                                                                                                               |                                  |              |
| iii. Proposed disposal methods/facilities for solid waste generated on-site:                                                                                                                                                                                                  |                                  |              |
| Construction: approved C&D facility, approved transfer station                                                                                                                                                                                                                |                                  |              |
| Operation:                                                                                                                                                                                                                                                                    |                                  |              |
| Operation:approved transfer facility or landfill utilized by commercial hauler                                                                                                                                                                                                |                                  |              |
|                                                                                                                                                                                                                                                                               |                                  |              |
|                                                                                                                                                                                                                                                                               |                                  |              |

| s. Does the proposed action include construction or modification of a solid waste management facility?                                                                          |                                    |                                    |                         |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-------------------------|--|
| <ul> <li>i. Type of management or handling of waste proposed for the site (e.g., recycling or transfer station, composting, landfill, or other disposal activities):</li> </ul> |                                    |                                    |                         |  |
| <i>ii.</i> Anticipated rate of disposal/processing:                                                                                                                             |                                    |                                    |                         |  |
| • Tons/month, if transfer or other nor                                                                                                                                          | -combustion/thermal treatment      | nt, or                             |                         |  |
| • Tons/hour, if combustion or therma                                                                                                                                            |                                    |                                    |                         |  |
| iii. If landfill, anticipated site life:                                                                                                                                        |                                    |                                    |                         |  |
| t. Will the proposed action at the site involve the comm                                                                                                                        | ercial generation, treatment, s    | torage, or disposal of hazard      | ous 🗌 Yes 🖉 No          |  |
| waste?<br>If Yes:                                                                                                                                                               |                                    |                                    |                         |  |
| <i>i</i> . Name(s) of all hazardous wastes or constituents to 1                                                                                                                 | be generated, handled or mana      | ged at facility:                   |                         |  |
|                                                                                                                                                                                 |                                    |                                    |                         |  |
|                                                                                                                                                                                 | 1 1 ,                              |                                    |                         |  |
| ii. Generally describe processes or activities involving                                                                                                                        | nazardous wastes or constitu       | ents:                              |                         |  |
|                                                                                                                                                                                 |                                    |                                    |                         |  |
| iii. Specify amount to be handled or generated                                                                                                                                  | tons/month                         |                                    |                         |  |
| iv. Describe any proposals for on-site minimization, re                                                                                                                         | ecycling or reuse of hazardous     | constituents:                      |                         |  |
|                                                                                                                                                                                 |                                    | · · · ··                           |                         |  |
| v. Will any hazardous wastes be disposed at an existing                                                                                                                         | ng offsite hazardous waste fac     | ility?                             | <b>Yes</b> No           |  |
| If Yes: provide name and location of facility:                                                                                                                                  | -                                  | •<br>                              |                         |  |
| If No. Jose the second second of any here do                                                                                                                                    |                                    | 44 1 1 C C                         |                         |  |
| If No: describe proposed management of any hazardous                                                                                                                            | s wastes which will not be sen     | t to a nazardous waste facilit     | y:                      |  |
|                                                                                                                                                                                 |                                    |                                    |                         |  |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                           |                                    |                                    |                         |  |
| E. Site and Setting of Proposed Action                                                                                                                                          |                                    |                                    |                         |  |
| E.1. Land uses on and surrounding the project site                                                                                                                              |                                    |                                    |                         |  |
| a. Existing land uses.                                                                                                                                                          |                                    |                                    |                         |  |
| <i>i</i> . Check all uses that occur on, adjoining and near th                                                                                                                  | e project site.                    |                                    |                         |  |
| Urban 🔲 Industrial 🛛 Commercial 🖉 Res                                                                                                                                           |                                    |                                    |                         |  |
| Forest Agriculture Aquatic Oth<br><i>ii.</i> If mix of uses, generally describe:                                                                                                | er (specify):                      |                                    |                         |  |
| The site itself is wooded with existing woods roads and potable                                                                                                                 | water wells installed by a previou | sly approved subdivision Residu    | ential areas are to the |  |
| north and east, there is a home occupation business adjacent to                                                                                                                 | o the site (south) and South Peak  | Veterinary Hospital is north of th | e site on NY Route 212. |  |
| b. Land uses and covertypes on the project site.                                                                                                                                |                                    |                                    |                         |  |
| Land use or                                                                                                                                                                     | Current                            | Acreage After                      | Change                  |  |
| Covertype                                                                                                                                                                       | Acreage                            | Project Completion                 | (Acres +/-)             |  |
| Roads, buildings, and other paved or impervious                                                                                                                                 |                                    |                                    |                         |  |
| surfaces                                                                                                                                                                        | 0                                  | 4.94                               | +4.94                   |  |
| • Forested                                                                                                                                                                      | 67.47                              | 50.13                              | -17.34                  |  |
| Meadows, grasslands or brushlands (non-                                                                                                                                         | 0                                  | 9.98                               | +9.98                   |  |
| agricultural, including abandoned agricultural)                                                                                                                                 | Ť                                  | 0.00                               |                         |  |
| Agricultural     (includes active orchards, field, greenhouse etc.)                                                                                                             | 0                                  | 0                                  | 0                       |  |
| Includes active orchards, field, greenhouse etc.)     Surface water features                                                                                                    |                                    |                                    |                         |  |
| (lakes, ponds, streams, rivers, etc.)                                                                                                                                           | 2.04*                              | 2.04*                              | 0                       |  |
| Wetlands (freshwater or tidal)                                                                                                                                                  | 10.04                              | 9.65                               | -0.39                   |  |
| Non-vegetated (bare rock, earth or fill)                                                                                                                                        |                                    | 0.00                               |                         |  |
| Other                                                                                                                                                                           |                                    |                                    |                         |  |
| Describe:Lawn                                                                                                                                                                   | 0                                  | 1.27                               | +1.27                   |  |
|                                                                                                                                                                                 |                                    | 1.27                               | 11.27                   |  |
| Other: Permeable Paving                                                                                                                                                         | 0                                  | 1.54                               | +1.54                   |  |

Page 9 of 13

\* Areas of surface water are within the wetlands covertype and should not be counted separately towards overall site size.

| <ul> <li>c. Is the project site presently used by members of the community for public recreation?</li> <li><i>i</i>. If Yes: explain: some neighbors have stated that they use the private property for walking, etc.</li> </ul>                                                                                                                                                                                         | Ves No                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| <ul> <li>d. Are there any facilities serving children, the elderly, people with disabilities (e.g., schools, hospitals, licensed day care centers, or group homes) within 1500 feet of the project site?</li> <li>If Yes, <ul> <li><i>i</i>. Identify Facilities:</li> <li><u>Woodstock Day School is approximately 3,200 feet to the east</u>. No such facilities within 1,500 feet of the site.</li> </ul> </li> </ul> | ∐ Yes Z No                                  |
| e. Does the project site contain an existing dam?                                                                                                                                                                                                                                                                                                                                                                        | Yes No                                      |
| <i>i.</i> Dimensions of the dam and impoundment:                                                                                                                                                                                                                                                                                                                                                                         |                                             |
| • Dam height: feet                                                                                                                                                                                                                                                                                                                                                                                                       |                                             |
| Dam length:  feet                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |
| Surface area:                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |
| Volume impounded:gallons OR acre-feet                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
| ii. Dam's existing hazard classification:                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| iii. Provide date and summarize results of last inspection:                                                                                                                                                                                                                                                                                                                                                              |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
| f. Has the project site ever been used as a municipal, commercial or industrial solid waste management facility,<br>or does the project site adjoin property which is now, or was at one time, used as a solid waste management faci<br>If Yes:                                                                                                                                                                          | □Yes <b>Z</b> No<br>lity?                   |
| <i>i</i> . Has the facility been formally closed?                                                                                                                                                                                                                                                                                                                                                                        | □Yes□ No                                    |
| • If yes, cite sources/documentation:                                                                                                                                                                                                                                                                                                                                                                                    |                                             |
| <i>ii.</i> Describe the location of the project site relative to the boundaries of the solid waste management facility:                                                                                                                                                                                                                                                                                                  |                                             |
| <i>iii.</i> Describe any development constraints due to the prior solid waste activities:                                                                                                                                                                                                                                                                                                                                |                                             |
| g. Have hazardous wastes been generated, treated and/or disposed of at the site, or does the project site adjoin<br>property which is now or was at one time used to commercially treat, store and/or dispose of hazardous waste?<br>If Yes:                                                                                                                                                                             | Yes No                                      |
| <i>i</i> . Describe waste(s) handled and waste management activities, including approximate time when activities occurre                                                                                                                                                                                                                                                                                                 | ed:                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
| <ul> <li>h. Potential contamination history. Has there been a reported spill at the proposed project site, or have any<br/>remedial actions been conducted at or adjacent to the proposed site?</li> <li>If Yes:</li> </ul>                                                                                                                                                                                              | Yes No                                      |
| <i>i</i> . Is any portion of the site listed on the NYSDEC Spills Incidents database or Environmental Site Remediation database? Check all that apply:                                                                                                                                                                                                                                                                   | ∐Yes∐No                                     |
| Yes – Spills Incidents database Provide DEC ID number(s):                                                                                                                                                                                                                                                                                                                                                                |                                             |
| <ul> <li>Yes – Environmental Site Remediation database</li> <li>Provide DEC ID number(s):</li> </ul>                                                                                                                                                                                                                                                                                                                     |                                             |
| <i>ii</i> . If site has been subject of RCRA corrective activities, describe control measures:                                                                                                                                                                                                                                                                                                                           |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                          |                                             |
| <i>iii</i> . Is the project within 2000 feet of any site in the NYSDEC Environmental Site Remediation database?<br>If yes, provide DEC ID number(s): <sup>356003</sup>                                                                                                                                                                                                                                                   | <b>Y</b> es No                              |
| iv. If yes to (i), (ii) or (iii) above, describe current status of site(s):                                                                                                                                                                                                                                                                                                                                              |                                             |
| PFAS and 1.4 dioxane are present above MCL levels in groundwater and sediment at the former Town of Saugerties landfill a SSW of the Terramor site. According to NYSDEC's website accessed 6/20/22, the nature and extend of the contamination have not Testing of project site wells showed trace levels of PFOA and PFOS below NYS drinking water MCL levels at one of the wells.                                      | approximately 1/4<br>t yet been determined. |

| v. Is the project site subject to an institutional control limiting property uses?                                                                                                                                                                      | ☐ Yes <b>Z</b> No                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| <ul> <li>If yes, DEC site ID number:</li></ul>                                                                                                                                                                                                          |                                        |
| Describe any use limitations:                                                                                                                                                                                                                           |                                        |
| <ul> <li>Describe any engineering controls:</li> <li>Will the project affect the institutional or engineering controls in place?</li> </ul>                                                                                                             | Yes No                                 |
| Explain:                                                                                                                                                                                                                                                |                                        |
|                                                                                                                                                                                                                                                         |                                        |
|                                                                                                                                                                                                                                                         |                                        |
| E.2. Natural Resources On or Near Project Site                                                                                                                                                                                                          |                                        |
| a. What is the average depth to bedrock on the project site? <u>1-2</u> feet                                                                                                                                                                            |                                        |
| b. Are there bedrock outcroppings on the project site?<br>If Yes, what proportion of the site is comprised of bedrock outcroppings? +/- 5 %                                                                                                             | <b>√</b> Yes No                        |
|                                                                                                                                                                                                                                                         | <u></u>                                |
| c. Predominant soil type(s) present on project site: (AcB) Arnot Channery Silt Loam 33 %<br>(ORC) Oquaga-Arnot-Rock Outcrop 40 %                                                                                                                        |                                        |
| (ARF) Arnot-Oquaga-Rock Outcrop 10 %                                                                                                                                                                                                                    |                                        |
| d. What is the average depth to the water table on the project site? Average: >6 feet                                                                                                                                                                   |                                        |
| e. Drainage status of project site soils: Well Drained:85 % of site                                                                                                                                                                                     |                                        |
| Moderately Well Drained: <u>5</u> % of site                                                                                                                                                                                                             |                                        |
|                                                                                                                                                                                                                                                         |                                        |
| f. Approximate proportion of proposed action site with slopes: $\boxed{2}$ 0-10%: $55$ % of site $\boxed{2}$ 10-15%: 35 % of site                                                                                                                       |                                        |
| $\checkmark$ 15% or greater: 10 % of site                                                                                                                                                                                                               |                                        |
| g. Are there any unique geologic features on the project site?<br>If Yes, describe:                                                                                                                                                                     | Yes No                                 |
|                                                                                                                                                                                                                                                         |                                        |
| h. Surface water features.                                                                                                                                                                                                                              |                                        |
| <i>i</i> . Does any portion of the project site contain wetlands or other waterbodies (including streams, rivers, ponds or lakes)?                                                                                                                      | <b>√</b> Yes No                        |
| <i>ii.</i> Do any wetlands or other waterbodies adjoin the project site?                                                                                                                                                                                | <b>√</b> Yes No                        |
| If Yes to either <i>i</i> or <i>ii</i> , continue. If No, skip to E.2.i.                                                                                                                                                                                |                                        |
| <i>iii.</i> Are any of the wetlands or waterbodies within or adjoining the project site regulated by any federal, state or local agency?                                                                                                                | <b>V</b> Yes No                        |
| iv. For each identified regulated wetland and waterbody on the project site, provide the following information:                                                                                                                                         |                                        |
| Streams: Name <u>861-23, 861-29</u> Classification <u>B</u>                                                                                                                                                                                             |                                        |
| Lakes or Ponds: Name Classification     Wetlands: Name Federal Waters, Federal Waters, Federal Waters,     Classification Approximate Size 10.04 to                                                                                                     |                                        |
| • Wether J Mar (General et al las DEC)                                                                                                                                                                                                                  |                                        |
| <ul> <li>we trand No. (If regulated by DEC) none</li> <li>v. Are any of the above water bodies listed in the most recent compilation of NYS water quality-impaired waterbodies?</li> </ul>                                                              | Yes ZNo                                |
| If yes, name of impaired water body/bodies and basis for listing as impaired:                                                                                                                                                                           |                                        |
|                                                                                                                                                                                                                                                         |                                        |
|                                                                                                                                                                                                                                                         |                                        |
| i. Is the project site in a designated Floodway?                                                                                                                                                                                                        | Yes <b>Z</b> No                        |
| i. Is the project site in a designated Floodway?<br>j. Is the project site in the 100-year Floodplain?                                                                                                                                                  |                                        |
|                                                                                                                                                                                                                                                         | Yes ZNo                                |
| <ul> <li>j. Is the project site in the 100-year Floodplain?</li> <li>k. Is the project site in the 500-year Floodplain?</li> <li>l. Is the project site located over, or immediately adjoining, a primary, principal or sole source aquifer?</li> </ul> | □Yes <b>[</b> ]No<br>□Yes <b>[</b> ]No |
| <ul><li>j. Is the project site in the 100-year Floodplain?</li><li>k. Is the project site in the 500-year Floodplain?</li></ul>                                                                                                                         | □Yes ZNo<br>□Yes ZNo<br>□Yes ZNo       |

| m. Identify the predominant wildlife species                                                    |                                       |                                         |                  |
|-------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|------------------|
| Whitetail Deer                                                                                  | Wild Turkey                           | Red Spotted Newt                        |                  |
| Eastern Gray Squirrel White Footed Mouse                                                        | American Crow                         | Wood Frog<br>Common Garter S            | notro            |
| n. Does the project site contain a designated                                                   | Common Grackle                        |                                         | Yes VNo          |
| If Yes:                                                                                         | significant natural commu             | inty :                                  |                  |
| <i>i</i> . Describe the habitat/community (composition)                                         | sition, function, and basis f         | or designation):                        |                  |
|                                                                                                 |                                       |                                         |                  |
| ii. Source(s) of description or evaluation:                                                     |                                       |                                         |                  |
| iii. Extent of community/habitat:                                                               |                                       |                                         |                  |
| <ul> <li>Currently:</li> <li>Following completion of project as</li> </ul>                      |                                       | acres                                   |                  |
| <ul> <li>Following completion of project as</li> <li>Gain or loss (indicate + or -):</li> </ul> | proposed:                             |                                         |                  |
| · · · · · · · · · · · · · · · · · · ·                                                           |                                       | acres                                   |                  |
| o. Does project site contain any species of pl                                                  | ant or animal that is listed          | by the federal government or NYS as     | XX               |
| endangered or threatened, or does it contai                                                     | n any areas identified as ha          | bitat for an endangered or threatened   | species? YES     |
| If Yes:                                                                                         |                                       |                                         |                  |
| <i>i.</i> Species and listing (endangered or threatene                                          | d):                                   |                                         |                  |
| Indiana bat, endangered                                                                         |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |
| p. Does the project site contain any species                                                    | of plant or animal that is lis        | sted by NYS as rare, or as a species of | f DYes ZNo       |
| special concern?                                                                                |                                       |                                         |                  |
| If Yes:                                                                                         |                                       |                                         |                  |
| i. Species and listing:                                                                         |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |
| q. Is the project site or adjoining area current                                                | ly used for hunting, trappir          | ng, fishing or shell fishing?           | □Yes <b>Z</b> No |
| If yes, give a brief description of how the pro-                                                | posed action may affect th            | at use:                                 |                  |
|                                                                                                 |                                       |                                         |                  |
| E.3. Designated Public Resources On or N                                                        | lear Project Site                     |                                         |                  |
| a. Is the project site, or any portion of it, loca                                              | ted in a designated agricult          | tural district certified pursuant to    | Yes <b>Z</b> No  |
| Agriculture and Markets Law, Article 25-                                                        |                                       | -                                       |                  |
| If Yes, provide county plus district name/nu                                                    | mber:                                 |                                         |                  |
| b. Are agricultural lands consisting of highly                                                  | productive soils present?             |                                         | Ves No           |
| <i>i.</i> If Yes: acreage(s) on project site? 36                                                | r                                     |                                         |                  |
| ii. Source(s) of soil rating(s): USDA NRCS                                                      | Custom Soils Report                   |                                         |                  |
| c. Does the project site contain all or part of,                                                | or is it substantially contin         | guous to, a registered National         | Yes No           |
| Natural Landmark?                                                                               | , , , , , , , , , , , , , , , , , , , |                                         |                  |
| If Yes:                                                                                         |                                       |                                         |                  |
| <i>i</i> . Nature of the natural landmark:                                                      | Biological Community                  | Geological Feature                      |                  |
| ii. Provide brief description of landmark, in                                                   | icluding values behind desi           | ignation and approximate size/extent:   |                  |
|                                                                                                 |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |
| d. Is the project site located in or does it adjo                                               | in a state listed Critical En         | vironmental Area?                       | <b>∐YesZ</b> No  |
| If Yes:<br><i>i</i> . CEA name:                                                                 |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |
| <i>ii.</i> Basis for designation:                                                               |                                       |                                         |                  |
|                                                                                                 |                                       |                                         |                  |

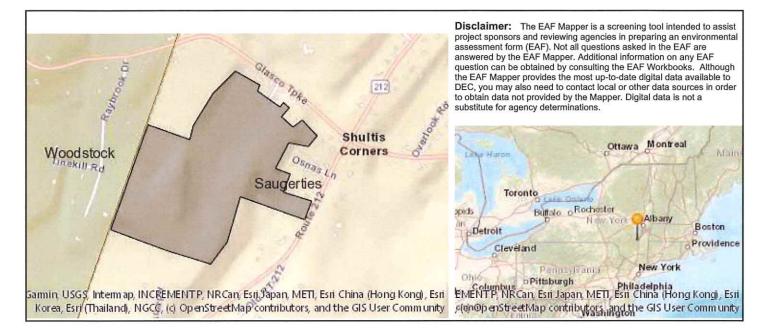
| <ul> <li>e. Does the project site contain, or is it substantially contiguous to, a building, archaeological site, or district which is listed on the National or State Register of Historic Places, or that has been determined by the Commission Office of Parks, Recreation and Historic Preservation to be eligible for listing on the State Register of Historic Places.</li> <li>If Yes: <ul> <li>i. Nature of historic/archaeological resource:</li> <li>In Archaeological Site</li> <li>In Historic Building or District</li> </ul> </li> <li>iii. Brief description of attributes on which listing is based:</li> </ul>                                                        |                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| f. Is the project site, or any portion of it, located in or adjacent to an area designated as sensitive for archaeological sites on the NY State Historic Preservation Office (SHPO) archaeological site inventory?                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>ℤ</b> Yes <b>□</b> No |  |
| <ul> <li>g. Have additional archaeological or historic site(s) or resources been identified on the project site?</li> <li>If Yes: <ul> <li>i. Describe possible resource(s): None, NYSOPRHP SHPO has issued a no-impacts determination.</li> <li>ii. Basis for identification:</li></ul></li></ul>                                                                                                                                                                                                                                                                                                                                                                                     | Yes No                   |  |
| <ul> <li>h. Is the project site within fives miles of any officially designated and publicly accessible federal, state, or local  Yes No scenic or aesthetic resource?</li> <li>If Yes: <ul> <li><i>i</i>. Identify resource: Catskill Park forest preserve lands, specifically Overlook Mountain fire tower and overlooks along trail to tower</li> <li><i>ii</i>. Nature of, or basis for, designation (e.g., established highway overlook, state or local park, state historic trail or scenic byway, etc.): NYSDEC Program Policy for Assessing and Mitigating Visual Impacts</li> <li><i>iii</i>. Distance between project and resource: <u>3.5</u> miles.</li> </ul> </li> </ul> |                          |  |
| <ul> <li>i. Is the project site located within a designated river corridor under the Wild, Scenic and Recreational Rivers Program 6 NYCRR 666?</li> <li>If Yes: <ul> <li>i. Identify the name of the river and its designation:</li> <li>ii. Is the activity consistent with development restrictions contained in 6NYCRR Part 666?</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                             | Yes No                   |  |

#### F. Additional Information

Attach any additional information which may be needed to clarify your project.

If you have identified any adverse impacts which could be associated with your proposal, please describe those impacts plus any measures which you propose to avoid or minimize them.

#### G. Verification


I certify that the information provided is true to the best of my knowledge.

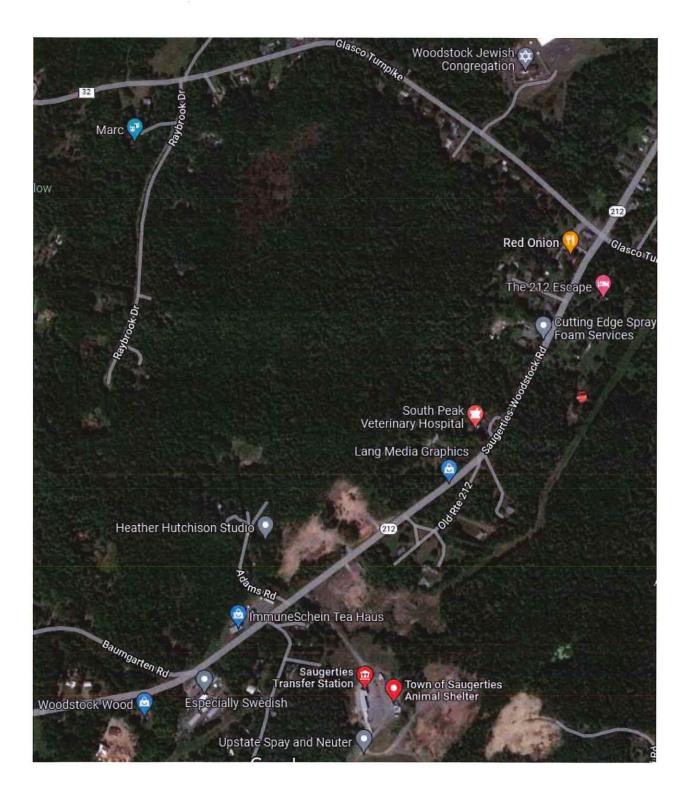
Applicant/Sponsor Name Kimberly White for Terramor Outdoor Resort Date December 1, 2023

ate December 1, 2023

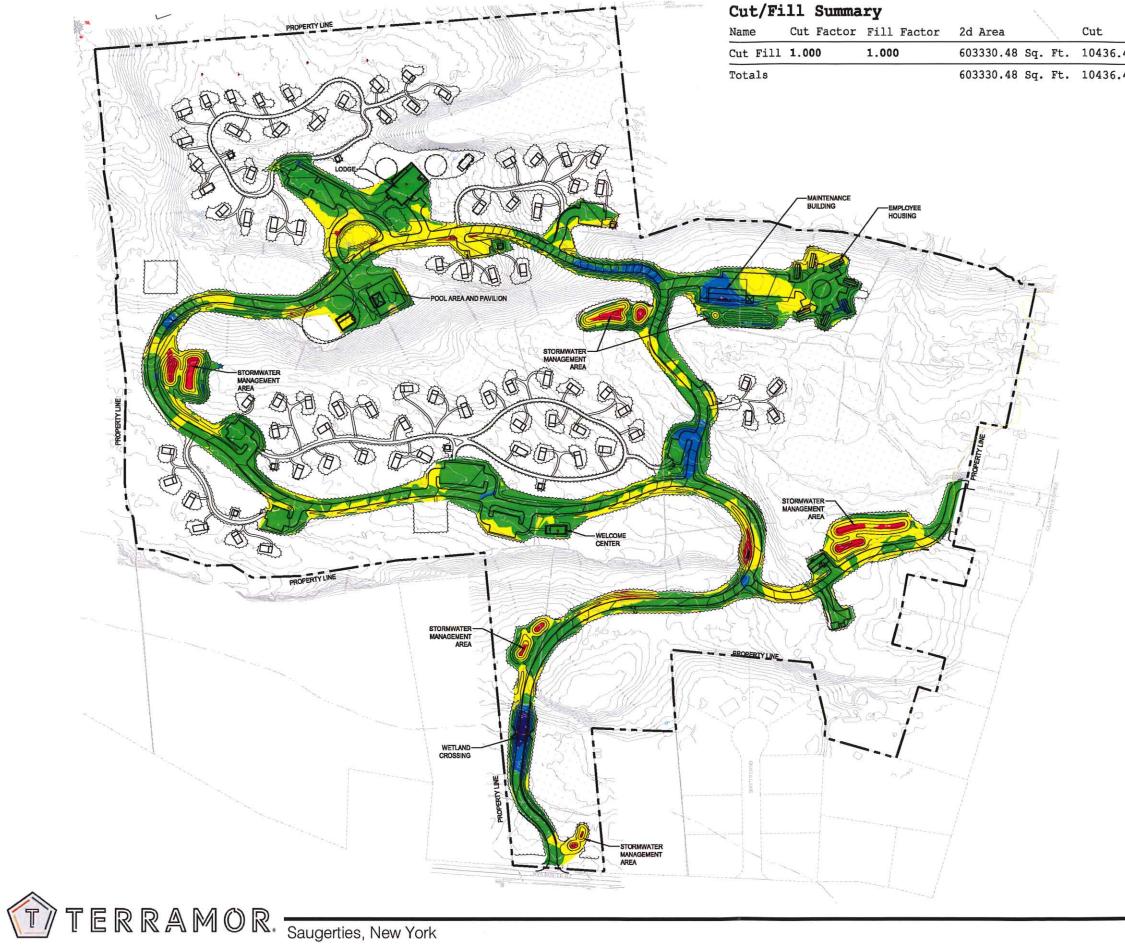
Signature Kim White

Title Project Manager



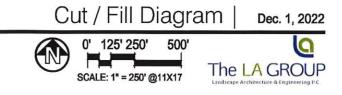

| B.i.i [Coastal or Waterfront Area]                                                    | No                                                                                                                                |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| B.i.ii [Local Waterfront Revitalization Area]                                         | No                                                                                                                                |
| C.2.b. [Special Planning District]                                                    | Digital mapping data are not available or are incomplete. Refer to EAF Workbook.                                                  |
| E.1.h [DEC Spills or Remediation Site -<br>Potential Contamination History]           | Digital mapping data are not available or are incomplete. Refer to EAF Workbook.                                                  |
| E.1.h.i [DEC Spills or Remediation Site -<br>Listed]                                  | Digital mapping data are not available or are incomplete. Refer to EAF Workbook.                                                  |
| E.1.h.i [DEC Spills or Remediation Site -<br>Environmental Site Remediation Database] | Digital mapping data are not available or are incomplete. Refer to EAF Workbook.                                                  |
| E.1.h.iii [Within 2,000' of DEC Remediation Site]                                     | Yes                                                                                                                               |
| E.1.h.iii [Within 2,000' of DEC Remediation Site - DEC ID]                            | 356003                                                                                                                            |
| E.2.g [Unique Geologic Features]                                                      | No                                                                                                                                |
| E.2.h.i [Surface Water Features]                                                      | Yes                                                                                                                               |
| E.2.h.ii [Surface Water Features]                                                     | Yes                                                                                                                               |
| E.2.h.iii [Surface Water Features]                                                    | Yes - Digital mapping information on local and federal wetlands and waterbodies is known to be incomplete. Refer to EAF Workbook. |
| E.2.h.iv [Surface Water Features - Stream Name]                                       | 861-23, 861-29                                                                                                                    |
| E.2.h.iv [Surface Water Features - Stream<br>Classification]                          | В                                                                                                                                 |
| E.2.h.iv [Surface Water Features - Wetlands Name]                                     | Federal Waters                                                                                                                    |
| E.2.h.v [Impaired Water Bodies]                                                       | No                                                                                                                                |
| E.2.i. [Floodway]                                                                     | No                                                                                                                                |

| E.2.j. [100 Year Floodplain]                                                   | Νο                                                                               |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| E.2.k. [500 Year Floodplain]                                                   | Νο                                                                               |
| E.2.I. [Aquifers]                                                              | Yes                                                                              |
| E.2.I. [Aquifer Names]                                                         | Principal Aquifer                                                                |
| E.2.n. [Natural Communities]                                                   | No                                                                               |
| E.2.o. [Endangered or Threatened Species]                                      | No                                                                               |
| E.2.p. [Rare Plants or Animals]                                                | Νο                                                                               |
| E.3.a. [Agricultural District]                                                 | Νο                                                                               |
| E.3.c. [National Natural Landmark]                                             | Νο                                                                               |
| E.3.d [Critical Environmental Area]                                            | Νο                                                                               |
| E.3.e. [National or State Register of Historic Places or State Eligible Sites] | Digital mapping data are not available or are incomplete. Refer to EAF Workbook. |
| E.3.f. [Archeological Sites]                                                   | Yes                                                                              |
| E.3.I. [Designated River Corridor]                                             | No                                                                               |


.

# B

# Aerial Image Terramor Project Site




C



|     |     |     | Fill        |       | Net          |                   |
|-----|-----|-----|-------------|-------|--------------|-------------------|
| .44 | Cu. | Yd. | 24302.69 Cu | . Yd. | 13866.25 Cu. | Yd. <fill></fill> |
| .44 | Cu. | Yd. | 24302.69 Cu | . Yd. | 13866.25 Cu. | Yd. <fill></fill> |





# D



# **Geotechnical Engineering Report**

# **Terramor Catskills**

Saugerties, NY December 5, 2022 Terracon Project No. JB225043 Rev 1

#### **Prepared for:**

Terramor Outdoor Resorts Billings, MO

Prepared by: Terracon Consultants-NY, Inc. Albany, New York

Materials

**Facilities** 

Geotechnical

December 5, 2022

Terramor Outdoor Resorts 550 B 31st Street Billings, MO 59101



- Attn: Mr. Ahmed Helmi P: (202) 689-7771 E: ahelmi@koa.net
- Re: Geotechnical Engineering Report Terramor Catskills NY Route 212 Saugerties, NY Terracon Project No. JB225043 Rev 1

Dear Mr. Helmi:

We have completed the Geotechnical Engineering services for the above-referenced project. This study was performed in general accordance with Terracon Proposal No. PJB225043, last revised on June 27, 2022. This report presents the findings of the subsurface exploration program and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, and pavements for the proposed project.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us.

Sincerely, Terracon Consultants-NY, Inc.

John T. Odorisio, P.E. Sr. Geotechnical Engineer Joseph Robichaud, Jr., P.E. Principal / Office Manager

Terracon Consultants-NY, Inc. 30 Corporate Circle, Suite 201 Albany, New York 12203 P (518) 266 0310 F (518) 266 9238 terracon.com

# **REPORT TOPICS**

| INTRODUCTION                  | 4  |
|-------------------------------|----|
|                               |    |
| SITE CONDITIONS               | 2  |
| PROJECT DESCRIPTION           |    |
| GEOTECHNICAL CHARACTERIZATION |    |
| GEOTECHNICAL OVERVIEW         |    |
| SEISMIC CONSIDERATIONS        | 6  |
| LIQUEFACTION                  | 6  |
| EARTHWORK                     | 7  |
| SHALLOW FOUNDATIONS           | 10 |
| LATERAL EARTH PRESSURES       | 12 |
| PAVEMENTS                     |    |
| GENERAL COMMENTS              |    |
| FIGURES                       |    |
|                               |    |

**Note:** This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the *GeoReport* logo will bring you back to this page. For more interactive features, please view your project online at <u>client.terracon.com</u>.

# **ATTACHMENTS**

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION

Note: Refer to each individual Attachment for a listing of contents.

# **Geotechnical Engineering Report**

# Terramor Catskills NY Route 212 Saugerties, NY Terracon Project No. JB225043 Rev 1 December 5, 2022

#### INTRODUCTION

This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed Terramor Outdoor Resort to be constructed on NY Route 12 in Saugerties, NY. The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Subsurface soil and rock conditions
- Groundwater conditions
- Site preparation and earthwork
- Excavation considerations
- Foundation design and construction
- Floor slab design and construction
- Lateral earth pressures
- Seismic site classification per NYSBC
- Pavement design and construction
- Frost considerations

The geotechnical engineering Scope of Services for this project included the advancement of 16 Test Pits (TP-1 through TP-6 and INF-1 through INF-10) to depths ranging from approximately 1.3 to 8 feet below existing site grades, field infiltration testing, limited laboratory testing of recovered samples, and the preparation of this report.

Maps showing the site and test pit locations are presented in the **Site Location** and **Exploration Plan** sections, respectively.



# SITE CONDITIONS

| Item                                                        | Description                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                             | The project is situated within two adjoining parcels located at the southwest corner of the intersection of NYS Route 212 and Glasco Turnpike in the town of Saugerties, New York. The two parcels are estimated to total about 77.5 acres in size.                                                                          |  |
| Parcel Information                                          | The approximate center of the combined parcels is located at:                                                                                                                                                                                                                                                                |  |
|                                                             | <ul> <li>Latitude: 42.0496° N</li> <li>Longitude: 74.0746° W</li> </ul>                                                                                                                                                                                                                                                      |  |
|                                                             | See Site Location                                                                                                                                                                                                                                                                                                            |  |
| Existing<br>Improvements                                    | None. The site appears to have been historically undeveloped based on available aerial imagery and USGS topographic mapping.                                                                                                                                                                                                 |  |
| Current Ground<br>Cover                                     | Heavily wooded                                                                                                                                                                                                                                                                                                               |  |
| <b>Existing Topography</b><br>(from "Overall Site<br>Plan") | The site consists of hilly terrain intersected by a series of valleys. Wetlands are mapped in low-lying areas within the project area. Site grades vary from a topographic high of about elevation 520 feet about the central southern portion of the site, and generally slope down away from this point in all directions. |  |

# **PROJECT DESCRIPTION**

Our understanding of the project is tabulated below.

| Item                 | Description                                                                                                                                                                                                                                                               |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Information Provided | <ul> <li>"Overall Site Plan" dated June 7, 2022 prepared by The LA Group</li> <li>Our initial site visit to observe site access and subsequent visit to perform test observations</li> <li>Multiple phone calls and emails with Mr. Mark Taber of The LA Group</li> </ul> |
| Project Description  | Terramor Outdoor Resorts outdoor recreation facility                                                                                                                                                                                                                      |

#### **Geotechnical Engineering Report**

Terramor Catskills Saugerties, NY December 5, 2022 Terracon Project No. JB225043 Rev 1

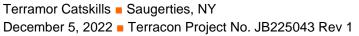


| Item                               | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Building Construction              | <ul> <li>Tent sites: Wooden platform structures with canvas cladding and roofing</li> <li>Lodge: Wood framed platform structure with glass cladding and metal roofing</li> <li>Maintenance and Employee Housing Structures: Assumed to be slab on grade, wood framed structures</li> <li>Several wooden sheds are also planned to be constructed at select locations about the site</li> <li>A swimming pool is also planned for the site</li> </ul> |  |
| Finished Floor Elevations          | Assumed to closely match existing grades                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Maximum Loads<br>(Assumed)         | <ul> <li>Maintenance/Housing Buildings:</li> <li>Columns: 50 kips</li> <li>Walls: 3 kips per linear foot (klf)</li> <li>Slabs: 150 pounds per square foot (psf)</li> <li>Tent Structures:</li> <li>Columns: 2 kips</li> </ul>                                                                                                                                                                                                                        |  |
| Grading/Slopes                     | Minimal cuts and fills, on the order of 1 to 2 feet, are anticipated.                                                                                                                                                                                                                                                                                                                                                                                |  |
| Below-Grade Structures             | The swimming pool is planned to be below grade.                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Free-Standing Retaining<br>Walls   | None anticipated                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Pavements                          | Asphalt roads and parking lots are planned for the site. We have assumed that both light and heavy-duty pavement sections are required.                                                                                                                                                                                                                                                                                                              |  |
| Estimated Start of<br>Construction | Not provided                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

# **GEOTECHNICAL CHARACTERIZATION**

We have developed a general characterization of the subsurface conditions based upon our review of the subsurface exploration, laboratory data, geologic setting, and our understanding of the project. This characterization, termed GeoModel, forms the basis of our geotechnical calculations and evaluation of site preparation and foundation options. Conditions encountered at each exploration point are indicated on the individual logs. The individual logs can be found in the **Exploration Results** section and the GeoModel can be found in the **Figures** section of this report.

#### **Subsurface Profile**


As part of our analyses, we identified the following model layers within the subsurface profile. For a more detailed view of the model layer depths at each test pit location, refer to the GeoModel.

#### **Geotechnical Engineering Report**



lerracon

GeoReport.



| Model Layer                       | Layer Name | General Description                                                          |
|-----------------------------------|------------|------------------------------------------------------------------------------|
| 1 Native Coarse-<br>Grained Soils |            | Sand with varying amounts of Silt and Gravel, roots and rootlets noted       |
| 2 Glacial Till                    |            | Silt, Sandy Silt and Silty Sand with Gravel, containing cobbles and boulders |
| 3 Weathered Rock                  |            | Highly Weathered to Completely Weathered rock                                |

The site was mantled by between about 4 and 10 inches of forest floor. The forest floor was underlain by native coarse-grained soils, glacial till, or weathered rock. The native coarse-grained soils consisted of sand with varying amounts of silt and gravel which were encountered below the surficial material at the locations of test pits TP-1, TP-4, INF-1, INF-2, INF-6, and INF-10, extending to depths on the order of about 1.4 to 8 feet below existing grades. Test pits INF-1 and INF-2 terminated at depths of 8 feet in the coarse-grained soils. Glacial Till soils consisting of silt, sandy silt and silty sand with gravel, containing cobbles and boulders, were encountered beneath the coarse-grained soils or directly below the surficial materials at the locations of test pits TP-1, TP-4, TP-5, INF-3, INF-6, and INF-10, extending to depths on the order of about 2.4 to 7 feet below existing grades and forming the terminating stratum of these test pits.

Highly to completely weathered bedrock was encountered below the surficial material at the locations of test pits TP-2, TP-3, TP-6, INF-4, INF-5, INF-7, INF-8, and INF-9. The weathered bedrock was able to be excavated to depths ranging from about 1.3 to 3 feet below existing grades. Based upon available USGS mapping, the bedrock underlying this site is mapped as Shale or Sandstone of the Plattekill formation.

Refusal on bedrock was encountered at all test pit locations with the exception of test pits TP-4 and INF-10, where refusal on a probable boulders was encountered, and test pits INF-1 and INF-2 where the native coarse-grained soils were encountered through the termination depth of the test pits.

#### **Groundwater Conditions**

Groundwater observations and measurements were made as the test pits were completed. It should be understood that these measurements may not reflect actual groundwater levels as adequate time did not pass upon completion of the excavation for groundwater to achieve a static level in the test pits.

While groundwater was not encountered in any of the explorations performed, perched water may be encountered at various locations throughout the site. Perched water levels develop when surface water (i.e. precipitation or runoff) enters the subsurface through loose surficial soils and becomes trapped, or perched, on top of less permeable soils such as the glacial till soils or weathered bedrock/bedrock, or in areas of the site where wetlands have been delineated.



Fluctuations in groundwater level and the extent of any perched water should be expected due to seasonal variations in the amount of rainfall, runoff, and other factors that may differ from those present at the time the explorations were performed. Additionally, grade adjustments on and around the site, as well as surrounding drainage improvements, may affect the water table. The possibility of groundwater level fluctuations should be considered when developing the design construction and stormwater management plans for the project.

#### Infiltration Testing

Infiltration tests were performed adjacent to test pits INF-1 INF-2 and INF-10 and numbered correspondingly. At the remaining planned infiltration test locations, bedrock was encountered at depths on the order of 3.3 feet or shallower. Based on discussions with The L.A. Group during the field investigation it was determined that infiltration would not be feasible at these depths, and testing was not performed. The testing, where performed, was conducted in general accordance with the guidelines in Appendix D of the NYS Stormwater Management Design Manual. Results of this testing are presented for your use in the **Exploration Results** section of this report and are tabulated below.

| Test No. | Approx. Test<br>Depth (ft) | Soil Classification               | Infiltration Rate<br>(in/hr) <sup>1</sup> |
|----------|----------------------------|-----------------------------------|-------------------------------------------|
| INF-1    | 5.5                        | Silty Sand (SM)                   | 8                                         |
| INF-2    | 5.5                        | Well Graded Sand with Gravel (SW) | >24"                                      |
| INF-10   | 6                          | Silty Sand with Gravel (SM)       | >24" <sup>2</sup>                         |

1. Based on the final infiltration test trial. See attached for additional information.

# **GEOTECHNICAL OVERVIEW**

The project site is considered suitable for support of the proposed structures using conventional shallow spread foundations. Based on the subsurface conditions disclosed by our investigation, we offer the following general conclusions.

- New foundations and floor slabs may be supported upon undisturbed native soils, weathered rock, or on imported Structural Fill which is placed over the native soils/rock.
- Based on the results of limited laboratory testing performed and our observation of the soil samples collected, it should be assumed that portions of the coarse-grained soils may be

<sup>2.</sup> This infiltration rate is not typical of the subsurface conditions encountered. Lower rates should be anticipated.



suitable for re-use as Structural Fill on site. Additional laboratory testing of bulk samples should be performed prior to the start of construction to confirm the suitability of the onsite soils for use as Structural Fill.

The static groundwater level at the time of our investigations appears to be below the planned foundation excavation levels. If perched water is encountered during construction, it is expected that standard sump and pump methods should be sufficient for its removal. Dewatering is a means and methods consideration for the contractor.

The following sections of this report provide more detailed recommendations to assist in planning for the geotechnical aspects of the project. We should be provided with the opportunity to review plans and specifications prior to their release for bidding to confirm that our recommendations were properly understood and implemented, and to allow us to refine our recommendations, if warranted, based upon the final design.

The General Comments section provides an understanding of the report limitations.

#### SEISMIC CONSIDERATIONS

The seismic design requirements for buildings and other structures are based on Seismic Design Category. Site Classification is required to determine the Seismic Design Category for a structure. The Site Classification is based on the upper 100 feet of the site profile defined by a weighted average value of either shear wave velocity, standard penetration resistance, or undrained shear strength in accordance with Section 20.4 of ASCE 7 and the International Building Code (IBC).

#### **Seismic Site Classification**

Based on the soil properties encountered at the site and as described on the exploration logs, it is our professional opinion that the **Seismic Site Classification is C.** Subsurface explorations at this site were extended to a maximum depth of 8 feet. The site properties below the exploration depth to 100 feet were estimated based on our experience and knowledge of geologic conditions of the general area. Additional deeper explorations or geophysical testing may be performed to confirm the conditions below the current exploration depth.

# LIQUEFACTION

Based upon the composition, relative density and groundwater conditions encountered in the test pits, it is our professional opinion that the site is not susceptible to liquefaction in response to published design earthquake motions for this region.



# EARTHWORK

Earthwork is anticipated to include clearing, associated site grading and foundation excavations. The following sections provide recommendations for use in the preparation of specifications for the work. Recommendations include critical quality criteria, as necessary, to render the site in the state considered suitable in our geotechnical engineering evaluation for foundations, floor slabs and pavements.

Construction site safety is the sole responsibility of the contractor who controls the means, methods, and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean Terracon is assuming responsibility for construction site safety or the contractor's activities; such responsibility is neither implied nor shall it be inferred.

#### **Site Preparation**

Site preparation should begin with stripping of topsoil and surficial organic matter as applicable from the building and pavement areas. Prior to placing Structural Fill to raise site grades, the excavated subgrades should be proof-rolled using a steel drum roller with a static weight of at least 7 tons. The roller should operate in its vibratory mode, unless requested otherwise by the Geotechnical Engineer observing the work, and travel at a speed not exceeding three feet per second (two miles per hour). The roller should complete at least two passes over all subgrade surfaces. Areas found to be excessively deflecting under the proofroll should be delineated and subsequently addressed by the Geotechnical Engineer. Excessively wet or dry material should either be removed, or moisture conditioned and recompacted as required to achieve its satisfactory compaction. The method of proof-rolling may be modified by the Geotechnical Engineer based upon the conditions disclosed at the time of construction.

#### **Rock Excavation**

Depending upon the planned finished floor elevations, it is possible that weathered bedrock or bedrock could be encountered in the excavations for the proposed structures, swimming pool or the installation of deep utilities. In general, the bedrock was weathered at its surface, and it should be possible to excavate a few feet into the rock using a large track mounted excavator equipped with ripper teeth. However, pinnacles of harder rock may be encountered, and the rock will become more excavation resistant with depth. Depending on the depth and extent of the removal required, the selective use of a hoe ram, chemical expansive agents, or controlled blasting may be required for economical removal of the rock.

If blasting is required for the rock excavations, it should be conducted in a controlled manner by experienced personnel to limit over-blast and vibrations transmitted to adjoining areas. The vibrations induced by the blasting should be monitored and limited to less than two inches per second at the site property lines and at the nearest existing structures and recently cast concrete.



All over-blast should be removed from beneath the buildings and pavements and replaced with imported Structural Fill. In planning for the rock removal, the foundation bearing grade preparation recommendations in the **Foundation Construction Considerations** section of this report should be considered.

#### Fill Material Types

Based on the results of limited laboratory testing performed and our observation of the soil samples collected, it should be assumed that portions of the native coarse-grained soils may be suitable for re-use as Structural Fill. Additional laboratory testing of bulk samples of the coarse-grained soil materials should be performed prior to the start of construction to confirm their suitability for reuse as Structural Fill.

If the quantity of reusable on site material is not adequate for the proposed site improvements, imported Structural Fill should be used as fill and backfill. The imported Structural Fill should consist of sand and gravel which meets the limits of gradation given below. Any imported materials should be free of recycled concrete, asphalt, bricks, glass, and pyritic shale rock.

| Sieve Size | Percent Finer |  |
|------------|---------------|--|
| 3"         | 100           |  |
| 1/4"       | 30 to 75      |  |
| No. 40     | 5 to 40       |  |
| No. 200    | 0 to 10       |  |

#### IMPORTED STRUCTURAL FILL

#### **Fill Compaction Requirements**

The Structural Fill should be placed in uniform loose layers no more than about one-foot thick, where heavy vibratory compaction equipment is used. Smaller lifts should be used where hand operated equipment is required for compaction. Each lift should be compacted to no less than 95 percent of the maximum dry density for the soil which is established by the Modified Proctor Compaction Test, ASTM D1557. In landscape areas, the compaction may be reduced to 90 percent of maximum dry density.

#### **Grading and Drainage**

All grades must provide effective drainage away from the structures during and after construction and should be maintained throughout the life of the structure. Water retained next to the structures can result in soil movements greater than those discussed in this report. Greater movements can



result in unacceptable differential floor slab and/or foundation movements, cracked slabs and walls, and roof leaks.

#### **Earthwork Construction Considerations**

Shallow excavations for the proposed construction are anticipated to be accomplished with conventional construction equipment. Upon completion of filling and grading, care should be taken to maintain the subgrade water content prior to construction of foundations. Construction traffic over the completed subgrades should be avoided. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to foundation or floor slab construction.

#### **Temporary Excavations**

Excavations must be performed in accordance with OSHA 29 CFR, Part 1926, Subpart P and its appendices, along with any state and local codes, as applicable. The contractor should be aware that slope height, slope inclination, and excavation depth should in no instance exceed OSHA regulations. Flatter slopes than those stipulated by the regulations or temporary shoring may be required depending upon the soil/groundwater conditions encountered and other external factors. OSHA regulations are strictly enforced and if they are not followed, the owner, contractor, and/or earthwork and utility subcontractor could be liable and subject to substantial penalties.

#### **Construction Observation and Testing**

The earthwork efforts should be monitored under the direction of the Geotechnical Engineer. Monitoring should include documentation of proofrolling, and mitigation of areas delineated by the proofroll to require mitigation.

In areas of foundation excavations, the bearing subgrade should be evaluated under the direction of the Geotechnical Engineer. If unanticipated conditions are encountered, the Geotechnical Engineer should prescribe mitigation options.

It should be understood the actual subsurface conditions that exist will only be known when the site is excavated. The continuation of the Geotechnical Engineer into the construction phase of the project will allow for validation of the subsurface conditions assumed to exist for this study and the design recommended in this report, including assessing variations, providing recommendations and reviewing associated design changes.



# SHALLOW FOUNDATIONS

If the site has been prepared in accordance with the requirements noted in **Earthwork** and **Foundation Construction Considerations** sections of this report, the following design parameters and construction procedures are applicable for shallow foundations.

#### **Design Parameters – Compressive Loads**

| Item                                                          | Description                                                                                                                                             |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum Net Allowable Bearing<br>Pressure <sup>1, 2</sup>     | 3,000 psf                                                                                                                                               |
| Required Bearing Stratum <sup>3</sup>                         | Natural soils, weathered bedrock, bedrock or Structural Fill over natural soils/rock                                                                    |
| Minimum Foundation Dimensions                                 | Columns:30 inchesContinuous:24 inches                                                                                                                   |
| Ultimate Coefficient of Sliding Friction <sup>4</sup>         | 0.45 (Structural Fill or native soils)<br>0.55 (weathered rock/bedrock)                                                                                 |
| Minimum Embedment below<br>Finished Grade <sup>5</sup>        | Exterior footings in heated/unheated areas: 48 inches<br>Interior footings in unheated areas: 48 inches<br>Interior footings in heated areas: 24 inches |
| Estimated Total Settlement from Structural Loads <sup>2</sup> | Less than about 1 inch                                                                                                                                  |
| Estimated Differential Settlement <sup>2, 6</sup>             | About 1/2 of total settlement                                                                                                                           |

1. The maximum net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. An appropriate factor of safety has been applied. Values assume that exterior grades are no steeper than 20% within 10 feet of structure.

- 2. Values provided are for maximum loads noted in Project Description.
- 3. The bearing grades should be prepared per the recommendations presented below in the **Foundation Construction Considerations**.
- 4. Can be used to compute sliding resistance where foundations are placed on suitable soil/materials. Should be neglected for foundations subject to net uplift conditions.
- 5. Embedment necessary to minimize the effects of frost and/or seasonal water content variations. For sloping ground, maintain depth below the lowest adjacent exterior grade within 5 horizontal feet of the structure. Interior footings in heated area may be seated at the 24-inch depth if allowed by local building codes. In the case of haunched floor slab support for interior partition walls, the minimum depth requirement may be waived (again, if permitted by local building codes).
- 6. Differential settlements are as measured over a span of 50 feet.

#### **Foundation Construction Considerations**

The foundations may be seated directly upon undisturbed native soils, weathered bedrock, bedrock or on imported Structural Fill placed as part of the site grading. The surface of foundation



bearing grades should be recompacted to densify the soils loosened by the excavation process where comprised of coarse-grained soils or Structural Fill.

All final bearing grades should be relatively firm, stable, and free of loose soil, mud, water and frost. The Geotechnical Engineer should approve the condition of the foundation bearing grades immediately prior to placement of reinforcing steel and concrete.

Where foundations will bear on weathered rock or rock, the excavated rock surface should be made generally level and free of loose soil, mud and rock fragments. Where proposed foundation bearing grades for any individual foundation element are comprised partly of native soil or Structural Fill and partly of bedrock, the bedrock should be over-excavated by a depth of 12 inches and replaced with a Structural Fill "cushion". This is intended to provide a more uniform bearing surface and to limit the potential for differential settlement. For continuous wall footings, were the bearing surface transitions from bedrock to soil, the rock should be over-excavated a distance of at least ten feet from the transition to soil and backfilled as indicated above.

#### FLOOR SLABS

Design parameters for floor slabs assume the requirements in the **Earthwork** and **Floor Slab Construction Considerations** sections of this report have been followed. Specific attention should be given to positive drainage away from the structure and positive drainage of the aggregate base beneath the floor slab.

#### **Floor Slab Design Parameters**

The floor slabs should be constructed upon a minimum six-inch thick subbase course which conforms to the requirements for NYSDOT Type 2 Subbase or ASTM C33 Blend 57 aggregate. Consideration should be given to using a thicker subbase course in areas subject to heavier loads and/or use, or those exposed to freezing temperatures.

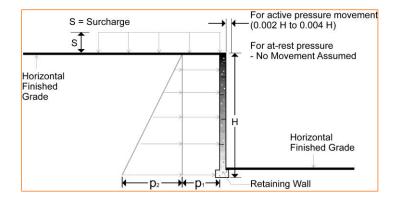
The use of a vapor retarder along with a base course of ASTM C33 Blend 57 aggregate should be considered beneath concrete slabs-on-grade to be covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding its use and placement.

Saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual.

Floor slab subgrades should be prepared as outlined in the Earthwork section herein. Under these conditions, a modulus of subgrade reaction equal to 150 pounds per cubic inch (psi/in) may be assumed at the top of the stone base layer for slab design purposes.



#### **Floor Slab Construction Considerations**


Even with the base course recommended above, we caution that the subgrades may not support repeated heavy construction traffic or telehandlers without suffering rutting and weaving that may be especially severe during wet seasons. If the grades are to be repeatedly traversed by these types of equipment, they should be reinforced as necessary to support them. Areas which become disturbed should be excavated and stabilized accordingly.

The Geotechnical Engineer should approve the condition of the floor slab subgrades immediately prior to placement of the floor slab subbase course. Attention should be paid to high traffic areas that were rutted and disturbed earlier, and to areas where backfilled trenches are located.

# LATERAL EARTH PRESSURES

#### **Design Parameters**

Permanent building or site walls that retain earth should be designed to resist lateral pressures, with applicable surcharge loads, assuming the parameters listed below. Active earth pressures may be assumed for walls that are free to deflect as the backfill is placed. At-rest earth pressures should be assumed for all walls that are braced prior to backfilling or applying surcharge loads. The figure below can be referenced to determine the applicability of Active vs. At-Rest earth pressures.



The recommended design parameters, as applicable, are tabulated below;

| Design Parameter                           | Value      |
|--------------------------------------------|------------|
| Soil Angle of Internal Friction            | 30 degrees |
| Coefficient of At-Rest Earth Pressure (Ko) | 0.50       |
| Coefficient of Active Earth Pressure (Ka)  | 0.33       |
| Coefficient of Passive Earth Pressure (Kp) | 3.00       |

Terramor Catskills Saugerties, NY December 5, 2022 Terracon Project No. JB225043 Rev 1



| Total Unit Weight of Compacted Soil | 120 pcf                                                                                      |  |
|-------------------------------------|----------------------------------------------------------------------------------------------|--|
| Coefficient of Sliding Friction     | 0.45 (native coarse-grained soils<br>or Structural Fill)<br>0.55 (weathered rock or bedrock) |  |

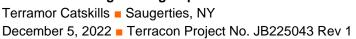
1. For the tabulated values to be valid, the wall must be backfilled with Structural Fill as specified in the Earthwork section of this report. The Structural Fill must extend out and up from the base of the wall at an angle of at least 45 degrees from vertical for the active and at-rest cases.

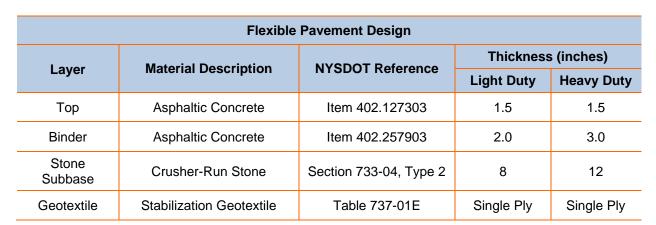
2. The tabulated values do not include a safety factor.

#### Subsurface Drainage for Below-Grade/Retaining Walls

Foundation drains and/or weep holes should be installed as required to prevent surface infiltration from becoming trapped in the wall backfill soils. The drain may consist of a nominal four (4) inch diameter perforated PVC or slotted HDPE pipe embedded at the base of a minimum twelve (12) inch wide column of clean crushed stone (Blend 57 aggregate). The stone should be wrapped in a filter fabric meeting NYSDOT Specification #207.21 or approved equivalent. The drain should connect to a drainage structure or outlet to daylight.

#### **PAVEMENTS**


#### Flexible Pavement Design


The pavement sections presented below were developed in general accord with AASHTO procedures using a reduced subgrade strength and local experience to account for frost, and to keep the anticipated pavement heave and cracking within generally tolerable limits. A subgrade resilient modulus ( $M_r$ ) equal to 4,000 psi has been assumed for design purposes.

Two conventional pavement sections were developed, a Light Duty section for automobile parking areas and a Heavy Duty section for entrance drives or areas subject to occasional truck traffic. For design purposes, it has been assumed that the pavement design life is 20 years, and that daily equivalent single axle loads (ESALs) are equal to 1 for the Light Duty section and 20 for the Heavy Duty section. If the traffic loads vary from these, we should be provided the opportunity to refine the pavement section accordingly.

All materials should meet the requirements specified in the latest edition of the New York State Department of Transportation (NYSDOT) Standard Specifications for Construction and Materials.

#### **Geotechnical Engineering Report**





Rigid pavements should be provided with a minimum six-inch thick base of crusher-run stone (NYSDOT section 733-04, Type 2 material) placed over a stabilization geotextile. The pavements may be designed assuming a modulus of subgrade reaction equal to 150 pounds per cubic inch at the top of the base layer.

#### **Temporary Construction Access Roadways**

The recommended pavement sections are not designed to support heavy construction traffic which may require thicker sections. The contractor should construct temporary haul routes and construction roadways on site as appropriate for the weather conditions and the equipment in use, with consideration to the soil conditions encountered in specific areas.

#### **Pavement Drainage**

Accumulation of water on pavement subgrades should be avoided by grading the subgrade to a slope of at least two percent, and/or by providing underdrains. Failure to provide adequate drainage will shorten pavement life.

#### **Pavement Maintenance**

All pavements require periodic care, and preventive maintenance should be planned and provided for through an on-going pavement management program. Maintenance activities are intended to slow the rate of pavement deterioration and to preserve the pavement investment. Maintenance consists of both localized maintenance (e.g., crack and joint sealing and patching) and global maintenance (e.g., surface sealing).

#### **Frost Considerations**

Frost may penetrate beneath sidewalks and pavements and cause them to heave, and resulting displacements may be differential, particularly where sidewalks and pavements meet building doorways and along curbs. To limit the magnitude of heave and creation of such uneven joints to generally tolerable magnitudes for most winters, an 18-inch thick base of ASTM C33 Blend 57

lerracon

**GeoReport** 



crushed stone should be placed beneath sensitive sidewalk or pavement areas, along with an underdrain to relieve any collected waters. The crushed stone should be separated from the surrounding granular soils with a non-woven synthetic filter fabric meeting the requirements of NYSDOT standard specifications table 737-01C for drainage geotextile.

### **GENERAL COMMENTS**

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.


Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

# FIGURES

#### Contents:

GeoModel (2 Pages)



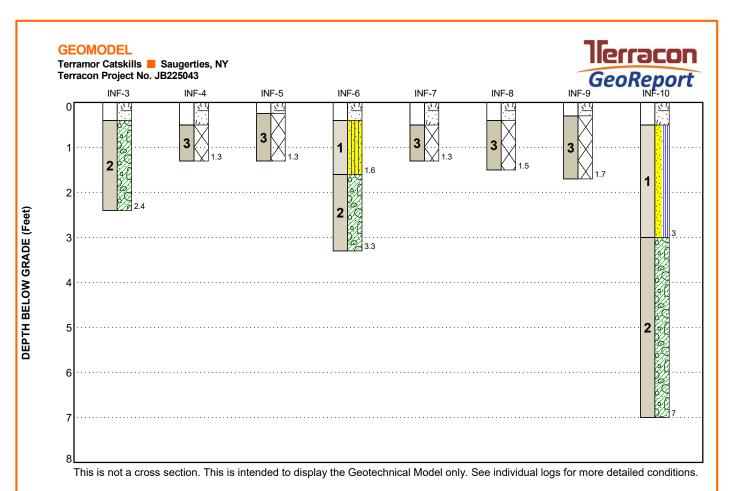
This is not a cross section. This is intended to display the Geotechnical Model only. See individual logs for more detailed conditions.

| Model Layer | Layer Name                     | General Description                                                          |
|-------------|--------------------------------|------------------------------------------------------------------------------|
| 1           | Native Coarse-Grained<br>Soils | Sand with varying amounts of Silt and Gravel, roots and rootlets noted       |
| 2           | Glacial Till                   | Silt, Sandy Silt and Silty Sand with Gravel, containing cobbles and boulders |
| 3           | Weathered Rock                 | Highly Weathered to Completely Weathered Bedrock                             |

#### **LEGEND**

Topsoil

Weathered Rock


Poorly-graded Sand with Silt

Glacial Till

Well-graded Sand with Gravel

#### NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.



| Model Layer | odel Layer Layer Name General Description |                                                                                 |  |  |  |
|-------------|-------------------------------------------|---------------------------------------------------------------------------------|--|--|--|
| 1           | Native Coarse-Grained<br>Soils            | Sand with varying amounts of Silt and Gravel, roots and rootlets noted          |  |  |  |
| 2           | Glacial Till                              | Silt, Sandy Silt and Silty Sand with Gravel, containing cobbles<br>and boulders |  |  |  |
| 3           | Weathered Rock                            | Highly Weathered to Completely Weathered Bedrock                                |  |  |  |

#### **LEGEND**

Topsoil

Silty Sand Poorly-graded Sand with

Weathered Rock

NOTES:

Layering shown on this figure has been developed by the geotechnical engineer for purposes of modeling the subsurface conditions as required for the subsequent geotechnical engineering for this project. Numbers adjacent to soil column indicate depth below ground surface.

# ATTACHMENTS

Responsive Resourceful Reliable



# **EXPLORATION AND TESTING PROCEDURES**

#### **Field Exploration**

| Number of Test Pits | Test Pit Depth (feet) | Location                               |
|---------------------|-----------------------|----------------------------------------|
| 6                   | 1.5 to 4.5            | Planned Building and Pavement<br>Areas |
| 10                  | 1.3 to 8              | Proposed Stormwater Areas              |

**Test Pit Layout and Elevations:** The test locations were selected by The L.A. Group and Terracon and were established in the field using a hand-held GPS unit (estimated horizontal accuracy of about  $\pm 10$  feet). Approximate ground surface elevations were obtained by interpolation from the drawing titled "Overall Site Plan" dated June 7, 2022, prepared by The LA Group. If elevations and a more precise test pit layout are desired, we recommend test pits be surveyed following completion of fieldwork.

**Subsurface Exploration Procedures:** The test pits were excavated by our subcontractor using a track mounted mini excavator. The excavations were observed and logged by a Geotechnical Engineer from our office. Upon completion, the excavations were backfilled using the excavated materials in compacted lifts using the excavation equipment. Compaction testing was not performed.

#### Laboratory Testing

Selected samples recovered from the test pits were submitted for laboratory testing as part of the subsurface investigation, to confirm the visual classifications and to provide quantitative index properties for use in the geotechnical evaluation. This testing was performed in general accordance with the following standard methods:

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil - and Rock by Mass
- ASTM D422 (without hydrometer) Standard Test Method for Particle-Size Analysis of Soils

# SITE LOCATION AND EXPLORATION PLANS

#### **Contents:**

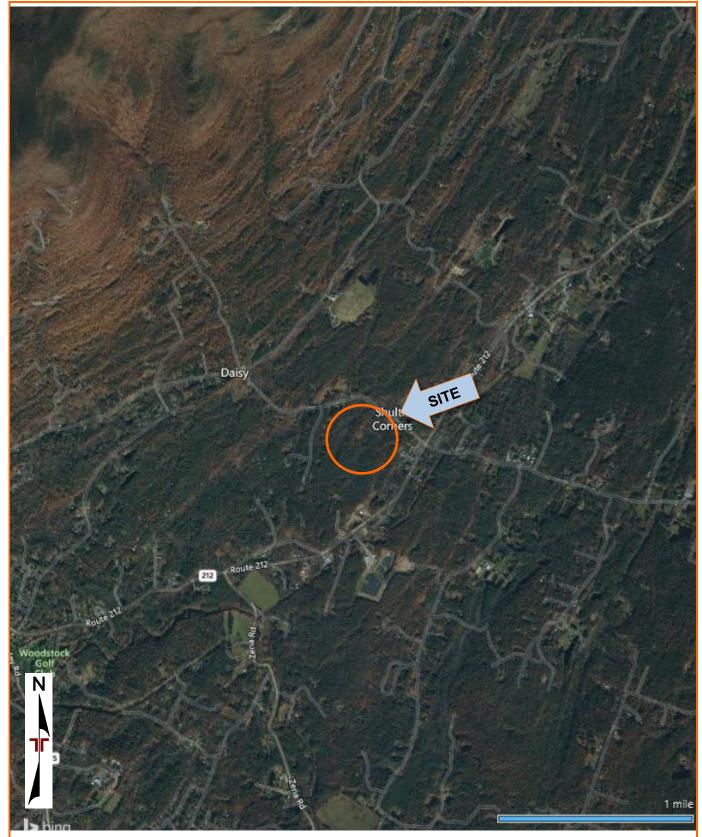
Site Location Plan Exploration Plan

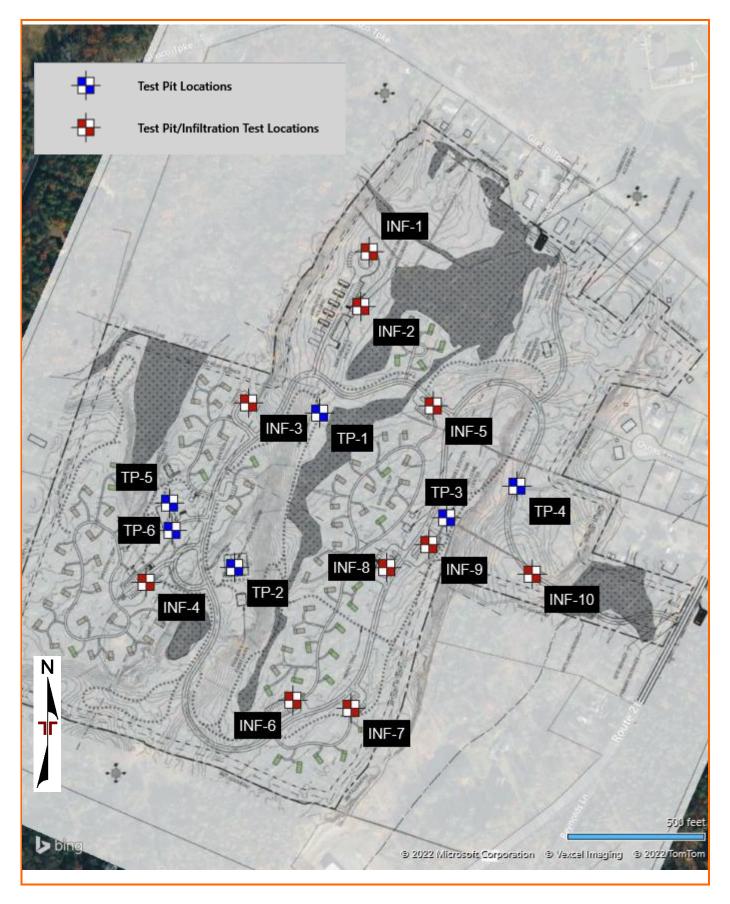
Note: All attachments are one page unless noted above.

#### SITE LOCATION

Terramor Catskills = Saugerties, NY December 5, 2022 = Terracon Project No. JB225043 Rev 1







DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

MAP PROVIDED BY MICROSOFT BING MAPS

#### **EXPLORATION PLAN**

Terramor Catskills = Saugerties, NY December 5, 2022 = Terracon Project No. JB225043 Rev 1





# **EXPLORATION RESULTS**

#### Contents:

Test Pit Logs (TP-1 through TP-6) Test Pit Logs (INF-1 through INF-10) Infiltration Test Results Grain Size Distributions

Note: All attachments are one page unless noted above.

| F           | PROJECT: Terramor Catskills |                                                                          | TEST PIT LOG NO. TF                                                                                                                          | parounds of America Inc                              |              | age 1                       | of          | 1                    |
|-------------|-----------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------|-----------------------------|-------------|----------------------|
|             | SITE:                       | NY 212<br>Saugerties, NY                                                 | Billin                                                                                                                                       | igs, MT                                              |              |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG                 | LOCATION See Exploration Plan<br>Latitude: 42.0500° Longitude: -74.0751° |                                                                                                                                              | Approximate Surface Elev.: 460 (Ft.                  |              | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| 1           |                             | DEPTH<br>FOREST MAT<br>0.4<br>SILTY SAND (SM), roots and rootlet         | ts noted, orange to brown                                                                                                                    | ELEVATION 459                                        |              |                             |             |                      |
|             |                             | 2.0<br>SANDY SILT (ML), containing cobbl                                 | es and boulders, orange to brown, (GLACIAL                                                                                                   |                                                      | <sup></sup>  | _                           |             |                      |
| 2           |                             |                                                                          |                                                                                                                                              |                                                      | 3 -          | _                           | 5M2         | > 18.0               |
|             |                             | Mottling noted 4.5'<br>4.8<br>Refusal on Bedrock at 4.8 Feet             |                                                                                                                                              | 455                                                  | <u>.2+/-</u> |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                              |                                                      |              |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                              |                                                      |              |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                              |                                                      |              |                             |             |                      |
|             | Str                         | ratification lines are approximate. In-situ, the transi                  | tion may be gradual.                                                                                                                         |                                                      |              |                             |             |                      |
|             |                             | ent Method:<br>avator w. ~10' reach                                      | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).               | Notes:<br>Test pit logged by: JCH                    |              |                             |             |                      |
|             | Fest pit b                  | ent Method:<br>ackfilled with spoils after completion.                   | See Supporting Information for explanation of<br>symbols and abbreviations.<br>Elevations were interpolated from a topographic<br>site plan. |                                                      |              |                             |             |                      |
|             |                             | WATER LEVEL OBSERVATIONS                                                 | Terracon                                                                                                                                     |                                                      | est Pit Com  | oleted:                     | 09-20       | )-2022               |
|             |                             |                                                                          | 30 Corporate Cir Ste 201<br>Albany, NY                                                                                                       | Excavator: Kubota KX057-4 C<br>Project No.: JB225043 | perator: P.K | . Freuh                     | 1           |                      |

| TEST PIT LOG NO. TP-2 |                 |                                                                          |                                                                               |                                                                |                                   |          |             | age 1                       | of          | 1                    |
|-----------------------|-----------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|----------|-------------|-----------------------------|-------------|----------------------|
| Р                     | ROJ             | ECT: Terramor Catskills                                                  |                                                                               | CLIENT: Kamp<br>Billing                                        | ogrounds of America In<br>gs, MT  | IC       |             |                             |             |                      |
| S                     | ITE:            | NY 212<br>Saugerties, NY                                                 |                                                                               |                                                                |                                   |          |             |                             |             |                      |
| AYER                  | C LOG           | LOCATION See Exploration Plan<br>Latitude: 42.0483° Longitude: -74.0762° |                                                                               |                                                                |                                   |          | (Ft.)       | EVEL                        | ТҮРЕ        | ER<br>T (%)          |
| MODEL LAYER           | GRAPHIC LOG     | Landde. 42.0403 Longhade14.0102                                          |                                                                               |                                                                | Approximate Surface Elev.: 520 (F | t.) +/-  | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| ~                     | <u></u>         |                                                                          |                                                                               |                                                                | ELEVATION                         | V (Ft.)  |             | > ö                         | Ś           |                      |
|                       | <u>1/ 1/ 1/</u> |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 | 10.8<br>HIGHLY WEATHERED ROCK, gray to                                   | o brown                                                                       |                                                                |                                   | 9.2+/-   | 1           |                             |             |                      |
|                       | $\bigotimes$    |                                                                          |                                                                               |                                                                |                                   |          | 1 -         |                             |             |                      |
| 3                     | $\bigotimes$    |                                                                          |                                                                               |                                                                |                                   |          | 2 -         |                             |             |                      |
|                       | $\bigotimes$    |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       | $\mathbb{N}$    | 3.0                                                                      |                                                                               |                                                                | ł                                 | 517+/-   | 3 -         |                             |             |                      |
|                       |                 | Refusal on Bedrock at 3 Feet                                             |                                                                               |                                                                |                                   |          | 3           |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       | St              | <br>ratification lines are approximate. In-situ, the transitio           | n may be gradual.                                                             |                                                                |                                   |          |             |                             |             |                      |
|                       |                 |                                                                          |                                                                               |                                                                |                                   |          |             |                             |             |                      |
|                       |                 | ent Method:<br>avator w. ~10' reach                                      | See Exploration and Te<br>description of field and<br>used and additional dat | sting Procedures for a<br>laboratory procedures<br>a (If any). | Notes:<br>Test pit logged by: JCH |          |             |                             |             |                      |
| <u> </u>              | ndorm           | ent Method:                                                              | See Supporting Informa                                                        |                                                                |                                   |          |             |                             |             |                      |
| Т                     | est pit b       | ent Method:<br>backfilled with spoils after completion.                  |                                                                               | ons.<br>lated from a topographic                               |                                   |          |             |                             |             |                      |
| ⊢                     |                 | WATER LEVEL OBSERVATIONS                                                 | site plan.                                                                    |                                                                | Toot Bit Storted: 00.20.2020      | Toot D'  | Com         | lotad                       | 00.00       | 1 2000               |
|                       |                 | o free water observed                                                    |                                                                               | acon                                                           |                                   | Test Pit |             |                             |             | 1-2022               |
|                       |                 |                                                                          | 30 Corporat                                                                   | e Cir Ste 201                                                  | Excavator: Kubota KX057-4         | Operate  | or: P.K     | . ⊦reuł                     | 1           |                      |
|                       |                 |                                                                          |                                                                               | ny, NY                                                         | Project No.: JB225043             |          |             |                             |             |                      |

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL JB225043 TERRAMOR CATSKILL GPJ TERRACON\_DATATEMPLATE.GDT 11/30/22

|             | PROJ                                          | ECT: Terramor Catskills                                                                           | CLIENT: Kampgrounds of America Inc<br>Billings, MT                                                                                                                                                                                                                                                                                                                                            |                       | age 1                       |             | <u>.</u>             |
|-------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------|----------------------|
|             | SITE:                                         | NY 212<br>Saugerties, NY                                                                          |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG                                   | LOCATION See Exploration Plan<br>Latitude: 42.0489° Longitude: -74.0734°                          | Approximate Surface Elev.: 480 (Ft.) +/-                                                                                                                                                                                                                                                                                                                                                      | DEPTH (Ft.)           | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
|             | <u></u>                                       | DEPTH<br>0.3 FOREST MAT<br>0.3 DONDI STEL X WEATHERED DOOK                                        | ELEVATION (Ft.)                                                                                                                                                                                                                                                                                                                                                                               |                       | - 0                         |             |                      |
|             |                                               | COMPLETELY WEATHERED ROCK,                                                                        | orange to gray                                                                                                                                                                                                                                                                                                                                                                                |                       |                             |             |                      |
| 3           |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               | 1 -                   | _                           |             |                      |
|             |                                               | 1.5<br>Refusal on Bedrock at 1.5 Feet                                                             | 478.5+/-                                                                                                                                                                                                                                                                                                                                                                                      |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             |                                               |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                               |                       |                             |             |                      |
|             | Str                                           | atification lines are approximate. In-situ, the transition                                        | n may be gradual.                                                                                                                                                                                                                                                                                                                                                                             |                       |                             |             |                      |
|             | vanceme                                       | atification lines are approximate. In-situ, the transition<br>ant Method:<br>avator w. ~10' reach | n may be gradual.           See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (if any).         Notes:                                                                                                                                                                                                                     |                       |                             |             |                      |
| Ab          | vanceme<br>Mini exca                          | ent Method:<br>avator w. ~10' reach<br>ent Method:                                                | See Exploration and Testing Procedures for a description of field and laboratory procedures                                                                                                                                                                                                                                                                                                   |                       |                             |             |                      |
| Ab          | vanceme<br>Mini exca<br>andonme<br>Test pit b | ent Method:<br>avator w. ~10' reach<br>ent Method:<br>backfilled with spoils after completion.    | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).       Notes:         See Supporting Information for explanation of       Test pit logged by: JCH                                                                                                                                                               |                       |                             |             |                      |
| Ab          | vanceme<br>Mini exca<br>andonme<br>Test pit b | ent Method:<br>avator w. ~10' reach<br>ent Method:                                                | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).       Notes: Test pit logged by: JCH         See Supporting Information for explanation of symbols and abbreviations.       Elevations were interpolated from a topographic site plan.         Test Pit Started: 09-19-2022       Test Pit Started: 09-19-2022 | Pit Comp<br>ator: P.K |                             |             |                      |

|             | TEST PIT LOG NO. TP-4 Page 1 of 1 |                                                                          |                                                                             |                                                       |                                   |                           |             |                             |             | 1                    |
|-------------|-----------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|---------------------------|-------------|-----------------------------|-------------|----------------------|
| P           | ROJ                               | ECT: Terramor Catskills                                                  |                                                                             | CLIENT: Kamp<br>Billing                               | grounds of America li<br>gs, MT   | าต                        |             | <u> </u>                    |             |                      |
| S           | ITE:                              | NY 212<br>Saugerties, NY                                                 |                                                                             |                                                       |                                   |                           |             |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG                       | LOCATION See Exploration Plan<br>Latitude: 42.0492° Longitude: -74.0723° |                                                                             |                                                       | Approximate Surface Elev.: 450 (I | =t.) +/-                  | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| _           | <u>×1 1×</u> ×1                   | DEPTH<br>FOREST MAT                                                      |                                                                             |                                                       | ELEVATIO                          | N (Ft.)                   |             | >ō                          | S           |                      |
| 1           |                                   | 0.5<br>SILTY SAND (SM), roots and rootlets n                             | oted, orange to brown                                                       |                                                       |                                   | <u>49.5+/-</u><br>48.6+/- | 1 -         |                             |             |                      |
|             |                                   | <u>SILTY SAND WITH GRAVEL (SM)</u> , con<br>TILL)                        | taining cobbles and b                                                       | oulders, orange to br                                 |                                   |                           | 2 -         |                             |             |                      |
| 2           |                                   |                                                                          |                                                                             |                                                       |                                   |                           | 3 -         |                             |             |                      |
|             |                                   | Significant excavation effort noted 4-4                                  | 4.5', probable boulder                                                      |                                                       | 4                                 | 45.5+/-                   | 4 -         |                             |             |                      |
|             | Str                               | ratification lines are approximate. In-situ, the transition              | may be gradual.                                                             |                                                       |                                   |                           |             |                             |             |                      |
|             |                                   | ent Method:<br>avator w. ~10' reach                                      | See Exploration and Te<br>description of field and                          | sting Procedures for a                                | Notes:                            |                           |             |                             |             |                      |
| Aba         | Indonme                           | ant Method:<br>backfilled with spoils after completion.                  | used and additional dat<br>See Supporting Informa<br>symbols and abbreviati | a (If any).<br>I <mark>tion</mark> for explanation of | Test pit logged by: JCH           |                           |             |                             |             |                      |
|             |                                   | WATER LEVEL OBSERVATIONS                                                 |                                                                             | acon                                                  | Test Pit Started: 09-19-2022      | Test Pit                  | Compl       | eted: (                     | )9-19       | -2022                |
|             |                                   |                                                                          | 30 Corporat                                                                 | e Cir Ste 201                                         | Excavator: Kubota KX057-4         | Operato                   | or: P.K.    | Freuh                       |             |                      |
|             |                                   |                                                                          | Alba                                                                        | וע, NY                                                | Project No.: JB225043             |                           |             |                             |             |                      |

|               |              |                                                                                 | TEST PIT LOG                                                                                                                              | NO. TP-5                                       | Pa                        | Page 1 of 1                 |             |                      |  |
|---------------|--------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------|-----------------------------|-------------|----------------------|--|
|               |              | ECT: Terramor Catskills                                                         | CLIE                                                                                                                                      | NT: Kampgrounds of America Inc<br>Billings, MT |                           |                             |             |                      |  |
| :             | SITE:        | NY 212<br>Saugerties, NY                                                        |                                                                                                                                           |                                                |                           |                             |             |                      |  |
| MODEL LAYER   | GRAPHIC LOG  | LOCATION See Exploration Plan<br>Latitude: 42.0491° Longitude: -74.0771°        |                                                                                                                                           | Approximate Surface Elev.: 524 (Ft.) +         | 7<br>DEPTH (Ft.)          | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |  |
| $\vdash$      | <u>×17</u> × | DEPTH                                                                           |                                                                                                                                           | ELEVATION (F<br>523.7                          |                           | -0                          | S           | <u> </u>             |  |
|               |              | SILTY SAND WITH GRAVEL (SM),                                                    | containing cobbles and boulders                                                                                                           | aining cobbles and boulders, (GLACIAL TILL)    |                           |                             |             |                      |  |
| 27/nc/11      |              |                                                                                 |                                                                                                                                           |                                                | 1 -                       | -                           |             |                      |  |
|               |              |                                                                                 |                                                                                                                                           |                                                | 2 -                       | _                           |             |                      |  |
|               | 91/.87       | Refusal on Bedrock at 2.6 Feet                                                  |                                                                                                                                           | 521.4                                          | <u>+/-</u>                |                             |             |                      |  |
|               |              |                                                                                 |                                                                                                                                           |                                                |                           |                             |             |                      |  |
|               | lvancem      | ratification lines are approximate. In-situ, the transi<br>ent Method:          | See Exploration and Testing Pro                                                                                                           | cedures for a Notes:                           |                           |                             |             |                      |  |
|               | andonm       | avator w. ~10' reach<br>ent Method:<br>backfilled with spoils after completion. | description of field and laborator<br>used and additional data (If any)<br>See Supporting Information for e<br>symbols and abbreviations. | y procedures<br>.xplanation of                 |                           |                             |             |                      |  |
| 20<br>CO (20) |              | WATER LEVEL OBSERVATIONS                                                        | Elevations were interpolated from site plan.                                                                                              |                                                |                           |                             | 00.00       |                      |  |
|               |              | o free water observed                                                           | - ]lerrar                                                                                                                                 |                                                | t Pit Comp<br>erator: P.K |                             |             | -2022                |  |
|               |              |                                                                                 | 30 Corporate Cir Ste<br>Albany, NY                                                                                                        |                                                |                           | . i icul                    |             |                      |  |

|             |             |                                                       | TEST PIT L                                                                    | OG NO. TP                | 2-6                                          |          | Pa               | ige 1                       | of          | 1                    |
|-------------|-------------|-------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|----------------------------------------------|----------|------------------|-----------------------------|-------------|----------------------|
| P           | PROJ        | ECT: Terramor Catskills                               |                                                                               | CLIENT: Kamp<br>Billing  | ogrounds of America I<br>gs, MT              | nc       |                  |                             |             |                      |
| S           | SITE:       | NY 212<br>Saugerties, NY                              |                                                                               |                          |                                              |          |                  |                             |             |                      |
| VER         | LOG         | LOCATION See Exploration Plan                         |                                                                               |                          |                                              |          | <sup>-</sup> t.) | VEL                         | YPE         | (%)                  |
| MODEL LAYER | GRAPHIC LOG | Latitude: 42.0488° Longitude: -74.0771°               |                                                                               |                          |                                              |          | DEPTH (Ft.)      | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| QM          | GR          | DEPTH                                                 |                                                                               |                          | Approximate Surface Elev.: 524 (<br>ELEVATIO |          | B                | -WA<br>OBSI                 | SAN         | CO                   |
|             | <u>, 1,</u> |                                                       |                                                                               |                          |                                              | 523.6+/- |                  |                             |             |                      |
|             |             | COMPLETELY WEATHERED RO                               | <b>CK</b> , orange to gray                                                    |                          |                                              |          |                  |                             |             |                      |
| 3           |             |                                                       |                                                                               |                          |                                              |          | 1 -              | -                           |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             | 1.8 Refusal on Bedrock at 1.8 Feet                    |                                                                               |                          | Ę                                            | 522.2+/- |                  | <u> </u>                    |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             |             |                                                       |                                                                               |                          |                                              |          |                  |                             |             |                      |
|             | Str         | ratification lines are approximate. In-situ, the tran | nsition may be gradual.                                                       |                          |                                              |          |                  |                             |             |                      |
|             |             | ent Method:<br>avator w. ~10' reach                   | See Exploration and Te<br>description of field and<br>used and additional dat | laboratory procedures    | Notes:<br>Test pit logged by: JCH            |          |                  |                             |             |                      |
| Aba         | andonme     | ent Method:                                           | See Supporting Informa<br>symbols and abbreviati                              | tion for explanation of  |                                              |          |                  |                             |             |                      |
|             |             | backfilled with spoils after completion.              | -                                                                             | lated from a topographic |                                              |          |                  |                             |             |                      |
|             |             | WATER LEVEL OBSERVATIONS                              |                                                                               |                          | Test Pit Started: 09-20-2022                 | Test Pit | Compl            | leted: (                    | )9-20       | )-2022               |
|             | NC          | o free water observed                                 |                                                                               | acon                     | Excavator: Kubota KX057-4                    | Operate  | or: P.K.         | Freuh                       |             |                      |
|             |             |                                                       |                                                                               | e Cir Ste 201<br>ny, NY  | Project No.: JB225043                        | 1        |                  |                             |             |                      |

|             |                   | ٦                                                                                              | <b>FEST PIT L</b>                                                                                                                                                              | og no. Inf                             | <sup>-</sup> -1          |                                                                                                 |        | P           | age ′                       | 1 of        | 1                    |
|-------------|-------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------|--------|-------------|-----------------------------|-------------|----------------------|
| Р           | ROJ               | ECT: Terramor Catskills                                                                        |                                                                                                                                                                                | CLIENT: Kamp                           | grounds o<br>gs, MT      | of America II                                                                                   | າເ     |             |                             |             |                      |
| S           | ITE:              | NY 212<br>Saugerties, NY                                                                       |                                                                                                                                                                                |                                        | ys, wr                   |                                                                                                 |        |             |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG       | LOCATION See Exploration Plan<br>Latitude: 42.0516° Longitude: -74.0744°                       |                                                                                                                                                                                | Approximate Surface Elev               |                          | INSTALLATIC<br>DETAILS                                                                          | DN     | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
|             | <u>x1 1/2 - x</u> | DEPTH                                                                                          |                                                                                                                                                                                | ELE                                    | EVATION (Ft.)            |                                                                                                 | . [:.  |             | 0                           |             |                      |
| 1           |                   | POORLY GRADED SAND WITH SILT (S     to brown                                                   | <u>P-SM</u> , roots and roo                                                                                                                                                    | tlets noted, orange                    | 459.7+/-                 | 4" PVC set at<br>5.5' below<br>grade.<br>-Annulus backfilled with<br>soil cuttings to<br>grade. |        | 5           |                             | - 000       |                      |
|             |                   |                                                                                                |                                                                                                                                                                                |                                        | 452+/-                   |                                                                                                 |        |             |                             | £₩2         | 8.2                  |
|             |                   | Test Pit Terminated at 8 Feet                                                                  |                                                                                                                                                                                |                                        | .02.1-                   |                                                                                                 |        |             |                             |             |                      |
|             |                   |                                                                                                |                                                                                                                                                                                |                                        |                          |                                                                                                 |        |             |                             |             |                      |
|             | St                | ratification lines are approximate. In-situ, the transition n                                  | nay be gradual.                                                                                                                                                                |                                        |                          |                                                                                                 |        |             |                             |             |                      |
| N<br>Aba    | lini exc          | ent Method:<br>avator w. ~10' reach<br>ent Method:<br>backfilled with spoils after completion. | See Exploration and Te<br>description of field and l<br>used and additional dat<br>See Supporting Informa<br>symbols and abbreviation<br>Elevations were interpo<br>site plan. | a (If any).<br>tion for explanation of | Notes:<br>Test pit logge | ed by: JCH                                                                                      |        |             |                             |             |                      |
|             |                   | WATER LEVEL OBSERVATIONS                                                                       |                                                                                                                                                                                |                                        | Test Pit Starte          | d: 09-20-2022                                                                                   | Test F | Pit Com     | pleted:                     | 09-2        | 0-2022               |
|             | N                 | o free water observed                                                                          |                                                                                                                                                                                | acon                                   | Excavator: Kut           | oota KX057-4                                                                                    | Opera  | ator: P.K   | K. Freul                    | h           |                      |
|             |                   |                                                                                                |                                                                                                                                                                                | e Cir Ste 201<br>ny, NY                | Project No.: JE          | 3225043                                                                                         |        |             |                             |             |                      |

|                                                                     |                 |                                                                                                | TEST PIT LOG NO. INI                                                                                                                                                                                                                                    | F-2                      |                                                                                                    |         | P           | age ′                       | 1 of        | 1                    |
|---------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------|---------|-------------|-----------------------------|-------------|----------------------|
| F                                                                   | PROJ            | ECT: Terramor Catskills                                                                        | CLIENT: Kamp<br>Billin                                                                                                                                                                                                                                  | ogrounds<br>gs, MT       | of America In                                                                                      | nc      |             |                             |             |                      |
| ę                                                                   | SITE:           | NY 212<br>Saugerties, NY                                                                       |                                                                                                                                                                                                                                                         |                          |                                                                                                    |         |             |                             |             |                      |
| MODEL LAYER                                                         | GRAPHIC LOG     | LOCATION See Exploration Plan<br>Latitude: 42.0510° Longitude: -74.0745°                       | Approximate Surface Ele                                                                                                                                                                                                                                 |                          | INSTALLATIO<br>DETAILS                                                                             | N       | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
|                                                                     | <u>7. 17. 7</u> |                                                                                                | EL                                                                                                                                                                                                                                                      | EVATION (Ft.)            |                                                                                                    |         |             | 0                           | .,          |                      |
| JB225043 I EKRAMOR CATSKILL.GFJ I EKRACON_DATATEMPLATE.GDT 11/30/22 |                 | SILTY SAND (SM), roots and rootlets n                                                          |                                                                                                                                                                                                                                                         | 461.7+/-                 | 4" PVC set at<br>5.5' below<br>grade.<br>-Annulus<br>backfilled with<br>soil cuttings to<br>grade. |         | <br><br>5   |                             | - 000       |                      |
| 1                                                                   |                 | 8.0<br>Test Pit Terminated at 8 Feet                                                           |                                                                                                                                                                                                                                                         | 454+/-                   |                                                                                                    |         |             |                             | EW.S        | 7.3                  |
|                                                                     | Str             | ratification lines are approximate. In-situ, the transition                                    | may be gradual.                                                                                                                                                                                                                                         |                          |                                                                                                    |         |             |                             |             |                      |
| SEPAK                                                               | /2000           | ant Mathod                                                                                     |                                                                                                                                                                                                                                                         | Notos                    |                                                                                                    |         |             |                             |             |                      |
|                                                                     | Mini exca       | ent Method:<br>avator w. ~10' reach<br>ent Method:<br>packfilled with spoils after completion. | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of symbols and abbreviations. Elevations were interpolated from a topographic | Notes:<br>Test pit logge | ed by: JCH                                                                                         |         |             |                             |             |                      |
|                                                                     |                 | WATER LEVEL OBSERVATIONS                                                                       | site plan.                                                                                                                                                                                                                                              | Test Pit Starte          | d: 09-20-2022                                                                                      | Test Pi | t Com       | oleted:                     | 09-2        | 0-2022               |
| BUKIN                                                               | No              | o free water observed                                                                          | llerracon                                                                                                                                                                                                                                               | Excavator: Kul           |                                                                                                    | Operat  |             |                             |             |                      |
| SH<br>H                                                             |                 |                                                                                                | 30 Corporate Cir Ste 201<br>Albany, NY                                                                                                                                                                                                                  | Project No.: JE          | 3225043                                                                                            |         |             |                             |             |                      |

|             |             |                                                                          | TEST PIT L                                                                                                                        | og no. Inf                                                      | -3                                |                    | Pa          | ge 1                        | of          | 1                    |
|-------------|-------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------|--------------------|-------------|-----------------------------|-------------|----------------------|
|             |             | ECT: Terramor Catskills                                                  |                                                                                                                                   | CLIENT: Kamp<br>Billing                                         | ogrounds of America In<br>gs, MT  | IC                 |             |                             |             |                      |
| S           | SITE:       | NY 212<br>Saugerties, NY                                                 |                                                                                                                                   |                                                                 |                                   |                    |             |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG | LOCATION See Exploration Plan<br>Latitude: 42.0501° Longitude: -74.0760° |                                                                                                                                   |                                                                 | Approximate Surface Elev.: 498 (F | it.) +/-           | UEMIM (rt.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
|             |             | DEPTH<br>FOREST MAT<br>0.4                                               | pentaining aphylics and h                                                                                                         | uldere erenge te br                                             |                                   | N (Ft.)<br>17.6+/- |             | 20                          | σ           |                      |
| 2           |             | <u>SILTY SAND WITH GRAVEL (SM)</u> , c                                   |                                                                                                                                   | ouders, orange to br                                            | UWIT (GLACIAL TILL)               |                    | 1 –         |                             |             |                      |
|             |             | 2.4                                                                      |                                                                                                                                   |                                                                 | 49                                | 15.6+/-            | 2 –         |                             | m           | 12.8                 |
|             |             | Refusal on Bedrock at 2.4 Feet<br>After refusal offset 5' and refused a  | again at 2.4'                                                                                                                     |                                                                 |                                   |                    |             |                             |             |                      |
|             |             |                                                                          |                                                                                                                                   |                                                                 |                                   |                    |             |                             |             |                      |
| Adv         |             | ratification lines are approximate. In-situ, the transiti                |                                                                                                                                   | ating Dracaduras for a                                          | Notes:                            |                    |             |                             |             |                      |
| N<br>Aba    | Mini exca   | avator w. ~10' reach<br>ent Method:                                      | See Exploration and Te<br>description of field and<br>used and additional dat<br>See Supporting Informa<br>symbols and abbreviati | laboratory procedures<br>a (If any).<br>tion for explanation of | Test pit logged by: JCH           |                    |             |                             |             |                      |
| ٦<br>       |             | packfilled with spoils after completion.                                 |                                                                                                                                   | lated from a topographic                                        |                                   |                    |             |                             |             |                      |
|             |             | WATER LEVEL OBSERVATIONS                                                 |                                                                                                                                   | acon                                                            | Test Pit Started: 09-20-2022      | Test Pit Co        | omple       | eted: (                     | )9-20       | )-2022               |
|             |             |                                                                          | 30 Corporat                                                                                                                       | e Cir Ste 201                                                   |                                   | Operator:          | P.K.        | Freuh                       |             |                      |
|             |             |                                                                          | Albai                                                                                                                             | ıy, NY                                                          | Project No.: JB225043             |                    |             |                             |             |                      |

|             |                             |                                                                          | TEST PIT LOG NO. IN                                                                                                                                       | F-4                                            | F                        | age ´                       | l of        | 1                    |
|-------------|-----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------|-----------------------------|-------------|----------------------|
| F           | PROJ                        | ECT: Terramor Catskills                                                  | CLIENT: Kam<br>Billin                                                                                                                                     | ogrounds of America In<br>gs, MT               | C                        |                             |             |                      |
| \$          | SITE:                       | NY 212<br>Saugerties, NY                                                 |                                                                                                                                                           |                                                |                          |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG                 | LOCATION See Exploration Plan<br>Latitude: 42.0483° Longitude: -74.0774° |                                                                                                                                                           |                                                | -/+ (.t.)<br>DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| M           | <u><u>, v</u>, <u>v</u></u> | DEPTH<br>FOREST MAT                                                      |                                                                                                                                                           | Approximate Surface Elev.: 528 (F<br>ELEVATION | <i>'</i>                 | AN<br>OBO                   | SAI         | ö                    |
|             | 1/ · · · · ·                | 0.5                                                                      |                                                                                                                                                           | 52                                             | 7.5+/-                   |                             |             |                      |
| 3           |                             | COMPLETELY WEATHERED ROCK, o                                             | range to gray                                                                                                                                             |                                                | 1                        | _                           |             |                      |
| 1/30/22     |                             | 1.3<br>Refusal on Bedrock at 1.3 Feet                                    |                                                                                                                                                           | 52                                             | 6.7+/-                   |                             |             |                      |
| .GDI 1      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| IPLAIE      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| AIAIA       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| EKKAC       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| -<br>       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| ISKILL      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| CA<br>CA    |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| IKKAM       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| 043 16      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| JB226       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| MELL        |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| 0.6-NC      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| 9<br>- X0   |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| L KEV       |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
| RIGINA      |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
|             |                             |                                                                          |                                                                                                                                                           |                                                |                          |                             |             |                      |
|             | St                          | atification lines are approximate. In-situ, the transition               | may be gradual                                                                                                                                            |                                                |                          |                             |             |                      |
| EPAKA       |                             |                                                                          |                                                                                                                                                           | -                                              |                          |                             |             |                      |
|             |                             | ent Method:<br>avator w. ~10' reach                                      | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).                            | Notes:<br>Test pit logged by: JCH              |                          |                             |             |                      |
| Ab          |                             | ent Method:<br>backfilled with spoils after completion.                  | <ul> <li>See Supporting Information for explanation of<br/>symbols and abbreviations.</li> <li>Elevations were interpolated from a topographic</li> </ul> |                                                |                          |                             |             |                      |
| 6 LOG       |                             | WATER LEVEL OBSERVATIONS                                                 | site plan.                                                                                                                                                | ł – – – – – – – – – – – – – – – – – – –        | Test Pit Corr            | pleted:                     | 09-20       | )-2022               |
| NNOR        | No                          | o free water observed                                                    | llerracon                                                                                                                                                 |                                                | Operator: P.             |                             |             |                      |
| HISH        |                             |                                                                          | 30 Corporate Cir Ste 201<br>Albany, NY                                                                                                                    | Project No.: JB225043                          |                          |                             |             |                      |

| PRO.                       | JECT: Terramor Catskills                                 | CLIENT: Kam<br>Billir                                                                       | pgrounds of America Inc<br>ıgs, MT                  |                               |                             |             |                      |
|----------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------|-----------------------------|-------------|----------------------|
| UIL.                       | Saugerties, NY                                           |                                                                                             |                                                     |                               |                             |             |                      |
| g ER                       | LOCATION See Exploration Plan                            | ·                                                                                           |                                                     | <u> </u>                      | NS<br>NS                    | БП          | (%                   |
| MODEL LAYER<br>GRAPHIC LOG | Latitude: 42.0501° Longitude: -74.0736°                  |                                                                                             |                                                     | - <del>,</del><br>DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| SDEI<br>RAPI               |                                                          |                                                                                             | Approvimeto Surfaco Elou : 459 (Et.)                | EPT                           | ATER<br>SERV                | MPL         | WA'                  |
|                            | DEPTH                                                    |                                                                                             | Approximate Surface Elev.: 458 (Ft.)<br>ELEVATION ( |                               | NNS                         | SA          | Ŭ                    |
| <u>x1 //</u>               | 0.3 FOREST MAT                                           |                                                                                             | 457.                                                | 3+/-                          |                             |             |                      |
|                            | <u>COMPLETELY WEATHERED ROC</u>                          | <u>K</u> , orange to gray                                                                   |                                                     |                               |                             |             |                      |
| 3                          | $\triangleleft$                                          |                                                                                             |                                                     | 1                             |                             |             |                      |
|                            | 1.3                                                      |                                                                                             | 456.                                                |                               |                             |             |                      |
|                            | Refusal on Bedrock at 1.3 Feet                           |                                                                                             |                                                     |                               |                             |             |                      |
|                            | After refusal offset 5' and refused                      | again at 1.3'                                                                               |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
|                            |                                                          |                                                                                             |                                                     |                               |                             |             |                      |
| S                          | tratification lines are approximate. In-situ, the transi | ition may be gradual.                                                                       |                                                     |                               |                             |             |                      |
| dyancar                    | nent Method:                                             |                                                                                             | Notes:                                              |                               |                             |             |                      |
|                            | cavator w. ~10' reach                                    | See Exploration and Testing Procedures for a description of field and laboratory procedures | Test pit logged by: JCH                             |                               |                             |             |                      |
|                            |                                                          | used and additional data (If any).                                                          |                                                     |                               |                             |             |                      |
|                            | nent Method:                                             | See Supporting Information for explanation of<br>symbols and abbreviations.                 |                                                     |                               |                             |             |                      |
| i est pit                  | backfilled with spoils after completion.                 | Elevations were interpolated from a topographic                                             | ;                                                   |                               |                             |             |                      |
|                            | WATER LEVEL OBSERVATIONS                                 | site plan.                                                                                  | Test Pit Started: 09-20-2022 Te                     | st Pit Com                    | pleted <sup>.</sup>         | 09-20       | )-2022               |
| Λ                          | lo free water observed                                   | lerracon                                                                                    |                                                     |                               |                             |             |                      |
|                            |                                                          | 30 Corporate Cir Ste 201                                                                    | Excavator: Kubota KX057-4 O                         | perator: P.F                  | <ul> <li>⊢reuł</li> </ul>   | I           |                      |
|                            |                                                          | Albany, NY                                                                                  | Project No.: JB225043                               |                               |                             |             |                      |

|             |             |                                                                          | TEST PIT LC                                                                                                    | dg no. Inf                                                | -6                                |                    | Pa          | ge 1                        | of          | 1                    |
|-------------|-------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|--------------------|-------------|-----------------------------|-------------|----------------------|
| P           | PROJ        | ECT: Terramor Catskills                                                  |                                                                                                                | CLIENT: Kamp<br>Billing                                   | ogrounds of America lı<br>gs, MT  | IC                 |             |                             |             |                      |
| S           | SITE:       | NY 212<br>Saugerties, NY                                                 |                                                                                                                |                                                           |                                   |                    |             |                             | -           |                      |
| MODEL LAYER | GRAPHIC LOG | LOCATION See Exploration Plan<br>Latitude: 42.0471° Longitude: -74.0754° |                                                                                                                |                                                           | Approximate Surface Elev.: 496 (I | ·                  | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
|             | <u> </u>    |                                                                          |                                                                                                                |                                                           | ELEVATIO                          |                    |             | 0                           |             |                      |
| 1           | 17 . 2. 17  | SILTY SAND (SM), roots and rootlets                                      | s noted, brown                                                                                                 |                                                           |                                   | <del>95.6+/-</del> | 1 –         |                             |             |                      |
|             |             | 1.6                                                                      |                                                                                                                |                                                           | 4                                 | 94.4+/-            |             |                             |             |                      |
| 2           |             | <b><u>SILT (ML)</u></b> , containing cobbles and b                       | oulders, orange to brown,                                                                                      | (GLACIAL TILL)                                            |                                   |                    | 2 -         |                             |             |                      |
| 2           |             | 3.3                                                                      |                                                                                                                |                                                           | 4                                 | 92.7+/-            | 3 -         |                             | m           | 17.0                 |
|             | \$/\$4/.4   | Refusal on Bedrock at 3.3 Feet                                           |                                                                                                                |                                                           |                                   | 52.1 1             |             |                             |             |                      |
|             |             |                                                                          |                                                                                                                |                                                           |                                   |                    |             |                             |             |                      |
|             |             | ratification lines are approximate. In-situ, the transition              | on may be gradual.                                                                                             |                                                           |                                   |                    |             |                             |             |                      |
| N           | Aini exca   | ent Method:<br>avator w. ~10' reach                                      | See Exploration and Tes<br>description of field and la<br>used and additional data<br>See Supporting Informati | boratory procedures<br>(If any).<br>on for explanation of | Notes:<br>Test pit logged by: JCH |                    |             |                             |             |                      |
|             |             | ent Method:<br>backfilled with spoils after completion.                  | symbols and abbreviation<br>Elevations were interpola                                                          |                                                           |                                   |                    |             |                             |             |                      |
|             |             | WATER LEVEL OBSERVATIONS                                                 |                                                                                                                |                                                           | Test Pit Started: 09-19-2022      | Test Pit           | Compl       | eted: (                     | )9-19       | -2022                |
|             | ,,,,        |                                                                          | 30 Corporate                                                                                                   |                                                           | Excavator: Kubota KX057-4         | Operato            | r: P.K.     | Freuh                       |             |                      |
|             |             |                                                                          | Albany                                                                                                         | /, INY                                                    | Project No.: JB225043             |                    |             |                             |             |                      |

|             |                               | -                                                            | FEST PIT LOG NO. IN                                                                                                            | F-7                                            | F              | Page    | e 1 o        | of 1                          |
|-------------|-------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------|---------|--------------|-------------------------------|
| F           | PROJ                          | ECT: Terramor Catskills                                      | CLIENT: Kam<br>Billin                                                                                                          | ogrounds of America In<br>gs, MT               | IC             |         |              |                               |
| ę           | SITE:                         | NY 212<br>Saugerties, NY                                     |                                                                                                                                |                                                |                |         |              |                               |
| YER         | 00                            | LOCATION See Exploration Plan                                |                                                                                                                                |                                                | t.)            | Ē       | SNO          | аль<br>(%)                    |
| MODEL LAYER | GRAPHIC LOG                   | Latitude: 42.0470° Longitude: -74.0747°                      |                                                                                                                                |                                                | DEPTH (Ft.)    | ER LE   | OBSERVATIONS | WATER<br>WATER<br>CONTENT (%) |
| MOL         | GRA                           | DEPTH                                                        |                                                                                                                                | Approximate Surface Elev.: 500 (F<br>ELEVATION | <i>′</i>       | WAT     | OBSE         | CON CON                       |
|             | <u><u>x'''</u>. <u>x'</u></u> | FOREST MAT                                                   |                                                                                                                                |                                                |                |         |              |                               |
|             |                               | 0.5<br>COMPLETELY WEATHERED ROCK, or                         | range to gray                                                                                                                  | 49                                             | 9.5+/-         |         |              |                               |
| <b>3</b>    |                               |                                                              |                                                                                                                                | 40                                             | 1              | _       |              |                               |
| 11/30/2     | r x                           | 1.3<br>Refusal on Bedrock at 1.3 Feet                        |                                                                                                                                | 49                                             | <u>18.7+/-</u> |         |              |                               |
| GDT         |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| PLATE       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| AIEM        |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
|             |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| KACO        |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| U TER       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| LL.GP,      |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ATSKI       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| 10R C       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ERRAN       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| 043 TE      |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| JB225       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| VELL        |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ON-5        |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ST LOC      |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| SMA         |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| . GEC       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| POR         |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| AL RE       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ORIGI       |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
| ROM         |                               |                                                              |                                                                                                                                |                                                |                |         |              |                               |
|             | St                            | atification lines are approximate. In-situ, the transition r | nav be gradual.                                                                                                                |                                                |                |         |              |                               |
| EPAR        |                               |                                                              | · ·                                                                                                                            |                                                |                |         |              |                               |
|             |                               | ent Method:<br>avator w. ~10' reach                          | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any). | Notes:<br>Test pit logged by: JCH              |                |         |              |                               |
| Ab          |                               | ent Method:                                                  | <ul> <li>See Supporting Information for explanation of symbols and abbreviations.</li> </ul>                                   |                                                |                |         |              |                               |
| 8<br>00 12  |                               | packfilled with spoils after completion.                     | Elevations were interpolated from a topographic site plan.                                                                     |                                                |                |         |              |                               |
|             |                               | WATER LEVEL OBSERVATIONS                                     |                                                                                                                                | Test Pit Started: 09-20-2022                   | Test Pit Cor   | nplete  | d: 09-       | 20-2022                       |
| S BOR       | ,                             |                                                              |                                                                                                                                | Excavator: Kubota KX057-4                      | Operator: P    | .K. Fre | euh          |                               |
| Ĩ           |                               |                                                              | 30 Corporate Cir Ste 201<br>Albany, NY                                                                                         | Project No.: JB225043                          |                |         |              |                               |

| F   | PF | ROJE         | ECT: Terramor Catskills                                    | CLI                                                                                                     | ENT: Kamp       | ogrounds of America<br>gs, MT            | Inc        |             | age 1                       | 01          |                      |
|-----|----|--------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|------------|-------------|-----------------------------|-------------|----------------------|
|     | Sľ | TE:          | NY 212<br>Saugerties, NY                                   |                                                                                                         | Dilling         | ys, wr                                   |            |             |                             |             |                      |
| VER |    | LOG          | LOCATION See Exploration Plan                              |                                                                                                         |                 |                                          |            | =t.)        | IONS                        | YPE         | (%)                  |
|     |    | GRAPHIC LOG  | Latitude: 42.0484° Longitude: -74.0742°                    |                                                                                                         |                 | Approvimeto Surfaco Elou : 19            | S (Et ) 1/ | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| Ň   |    |              | DEPTH                                                      |                                                                                                         |                 | Approximate Surface Elev.: 486<br>ELEVAT |            |             | Зä                          | SA          | Ŭ                    |
|     | ľ. |              |                                                            |                                                                                                         |                 |                                          | 485.6+/-   |             |                             |             |                      |
|     |    | $\mathbf{X}$ | COMPLETELY WEATHERED ROCK, o                               | brange to gray                                                                                          |                 |                                          |            |             |                             |             |                      |
| 3   | 3  | $\mathbf{X}$ |                                                            |                                                                                                         |                 |                                          |            | 1 -         | 1                           |             |                      |
|     | -/ | XX           | 1.5<br>Refusal on Bedrock at 1.5 Feet                      |                                                                                                         |                 |                                          | 484.5+/-   |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
|     |    |              |                                                            |                                                                                                         |                 |                                          |            |             |                             |             |                      |
| -   |    | Stra         | atification lines are approximate. In-situ, the transition | may be gradual.                                                                                         |                 |                                          |            |             |                             |             |                      |
| ^   |    |              | né Maéha di                                                |                                                                                                         |                 | L N. A.                                  |            |             |                             |             |                      |
| A   |    |              | nt Method:<br>vator w. ~10' reach                          | See Exploration and Testing Pr<br>description of field and laborato<br>used and additional data (If any | ry procedures   | Notes:<br>Test pit logged by: JCH        |            |             |                             |             |                      |
| A   |    |              | ent Method:                                                | See Supporting Information for symbols and abbreviations.                                               | explanation of  |                                          |            |             |                             |             |                      |
|     |    |              | ackfilled with spoils after completion.                    | Elevations were interpolated fro                                                                        | m a topographic |                                          |            |             |                             |             |                      |
|     |    |              | WATER LEVEL OBSERVATIONS                                   | site plan.                                                                                              |                 | Test Pit Started: 09-19-2022             | Test P     | it Comp     | leted:                      | 09-19       | 9-2022               |
|     |    | No           | free water observed                                        | Jlerrad                                                                                                 | <b>ION</b>      | Excavator: Kubota KX057-4                | Opera      | tor: P.K    | . Freuh                     | 1           |                      |
|     |    |              |                                                            | 30 Corporate Cir St                                                                                     | 201             |                                          |            |             |                             |             |                      |

| -           | PROJ<br>SITE:                                   | ECT: Terramor Catskills NY 212                                                                 | CLIENT: Kampgrounds of America Inc<br>Billings, MT                                                                                                                                                                                                                                                                                                                    |                                 |                             |             |                      |
|-------------|-------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------|-------------|----------------------|
|             | SIIE:                                           | NY 212<br>Saugerties, NY                                                                       |                                                                                                                                                                                                                                                                                                                                                                       |                                 |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG                                     | LOCATION See Exploration Plan<br>Latitude: 42.0487° Longitude: -74.0736°                       | Approximate Surface Elev.: 486 (Ft.)                                                                                                                                                                                                                                                                                                                                  | - <del>, .</del><br>DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| _           | <u> </u>                                        | DEPTH<br>0.3 <b>FOREST MAT</b>                                                                 | ELEVATION (F                                                                                                                                                                                                                                                                                                                                                          |                                 | - 0                         |             | +                    |
|             |                                                 | COMPLETELY WEATHERED ROCK                                                                      | 485.7 orange to gray                                                                                                                                                                                                                                                                                                                                                  | <del>+/-</del>                  |                             |             |                      |
| 3           |                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       | 1                               | _                           |             |                      |
|             |                                                 | 1.7<br>Refusal on Bedrock at 1.7 Feet                                                          | 484.3                                                                                                                                                                                                                                                                                                                                                                 | +/-                             |                             | ┢           |                      |
|             |                                                 |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                 |                             |             |                      |
|             | lvanceme                                        | ratification lines are approximate. In-situ, the transitionent Method:                         | See Exploration and Testing Procedures for a Notes:                                                                                                                                                                                                                                                                                                                   |                                 |                             |             |                      |
| Ab          | Ivanceme<br>Mini exca                           |                                                                                                | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).       Notes:         See Supporting Information for explanation of symbols and abbreviations.       Test pit logged by: JCH                                                                                                            |                                 |                             |             |                      |
| Ab          | Ivanceme<br>Mini exca<br>pandonme<br>Test pit b | ent Method:<br>avator w. ~10' reach<br>ent Method:                                             | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).       Notes: Test pit logged by: JCH         See Supporting Information for explanation of symbols and abbreviations.       Elevations were interpolated from a topographic site plan.                                                 | t Pit Com                       |                             |             |                      |
| Ab          | Ivanceme<br>Mini exca<br>pandonme<br>Test pit I | ent Method:<br>avator w. ~10' reach<br>ent Method:<br>backfilled with spoils after completion. | See Exploration and Testing Procedures for a description of field and laboratory procedures used and additional data (If any).       Notes: Test pit logged by: JCH         See Supporting Information for explanation of symbols and abbreviations.       Elevations were interpolated from a topographic site plan.         Test Pit Started: 09-19-2022       Test | t Pit Com                       |                             |             | }-2022               |

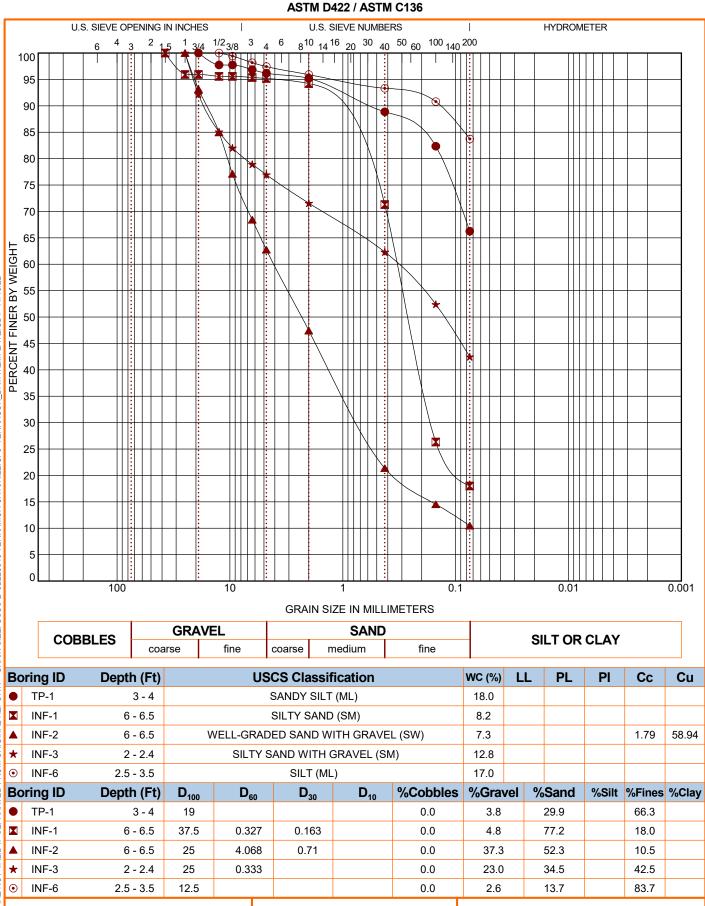
|             |             |                                                                                                            | TEST PIT LO                                                                                                                                                                 | og no. Inf                              | -10                                           |                                                                                                                 |        | P           | age                         | 1 of        | 1                    |
|-------------|-------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------|-------------|-----------------------------|-------------|----------------------|
| F           | PROJ        | IECT: Terramor Catskills                                                                                   |                                                                                                                                                                             | CLIENT: Kamp                            | ogrounds<br>gs, MT                            | of America Ir                                                                                                   | าต     |             |                             |             |                      |
| ę           | SITE:       | NY 212<br>Saugerties, NY                                                                                   |                                                                                                                                                                             |                                         | ys, wr                                        |                                                                                                                 |        |             |                             |             |                      |
| MODEL LAYER | GRAPHIC LOG | LOCATION See Exploration Plan<br>Latitude: 42.0483° Longitude: -74.0723°                                   |                                                                                                                                                                             | Approximate Surface Elev                | v.: 440 (Ft.) +/-                             | INSTALLATIC<br>DETAILS                                                                                          | N      | DEPTH (Ft.) | WATER LEVEL<br>OBSERVATIONS | SAMPLE TYPE | WATER<br>CONTENT (%) |
| 2           |             | 3.0 3.0 3.0 SILTY SAND WITH GRAVEL (SM), co<br>brown, (GLACIAL TILL) Significant excavation effort noted 5 | ntaining cobbles and bo                                                                                                                                                     | tlets noted, orange                     | EVATION (Ft.)<br>439.5+/-<br>437+/-<br>433+/- | 4" PVC set at<br>6' below<br>grade. Annu-<br>-lus backfil <del>led •</del><br>with soil cut-<br>tings to grade. |        |             |                             |             |                      |
|             |             | nent Method:                                                                                               | See Exploration and Te                                                                                                                                                      | sting Procedures for a                  | Notes:                                        |                                                                                                                 |        |             |                             |             |                      |
| Aba         | andonm      | cavator w. ~10' reach<br>nent Method:<br>backfilled with spoils after completion.                          | See Exploration and Te<br>description of field and<br>used and additional dat<br>See Supporting Informa<br>symbols and abbreviatio<br>Elevations were interpo<br>site plan. | a (It any).<br>Ition for explanation of | Test pit logg                                 | ed by: JCH                                                                                                      |        |             |                             |             |                      |
| -           | N           | WATER LEVEL OBSERVATIONS                                                                                   |                                                                                                                                                                             |                                         | Test Pit Starte                               | ed: 09-19-2022                                                                                                  | Test F | Pit Com     | pleted:                     | 09-1        | 9-2022               |
|             | 11          |                                                                                                            |                                                                                                                                                                             | JLON                                    | Excavator: Ku                                 | bota KX057-4                                                                                                    | Opera  | ator: P.ł   | K. Freu                     | h           |                      |
|             |             |                                                                                                            | 30 Corporat<br>Albar                                                                                                                                                        | e Cir Ste 201<br>ny, NY                 | Project No.: JI                               | B225043                                                                                                         |        |             |                             |             |                      |

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-WELL JB226043 TERRAMOR CATSKILL.GPJ TERRACON\_DATATEMPLATE.GDT 11/30/22



|                  | IN                   | FILTRATIO      | ON TEST R              | ESULTS                  |                                    |
|------------------|----------------------|----------------|------------------------|-------------------------|------------------------------------|
| PROJECT:         | Ferramor Catsk       | kills          |                        | PROJECT NO.             | JB225043                           |
| PROJECT L        | OCATION: Sa          | augerties, Nev | w York                 | TESTER: JCH             |                                    |
| Test<br>Location | Test Depth<br>(feet) | Trial No.      | Water Drop<br>(inches) | Elapsed Time<br>(hours) | Infiltration Rate<br>(inches/hour) |
|                  |                      | 1              | 8                      | 1.0                     | 8                                  |
|                  |                      | 2              | 8                      | 1.0                     | 8                                  |
| INF-1            | 5.5                  | 3              | 8                      | 1.0                     | 8                                  |
|                  |                      | 4              | 8                      | 1.0                     | 8                                  |
|                  |                      | NOTE: Rate     | of final trial: 8 ir   | h/hr. Average of fou    | ur trials: 8 in/hr.                |
|                  |                      | 1              | 24                     | 0.32                    | >24                                |
|                  |                      | 2              | 24                     | 0.23                    | >24                                |
| INF-2            | 5.5                  | 3              | 24                     | 0.22                    | >24                                |
|                  |                      | 4              | 24                     | 0.32                    | >24                                |
|                  |                      | NOTE: Rate     | of final trial: >2     | 4 in/hr. Average of     | four trials: >24 in/hr.            |
|                  |                      | 1              | 24                     | 0.08                    | >24                                |
|                  |                      | 2              | 24                     | 0.12                    | >24                                |
| INF-10           | 6.0                  | 3              | 24                     | 0.13                    | >24                                |
|                  |                      | 4              | 24                     | 0.15                    | >24                                |
|                  |                      | NOTE: Rate     | of final trial: >24    | 4 in/hr. Average of     | four trials: >24 in/hr.            |

Notes:


- (1) Test pipes were installed in test pits adjacent to INF-1, INF-2, and INF-10
- (2) Results at INF-10 are not typical of the subsurface conditions encountered. Lower rates should be anticipated.

#### SOIL CLASSIFICATION AT TEST DEPTH

Test Location INF-1: Silty Sand (SM) Test Location INF-2: Well Graded Sand with Silt (SW-SM). Test Location INF-10: Silty Sand with Gravel (SM)

> Terracon Consultants-NY, Inc. 30 Corporate Circle, Suite 201 Albany, New York 12203 P (518) 266 0310 F (518) 266 9238 terracon.com

#### **GRAIN SIZE DISTRIBUTION**



PROJECT: Terramor Catskills

SITE: NY 212 Saugerties, NY



PROJECT NUMBER: JB225043

CLIENT: Kampgrounds of America Inc Billings, MT

GRAIN SIZE: USCS-2 JB225043 TERRAMOR CATSKILL. GPJ TERRACON\_DATATEMPLATE.GDT 11/18/22 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

#### SUPPORTING INFORMATION

#### **Contents:**

General Notes Unified Soil Classification System Description of Rock Properties

Note: All attachments are one page unless noted above.

#### GENERAL NOTES DESCRIPTION OF SYMBOLS AND ABBREVIATIONS Terramor Catskills Saugerties, NY Terracon Project No. JB225043



| SAMPLING          | WATER LEVEL                                                                                                                                                  |       | FIELD TESTS                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------|
|                   | Water Initially<br>Encountered                                                                                                                               |       | Standard Penetration Test<br>Resistance (Blows/Ft.) |
| M) Grab<br>Sample | _────────────────────────────────────                                                                                                                        | (HP)  | Hand Penetrometer                                   |
|                   | Water Level After<br>a Specified Period of Time                                                                                                              | (T)   | Torvane                                             |
|                   | Cave In<br>Encountered                                                                                                                                       | (DCP) | Dynamic Cone Penetrometer                           |
|                   | Water levels indicated on the soil boring logs are<br>the levels measured in the borehole at the times<br>indicated. Groundwater level variations will occur |       | Unconfined Compressive<br>Strength                  |
|                   | over time. In low permeability soils, accurate<br>determination of groundwater levels is not<br>possible with short term water level                         | (PID) | Photo-Ionization Detector                           |
|                   | observations.                                                                                                                                                | (OVA) | Organic Vapor Analyzer                              |

#### **DESCRIPTIVE SOIL CLASSIFICATION**

Soil classification as noted on the soil boring logs is based Unified Soil Classification System. Where sufficient laboratory data exist to classify the soils consistent with ASTM D2487 "Classification of Soils for Engineering Purposes" this procedure is used. ASTM D2488 "Description and Identification of Soils (Visual-Manual Procedure)" is also used to classify the soils, particularly where insufficient laboratory data exist to classify the soils in accordance with ASTM D2487. In addition to USCS classification, coarse grained soils are classified on the basis of their in-place relative density, and fine-grained soils are classified on the basis of their consistency. See "Strength Terms" table below for details. The ASTM standards noted above are for reference to methodology in general. In some cases, variations to methods are applied as a result of local practice or professional judgment.

#### LOCATION AND ELEVATION NOTES

Exploration point locations as shown on the Exploration Plan and as noted on the soil boring logs in the form of Latitude and Longitude are approximate. See Exploration and Testing Procedures in the report for the methods used to locate the exploration points for this project. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

|                               | STRENGTH TERMS                                                                                      |                                   |                                                                                                                                                                               |                                                 |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--|
| RELATIVE DENSITY              | RELATIVE DENSITY OF COARSE-GRAINED SOILS CONSISTENCY OF FINE-GRAINED SOILS                          |                                   |                                                                                                                                                                               |                                                 |  |
|                               | (More than 50% retained on No. 200 sieve.)<br>Density determined by Standard Penetration Resistance |                                   | (50% or more passing the No. 200 sieve.)<br>Consistency determined by laboratory shear strength testing, field visual-manual<br>procedures or standard penetration resistance |                                                 |  |
| Descriptive Term<br>(Density) | Standard Penetration or<br>N-Value<br>Blows/Ft.                                                     | Descriptive Term<br>(Consistency) | Unconfined Compressive Strength<br>Qu, (tsf)                                                                                                                                  | Standard Penetration or<br>N-Value<br>Blows/Ft. |  |
| Very Loose                    | 0 - 3                                                                                               | Very Soft                         | less than 0.25                                                                                                                                                                | 0 - 1                                           |  |
| Loose                         | 4 - 9                                                                                               | Soft                              | 0.25 to 0.50                                                                                                                                                                  | 2 - 4                                           |  |
| Medium Dense                  | 10 - 29                                                                                             | Medium Stiff                      | 0.50 to 1.00                                                                                                                                                                  | 4 - 8                                           |  |
| Dense                         | 30 - 50                                                                                             | Stiff                             | 1.00 to 2.00                                                                                                                                                                  | 8 - 15                                          |  |
| Very Dense                    | > 50                                                                                                | Very Stiff                        | 2.00 to 4.00                                                                                                                                                                  | 15 - 30                                         |  |
|                               |                                                                                                     | Hard                              | > 4.00                                                                                                                                                                        | > 30                                            |  |

#### **RELEVANCE OF SOIL BORING LOG**

The soil boring logs contained within this document are intended for application to the project as described in this document. Use of these soil boring logs for any other purpose may not be appropriate.

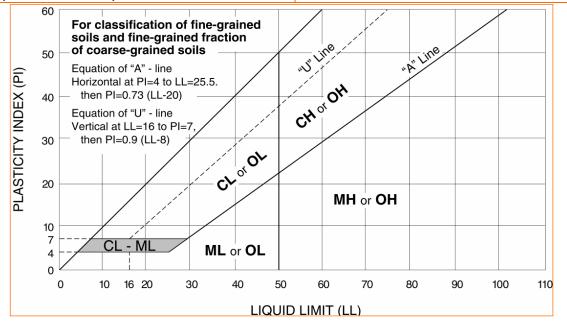
#### UNIFIED SOIL CLASSIFICATION SYSTEM

### Terracon GeoReport

|                                                                   |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Soil Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ing Group Symbols                                                 | and Group Names                                                                                                                                                                                                                                 | Using Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fests A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Group<br>Symbol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Group Name <sup>B</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                   | Clean Gravels:                                                                                                                                                                                                                                  | $Cu \ge 4$ and $1 \le Cc \le 3^{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well-graded gravel F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>Gravels:</b><br>More than 50% of                               | Less than 5% fines <sup>C</sup>                                                                                                                                                                                                                 | Cu < 4 and/or [Cc<1 or Cc>3.0] <sup>E</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Poorly graded gravel F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                   | Gravels with Fines:                                                                                                                                                                                                                             | Fines classify as ML or N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ЛΗ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silty gravel F, G, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                   | More than 12% fines <sup>C</sup>                                                                                                                                                                                                                | Fines classify as CL or C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clayey gravel <sup>F, G, H</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                   | Clean Sands:                                                                                                                                                                                                                                    | $Cu \ge 6$ and $1 \le Cc \le 3^{E}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Well-graded sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieve | Less than 5% fines <sup>D</sup>                                                                                                                                                                                                                 | Cu < 6 and/or [Cc<1 or Cc>3.0] E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Poorly graded sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   | Sands with Fines:                                                                                                                                                                                                                               | Fines classify as ML or MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silty sand <sup>G, H, I</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                   | More than 12% fines <sup>D</sup>                                                                                                                                                                                                                | Fines classify as CL or CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clayey sand <sup>G, H, I</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                   | Incompation                                                                                                                                                                                                                                     | PI > 7 and plots on or above "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lean clay <sup>K, L, M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Silts and Clays:                                                  | inorganic:                                                                                                                                                                                                                                      | PI < 4 or plots below "A" line J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Silt K, L, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Liquid limit less than 50                                         | Organic:                                                                                                                                                                                                                                        | Liquid limit - oven dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0.75 OI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Organic clay <sup>K, L, M, N</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   | Organic.                                                                                                                                                                                                                                        | Liquid limit - not dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.75 OL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organic silt <sup>K, L, M, O</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   | Inorganic                                                                                                                                                                                                                                       | PI plots on or above "A"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | СН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fat clay <sup>K, L, M</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Silts and Clays:<br>Liquid limit 50 or more                       | morganic.                                                                                                                                                                                                                                       | PI plots below "A" line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elastic Silt K, L, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                   | Organic:                                                                                                                                                                                                                                        | Liquid limit - oven dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ОН                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Organic clay <sup>K, L, M, P</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                   |                                                                                                                                                                                                                                                 | Liquid limit - not dried                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Organic silt <sup>K, L, M, Q</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Primarily                                                         | organic matter, dark in co                                                                                                                                                                                                                      | olor, and organic odor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Peat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                   | Gravels:<br>More than 50% of<br>coarse fraction<br>retained on No. 4 sieve<br>Sands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieve<br>Silts and Clays:<br>Liquid limit less than 50<br>Silts and Clays:<br>Liquid limit 50 or more | Gravels:<br>More than 50% of<br>coarse fraction<br>retained on No. 4 sieveClean Gravels:<br>Less than 5% fines CSands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieveClean Sands:<br>Less than 12% fines CSands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieveClean Sands:<br>Less than 5% fines DSands:<br>sieveSands with Fines:<br>More than 12% fines DSilts and Clays:<br>Liquid limit less than 50Inorganic:<br>Organic:Silts and Clays:<br>Liquid limit 50 or moreInorganic:<br>Organic: | Gravels:<br>More than 50% of<br>coarse fraction<br>retained on No. 4 sieveClean Gravels:<br>Less than 5% fines CCu $\geq$ 4 and 1 $\leq$ Cc $\leq$ 3 EGravels with Fines:<br>More than 12% fines CFines classify as ML or MSands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieveClean Sands:<br>Less than 5% fines DFines classify as CL or CSands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieveClean Sands:<br>Less than 5% fines DCu $\geq$ 6 and 1 $\leq$ Cc $\leq$ 3 ESilts and Clays:<br>Liquid limit less than 50Inorganic:Pl $>$ 7 and plots on or ab<br>Pl $<$ 4 or plots below "A"<br>Liquid limit - not dried<br>Liquid limit - not driedSilts and Clays:<br>Liquid limit 50 or moreInorganic:Pl plots on or above "A"<br>Pl plots below "A" line<br>Liquid limit - oven driedSilts and Clays:<br>Liquid limit 50 or moreInorganic:Pl plots on or above "A"<br>Pl plots below "A" line<br>Liquid limit - oven dried | Clean Gravels:<br>Less than 5% fines CCu < 4 and/or [Cc<1 or Cc>3.0] EMore than 50% of<br>coarse fraction<br>retained on No. 4 sieveFines classify as ML or MHGravels with Fines:<br>More than 12% fines CFines classify as ML or MHSands:<br>50% or more of coarse<br>fraction passes No. 4<br>sieveClean Sands:<br>Less than 5% fines DCu < 6 and 1 $\leq$ Cc $\leq$ 3 ESands:<br>50% or more of coarse<br>fraction passes No. 4<br>sievePlands with Fines:<br>More than 12% fines DFines classify as ML or MHSands with Fines:<br>More than 12% fines DFines classify as ML or MCSands with Fines:<br>More than 12% fines DFines classify as ML or MHSilts and Clays:<br>Liquid limit less than 50Pl > 7 and plots on or above "A"Silts and Clays:<br>Liquid limit 50 or moreInorganic:Pi plots on or above "A" linePl plots on or above "A" lineSilts and Clays:<br>Liquid limit 50 or moreLiquid limit - oven dried<br>Pl plots below "A" lineSilts and Clays:<br>Liquid limit 50 or moreLiquid limit - oven dried<br>Pl plots below "A" lineSilts and Clays:<br>Liquid limit 50 or moreLiquid limit - oven dried<br>Pl plots below "A" lineClean Gray:<br>Liquid limit 50 or moreLiquid limit - oven dried<br>Pl plots below "A" lineSilts and Clays:<br>Liquid limit 50 or moreLiquid limit - oven dried<br>Liquid limit - oven dried<br>Liquid limit - not driedSilts and Clays:<br>Liquid limit 50 or more <td>Group Symbols and Group Names Using Laboratory Tests A       Group Symbol         Gravels:       Clean Gravels:       Cu ≥ 4 and 1 ≤ Cc ≤ 3 <math>\blacksquare</math>       GW         More than 50% of coarse fraction retained on No. 4 sieve       Cavels with Fines:       Fines classify as ML or MH       GM         Gravels:       Gravels with Fines:       Fines classify as ML or MH       GM         More than 12% fines C       Fines classify as ML or C       GC         Sands:       Clean Sands:       Cu ≥ 6 and 1 ≤ Cc ≤ 3 <math>\blacksquare</math>       SW         Sands:       Cu ≥ 6 and 1 ≤ Cc ≤ 3 <math>\blacksquare</math>       SW         Sands with Fines:       More than 12% fines D       Cu ≥ 6 and or [Cc&lt;1 or Cc&gt;3.0] <math>\blacksquare</math>       SP         Silts and Clays:       Sands with Fines:       Fines classify as ML or MH       SM         Liquid limit less than 5% fines D       Fines classify as ML or MH       SM         Silts and Clays:       Inorganic:       PI &gt; 7 and plots on or above "A" line J       ML         Liquid limit less than 50       Graganic:       PI &gt; 0 tos on or above "A" line J       ML         Silts and Clays:       Inorganic:       Liquid limit - not dried       &lt; 0.75</td> OL         Liquid limit 50 or more       Organic:       Liquid limit - oven dried       < 0.75 | Group Symbols and Group Names Using Laboratory Tests A       Group Symbol         Gravels:       Clean Gravels:       Cu ≥ 4 and 1 ≤ Cc ≤ 3 $\blacksquare$ GW         More than 50% of coarse fraction retained on No. 4 sieve       Cavels with Fines:       Fines classify as ML or MH       GM         Gravels:       Gravels with Fines:       Fines classify as ML or MH       GM         More than 12% fines C       Fines classify as ML or C       GC         Sands:       Clean Sands:       Cu ≥ 6 and 1 ≤ Cc ≤ 3 $\blacksquare$ SW         Sands:       Cu ≥ 6 and 1 ≤ Cc ≤ 3 $\blacksquare$ SW         Sands with Fines:       More than 12% fines D       Cu ≥ 6 and or [Cc<1 or Cc>3.0] $\blacksquare$ SP         Silts and Clays:       Sands with Fines:       Fines classify as ML or MH       SM         Liquid limit less than 5% fines D       Fines classify as ML or MH       SM         Silts and Clays:       Inorganic:       PI > 7 and plots on or above "A" line J       ML         Liquid limit less than 50       Graganic:       PI > 0 tos on or above "A" line J       ML         Silts and Clays:       Inorganic:       Liquid limit - not dried       < 0.75 |

A Based on the material passing the 3-inch (75-mm) sieve.

<sup>B</sup> If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.


- <sup>c</sup> Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- <sup>D</sup> Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay.

<sup>E</sup> Cu = D<sub>60</sub>/D<sub>10</sub> Cc = 
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

**F** If soil contains  $\geq$  15% sand, add "with sand" to group name.

<sup>G</sup> If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- <sup>H</sup> If fines are organic, add "with organic fines" to group name.
- If soil contains  $\geq$  15% gravel, add "with gravel" to group name.
- J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ≥ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- <sup>M</sup>If soil contains  $\geq$  30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- <sup>N</sup> PI  $\geq$  4 and plots on or above "A" line.
- PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- QPI plots below "A" line.



#### **DESCRIPTION OF ROCK PROPERTIES**



|                         | WEATHERING                                                                                                                                                                                               |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Term                    | Description                                                                                                                                                                                              |
| Unweathered             | No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.                                                                                               |
| Slightly weathered      | Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition. |
| Moderately<br>weathered | Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is<br>present either as a continuous framework or as corestones.                              |
| Highly<br>weathered     | More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.                              |
| Completely weathered    | All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.                                                                                       |
| Residual soil           | All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.                    |
|                         | STRENGTH OR HARDNESS                                                                                                                                                                                     |

| STRENGTH OR HARDNESS |                                                                                                                         |                                             |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|
| Description          | Field Identification                                                                                                    | Uniaxial Compressive<br>Strength, psi (MPa) |  |  |
| Extremely weak       | Indented by thumbnail                                                                                                   | 40-150 (0.3-1)                              |  |  |
| Very weak            | Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife                              | 150-700 (1-5)                               |  |  |
| Weak rock            | Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer | 700-4,000 (5-30)                            |  |  |
| Medium strong        | Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer   | 4,000-7,000 (30-50)                         |  |  |
| Strong rock          | Specimen requires more than one blow of geological hammer to<br>fracture it                                             | 7,000-15,000 (50-100)                       |  |  |
| Very strong          | Specimen requires many blows of geological hammer to fracture it                                                        | 15,000-36,000 (100-250)                     |  |  |
| Extremely strong     | Specimen can only be chipped with geological hammer                                                                     | >36,000 (>250)                              |  |  |
|                      | DISCONTINUITY DESCRIPTION                                                                                               |                                             |  |  |

|                          | DISCONTINUTT DESCRIPTION                           |                     |                                                    |  |  |
|--------------------------|----------------------------------------------------|---------------------|----------------------------------------------------|--|--|
| Fracture Spacing (Joints | Fracture Spacing (Joints, Faults, Other Fractures) |                     | Bedding Spacing (May Include Foliation or Banding) |  |  |
| Description              | Spacing                                            | Description Spacing |                                                    |  |  |
| Extremely close          | < ¾ in (<19 mm)                                    | Laminated           | < ½ in (<12 mm)                                    |  |  |
| Very close               | ¾ in – 2-1/2 in (19 - 60 mm)                       | Very thin           | ½ in – 2 in (12 – 50 mm)                           |  |  |
| Close                    | 2-1/2 in – 8 in (60 – 200 mm)                      | Thin                | 2 in – 1 ft. (50 – 300 mm)                         |  |  |
| Moderate                 | 8 in – 2 ft. (200 – 600 mm)                        | Medium              | 1 ft. – 3 ft. (300 – 900 mm)                       |  |  |
| Wide                     | 2 ft. – 6 ft. (600 mm – 2.0 m)                     | Thick               | 3 ft. – 10 ft. (900 mm – 3 m)                      |  |  |
| Very Wide                | 6 ft. – 20 ft. (2.0 – 6 m)                         | Massive             | > 10 ft. (3 m)                                     |  |  |

Discontinuity Orientation (Angle): Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

| ROCK QUALITY DESIGNATION (RQD) <sup>1</sup>               |                                                                |
|-----------------------------------------------------------|----------------------------------------------------------------|
| Description                                               | RQD Value (%)                                                  |
| Very Poor                                                 | 0 - 25                                                         |
| Poor                                                      | 25 – 50                                                        |
| Fair                                                      | 50 – 75                                                        |
| Good                                                      | 75 – 90                                                        |
| Excellent                                                 | 90 - 100                                                       |
| 1 The combined length of all cound and intact core cogmon | ts equal to or greater than 4 inches in length, expressed as a |

1. The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

# E

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 www.ctmale.com



#### **TECHNICAL MEMORANDUM**

| То:      | Terramor                           |
|----------|------------------------------------|
| From:    | C.T. Male Associates               |
| Subject: | Wastewater Collection and Disposal |

**Date:** November 30, 2022

Project: Terramor Campground - Saugerties, NY

#### <u>SUMMARY</u>

This technical memorandum provides the preliminary basis of design for wastewater collection and treatment at the proposed Terramor Campground in Saugerties, Ulster County, New York.

#### **DESCRIPTION OF WASTEWATER DISPOSAL NEEDS**

The campground has 4 facility types which generate wastewater.

- 1. Camping Sites
  - a. The proposed project consists of 75 campsites with water and wastewater utilities. There are two types of sites: the Woody 35 and the Woody 45 with 45 sites and 30 sites each, respectively.
- 2. Guest Amenities
  - a. The proposed project consists of a Lodge with a lounge area, bar seating and restaurant seating.
  - b. The proposed project includes a pool with a cabana including bathrooms and a pavilion.
- 3. Operational Structures
  - a. The proposed development consists of a Welcome Center and Maintenance Building
- 4. Employee Units

Technical Memorandum: Wastewater Collection and Treatment November 30, 2022 Page - 2

#### WASTEWATER STRENGTH

Wastewater generated from the campground will consist of the following types of waste streams:

- Domestic Wastewater From the campsites, employee units, guest amenities, and operational buildings.
- Process Wastewater From floor drains in maintenance building.
- Higher Strength Wastewater From the Lodge including typical of flows from restaurants. This is expected to have higher concentrations of solids and BOD.

#### WASTEWATER FLOWS

The calculations for the average wastewater flows are shown in the table below:

| Water Demands and Wastewater Flows - Terramor Outdoor Resorts Saugerties |                   |          |                |       |
|--------------------------------------------------------------------------|-------------------|----------|----------------|-------|
|                                                                          | Unit              | Quantity | Unit Water Use | GPD   |
| Woody 35 Campsites                                                       | Max Occupancy     | 90       | 36             | 3240  |
| Woody 45 Campsites                                                       | Max Occupancy     | 150      | 36             | 5400  |
| General Manager's Unit                                                   | # Bedrooms        | 3        | 110            | 330   |
| 2 SuiteEmployee Units                                                    | # Bedrooms        | 4        | 110            | 440   |
| 4 Dorm Employee Units                                                    | # Workers         | 24       | 50             | 1200  |
| Maintenance Building/Laundry                                             | # Washing Machine | 2        | 580            | 1160  |
| Lodge - Tabletop                                                         | # Seats           | 40       | 35             | 1400  |
| Lodge - Bartop                                                           | # Seats           | 28       | 20             | 560   |
| Lodge - Lounge                                                           | # Seats           | 50       | 20             | 1000  |
| Non-Residential Employees                                                | # Employees       | 11       | 15             | 165   |
|                                                                          |                   |          |                |       |
|                                                                          |                   |          |                |       |
| Total                                                                    |                   |          |                | 14895 |

The unit water use per guest of 36 gallons per day was generated from actual water use at another Terramor Resort as recorded in the summer of 2022. The 36 gallons per day per guest water use <u>includes</u> all amenities including employees/employee units, a lodge and a pool. To be conservative, design flows for the amenities at this location (shown above) are calculated <u>in addition</u> to the guest unit water use.

Technical Memorandum: Wastewater Collection and Treatment November 30, 2022 Page - 3

#### WASTEWATER COLLECTION

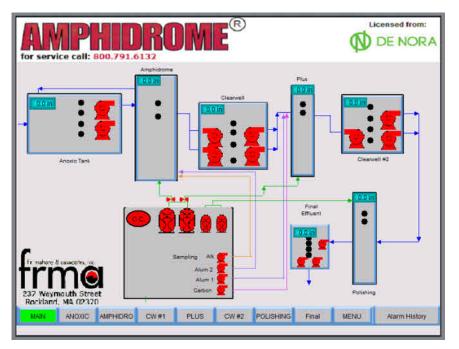
Wastewater from the proposed development will be collected in a series of wastewater subcatchments which collect and convey wastewater by gravity to a low-pressure-sewer (LPS) pump station with grinder pumps. Each pumpstation is connected into a LPS network which pumps wastewater to a packaged wastewater treatment plant. A LPS system was selected to minimize rock excavation expected to due to the presence of shallow bedrock at the site. The gravity sewers are 4" PVC. The LPS forcemain network varies in sizes with 1.25", 2" and 3" HDPE piping.

#### WASTEWATER TREATMENT

Due to the shallow bedrock, subsurface treatment and disposal is not proposed at this time. The proposed method of treating and disposing of wastewater from the development is with a packaged wastewater treatment plant (WWTP). This basis of design technical memo uses the Amphidrome System Packaged WWTP which is a submerged attached growth biologically active filter (BAF) which can provide BOD reduction, nitrification, denitrification, phosphorus reduction and filtration of suspended solids in a single reactor. A brochure from the manufacturer is attached to this memo. The wastewater from the lodge is conveyed to a grease trap prior to flowing by gravity to a pump station to reduce the levels of fats, oils, and grease at the WWTP.

As required prior to submission of an application for approval from the NYSDEC, a preapplication conference was held with the NYSDEC. At this time, it is assumed that the facility will obtain a SPDES permit from the NYSDEC to discharge treated effluent to the intermittent stream located on the interior of the site. The preliminary design of the Amphidrome System assumes typical effluent limits for discharging to an intermittent stream from the NYSDEC Manual for Design for Intermediate Sized Wastewater Treatment Systems (Table B-4B) as shown below:

| Parameter               | Туре              | Limitation    | Units                  |
|-------------------------|-------------------|---------------|------------------------|
| BOD5                    | Daily Maximum     | 5             | mg/L                   |
| TSS                     | Daily Maximum     | 10            | mg/L                   |
| Settleable Solids       | Daily Maximum     | 0.1           | ml/L                   |
| Total Residual Chlorine | Daily Maximum     | 0.02          | mg/L                   |
| Ammonia <sup>33</sup>   | Daily Maximum or  | 2.2 in winter | mg/L as NH3            |
|                         | Average           | 1.5 in summer | ing/L as with          |
| Dissolved Oxygen        | Daily Minimum     | $\geq 7.0$    | mg/L                   |
| рН                      | Range             | 6.0 – 9.0     | SU                     |
| Total Phosphorus        | Site-specific     | Site-specific | mg/L as P              |
| Coliform, fecal, when   | 30-day geometric  | 200           | Number of colonies per |
| disinfecting            | mean              | 200           | 100 ml                 |
| Coliform, fecal, when   | 7 consecutive-day | 400           | Number of colonies per |
| disinfecting            | geometric mean    | 400           | 100 ml                 |


|            | 30                                                             |
|------------|----------------------------------------------------------------|
| Table B-4B | Typical Effluent Limits for Intermittent Streams <sup>32</sup> |

Technical Memorandum: Wastewater Collection and Treatment November 30, 2022 Page - 4

#### **PERMITTING**

The design for the wastewater collection and treatment system will be submitted to the NYSDEC for review and approval. It is not expected that the UCDOH will be involved with the review because of the volume of wastewater expected and it is not planned to utilize subsurface disposal of the treated effluent.

### **CUSTOMIZED TOUCH SCREEN CONTROLS**



Water & Wastewater Technologies

## **Typical Applications**

**Condominiums Cluster System Developments Health Care Facilities** Resorts **Shopping Malls Schools Office Parks** 



**Single Family Home** 





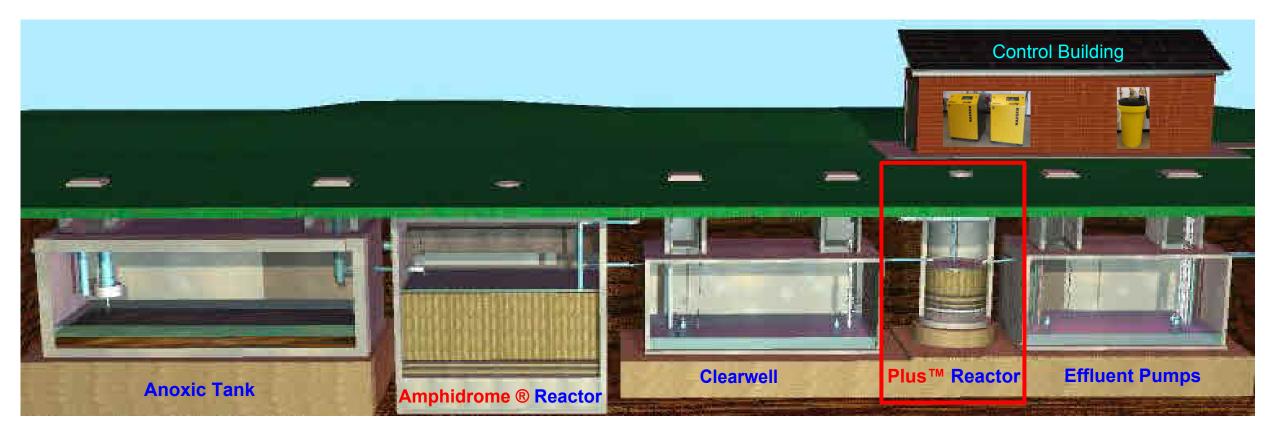
**Advanced Nutrient Removal** 

**Low Visual Site Impact** 

**Your Economical Treatment Solution** 



f.r. mahony & associates inc. 273 Weymouth Street • Rockland MA 02370


tel. 800-791-6132 fax. 781-982-1056 www.amphidrome.com



## Waste Water Treatment System

 $(\mathbf{R})$ 

## **Amphidrome<sup>®</sup> System**



The Amphidrome® System is a Submerged Attached Growth Biologically Active Filter (BAF) providing BOD reduction, superior nitrification, denitrification, phosphorus reduction and filtration of suspended solids in a single reactor.

A spherical sand media provides maximum surface area for microorganisms to attach themselves. The microorganism environment is manipulated with intermittent aeration.

The result is an energy efficient superior treatment system with a very small footprint.

### SYSTEM BENEFITS

**Advanced Nutrient Removal** Low Visual Site Impact System Below Grade Low Audible Site Impact Premium Sound Enclosed Blowers Ammonia < 1 mg/l **Simple to Operate** Touch Screen, Remote Access for Monitoring and Control Nitrogen to < 3 mg/l TN **Energy Efficient** Intermittent Aeration Phosphorus < 0.15 mg/l TP **Fixed Film Reactor With High Biomass Consistent Treatment Contaminants of Emerging Concern** Effluent Is Filtered Through Our Deep Media Bed Filter Filtered Effluent **TOC Reduction Easily Upgradable Future Nitrogen or Phosphorus Limits** 

With the addition of an Amphidrome® Plus<sup>™</sup> denitrification reactor, nitrogen is further reduced to the lowest level biologically attainable. An enhanced level of phosphorus reduction can also be achieved.

A small building houses a control panel, blowers, and any other ancillary equipment as may be required for a specific application such as alkalinity feed or ultraviolet (UV) disinfection.

#### ALL SYSTEMS ARE CUSTOM CONFIGURED TO MEET STRINGENT LIMITS

# F

ţ

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C.

50 Century Hill Drive, Latham, NY 12110 518.786.7400 FAX 518.786.7299 www.ctmale.com



#### **TECHNICAL MEMORANDUM**

| То:      | Terramor                                 |
|----------|------------------------------------------|
| From:    | C.T. Male Associates                     |
| Subject: | Water Supply, Treatment and Distribution |
| Date:    | November 30, 2022                        |

Project: Terramor - Saugerties, NY

#### <u>SUMMARY</u>

This technical memorandum provides the preliminary basis of design for the water system at the proposed Terramor Campground in Saugerties, Ulster County, New York.

#### DESCRIPTION OF FACILITIES WITH WATER DEMAND

The campground has 4 facility types with a need for water services.

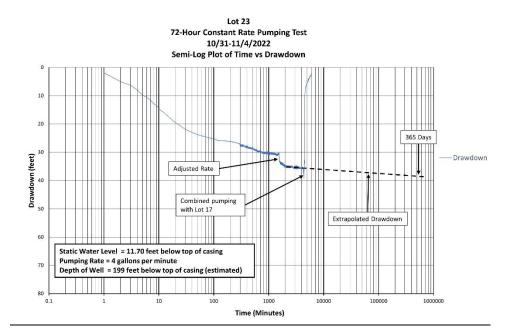
- 1. Camping Sites
  - a. The proposed project consists of 75 campsites with water and wastewater utilities. There are two types of sites: the Woody 35 and the Woody 45 with 45 sites and 30 sites each, respectively.
- 2. Guest Amenities
  - a. The proposed project consists of a Lodge with a lounge area, bar seating and restaurant seating.
  - b. The proposed project includes a pool with a cabana including bathrooms and a pavilion.
- 3. Operational Structures
  - a. The proposed development consists of a Welcome Center and Maintenance Building
- 4. Employee Units

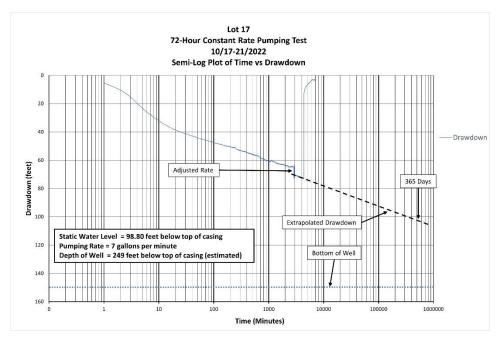
*Technical Memorandum: Water Supply, Treatment and Distribution November 30, 2022 Page - 2* 

#### DESIGN WATER DEMANDS

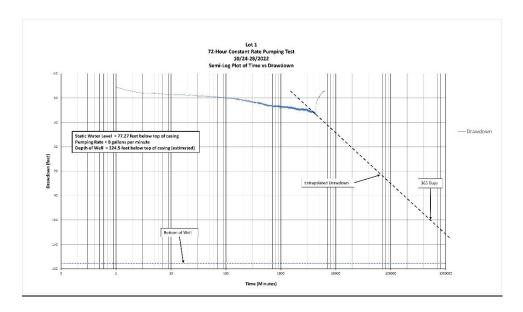
The calculations for the average daily water demands are shown in the table below:

| Water Demands and Wastewater Flows - Terramor Outdoor Resorts Saugerties |                   |          |                |       |  |  |
|--------------------------------------------------------------------------|-------------------|----------|----------------|-------|--|--|
|                                                                          | Unit              | Quantity | Unit Water Use | GPD   |  |  |
| Woody 35 Campsites                                                       | Max Occupancy     | 90       | 36             | 3240  |  |  |
| Woody 45 Campsites                                                       | Max Occupancy     | 150      | 36             | 5400  |  |  |
| General Manager's Unit                                                   | # Bedrooms        | 3        | 110            | 330   |  |  |
| 2 SuiteEmployee Units                                                    | # Bedrooms        | 4        | 110            | 440   |  |  |
| 4 Dorm Employee Units                                                    | # Workers         | 24       | 50             | 1200  |  |  |
| Maintenance Building/Laundry                                             | # Washing Machine | 2        | 580            | 1160  |  |  |
| Lodge - Tabletop                                                         | # Seats           | 40       | 35             | 1400  |  |  |
| Lodge - Bartop                                                           | # Seats           | 28       | 20             | 560   |  |  |
| Lodge - Lounge                                                           | # Seats           | 50       | 20             | 1000  |  |  |
| Non-Residential Employees                                                | # Employees       | 11       | 15             | 165   |  |  |
|                                                                          |                   |          |                |       |  |  |
|                                                                          |                   |          |                |       |  |  |
| Total                                                                    |                   |          |                | 14895 |  |  |


The unit water use per guest of 36 gallons per day was generated from actual water use at another Terramor Resort as recorded in the summer of 2022. The 36 gallons per day per guest water use <u>includes</u> all amenities including employees/employee units, a lodge and a pool. To be conservative, design flows for the amenities at this location (shown above) are calculated <u>in addition</u> to the guest unit water use.


#### WATER SOURCE

The proposed water sources for the proposed development will be from three of the six existing wells onsite which were originally installed for a development which was never constructed. Step testing and constant rate testing completed in October and November of 2022 suggests that the 3 wells have capacities of 4 GPM (5,760 GPD), 7 GPM (10,080 GPD), and 8 GPM (11,520 GPM). Based on the initial results of the yield testing, these three wells have the capacity to serve the proposed development according to the calculated average daily design flows. The locations of the three proposed well sources can be found on the Water and Wastewater Utility Plans submitted for Site Plan Approval. The water levels recorded during the yield testing is summarized in the charts on the following page.


Technical Memorandum: Water Supply, Treatment and Distribution November 30, 2022

<u> Page - 3</u>





*Technical Memorandum: Water Supply, Treatment and Distribution November 30, 2022 Page - 4* 



The data shown in the above charts is subject to further review and approval.

#### **IMPACT OF WELL USE ON NEIGHBORING WELLS**

During yield testing, the water level in four (4) neighboring wells was monitored to determine if water use on the Terramor site will impact water levels in the wells on the neighboring properties. The table below summarizes the water level recordings of the neighboring wells during each of the three 72-hour yield tests.

|            | 1716 F | Rout 212*        | 11 Osnas* |                  | 71 Raybrook |                  | 109 Cottontail Ln* |                  |
|------------|--------|------------------|-----------|------------------|-------------|------------------|--------------------|------------------|
| Date       | Time   | Water Level (ft) | Time      | Water Level (ft) | Time        | Water Level (ft) | Time               | Water Level (ft) |
| 10/25/2022 | 8:08   | <15              | 8:04      | 19.50            | 8:15        | 28.90            | 8:23               | <15              |
|            | 10:08  | <15              | 10:02     | 19.30            | 10:13       | 28.00            | 10:20              | <15              |
|            | 12:11  | <15              | 12:06     | 19.30            | 12:17       | 27.60            | 12:24              | <15              |
|            | 15:15  | <15              | 15:08     | 19.60            | 15:01       | 27.70            | 14:56              | <15              |
| 10/26/2022 | 8:05   | <15              | 8:08      | 21.40            | 8:15        | 27.10            | 8:20               | <15              |
|            | 10:03  | <15              | 10:06     | 21.00            | 9:54        | 271              | 10:32              | <15              |
|            | 12:15  | <15              | 12:18     | 21.20            | 12:08       | 27.00            | 12:21              | <15              |
|            | 15:18  | <15              | 15:15     | 21.20            | 15:07       | 27.40            | 15:03              | <15              |
| 10/27/2022 | 10:00  | <15              | 10:03     | 23.90            | 10:10       | 27.50            | 10:17              | <15              |
|            | 13:04  | <15              | 13:07     | 24.60            | 13:00       | 27.40            | 12:56              | <15              |

*Technical Memorandum: Water Supply, Treatment and Distribution November 30, 2022 Page - 5* 

|            | 1716 Rout 212* |                  | 11 Osnas* |                  | 71 Raybrook** |                  | 109 Cottontail Ln* |                  |
|------------|----------------|------------------|-----------|------------------|---------------|------------------|--------------------|------------------|
| Date       | Time           | Water Level (ft) | Time      | Water Level (ft) | Time          | Water Level (ft) | Time               | Water Level (ft) |
| 10/17/2022 |                | <15              |           | <15              |               |                  |                    |                  |
|            | 11:36          | <15              |           | <15              |               |                  |                    | <15              |
| 10/18/2022 | 7:36           | <15              | 7:40      | <15              | 9:45          |                  | 8:00               | <15              |
|            | 9:56           | <15              | 9:51      | <15              | 13:16         |                  | 9:40               | <15              |
|            | 13:00          | <15              | 13:11     | <15              |               |                  | 13:21              | <15              |
| 10/19/2022 | 8:31           | <15              | 8:40      | <15              | 8:48          | 29.30            | 8:54               | <15              |
|            | 10:30          | <15              | 10:40     | <15              | 10:46         |                  | 10:51              | <15              |
|            | 12:35          | <15              | 12:40     | <15              | 12:43         |                  | 12:45              | <15              |
|            | 15:29          | <15              | 15:33     | <15              | 15:24         |                  | 15:20              | <15              |
| 10/20/2022 |                | <15              |           | <15              |               |                  |                    | <15              |
|            |                | <15              |           | <15              |               |                  |                    | <15              |

Lot 23 72-bour Pump Test - Neighborhood Well Level Monitoring

| 1716 Rout 212* |       | 11 Osnas*        |       | 71 Raybrook      |       | 109 Cottontail Ln* |       |                  |
|----------------|-------|------------------|-------|------------------|-------|--------------------|-------|------------------|
| Date           | Time  | Water Level (ft) | Time  | Water Level (ft) | Time  | Water Level (ft)   | Time  | Water Level (ft) |
| 10/31/2022     | 9:12  | <15              | 9:17  | 17.2             | 9:12  | 29.10              | 9:25  | <15              |
|                | 11:14 | <15              | 11:17 | <15              | 11:09 | 29.10              | 11:23 | <15              |
|                | 13:16 | <15              | 13:19 | <15              | 13:10 | 28.90              | 13:24 | <15              |
| 11/1/2022      | 8:30  | <15              | 8:37  | <15              | 8:37  | 29.30              | 8:40  | <15              |
|                | 10:22 | <15              | 10:24 | <15              | 10:08 | 29.30              | 10:27 | <15              |
|                | 12:25 | <15              | 12:28 | <15              | 12:32 | 29.20              | 12:35 | <15              |
|                | 15:11 | <15              | 15:09 | <15              | 15:00 | 29.30              | 14:58 | <15              |
| 11/2/2022      | 8:26  | <15              | 8:30  | <15              | 8:38  | 29.70              | 8:41  | <15              |
|                | 10:17 | <15              | 10:20 | <15              | 10:26 | 29.70              | 10:30 | <15              |
|                | 12:19 | <15              | 12:21 | 15               | 12:28 | 29.80              | 12:32 | <15              |
|                | 15:11 | <15              | 15:14 | <15              | 15:10 | 29.7               | 15:07 | <15              |

\*<15 feet water level indicates the water level was observed visually due to shallow depth. No significant changes in water level observed</p>

#### WELL WATER CONVEYANCE AND TREATMENT

The wells will be equipped with submersible well pumps which will pump the groundwater from the wells to the maintenance building which will house the treatment, disinfection, storage, and pressure maintenance equipment. The well water lines will be HDPE pipeline.

Well water was be collected and sampled per the Ulster County DOH/NYSDOH requirements during the well yield testing to determine the raw water quality. Results of the sampling and water quality testing per NYSDOH requirements determine the final treatment requirements. Analytical results from two of the three wells are attached to this memo. Analytical results from the third well has not been finalized. Results of the testing available at two wells indicate that various forms of filtration will be required to address turbidity, iron, and manganese. The filtered water will be disinfected per the requirements of the NYSDOH/UCDOH. Analytical results for PFOA and PFOS showed detections of the compounds, but at concentrations below the New York State maximum contaminant level.

#### POTABLE WATER DISTRIBUTION

Potable water will be distributed throughout the proposed development through small

*Technical Memorandum: Water Supply, Treatment and Distribution November 30, 2022 Page - 6* 

diameter HDPE waterlines. Adequate pressure will be maintained in the distribution system using booster pumps and pressure tanks at the maintenance building.

#### **PERMITTING**

The design for the source, treatment and distribution systems will be submitted to the UCDOH for review and approval.



#### ANALYTICAL REPORT

|   | Lab Number:     | L2260165                                                          |
|---|-----------------|-------------------------------------------------------------------|
|   | Client:         | C.T. Male Associates<br>50 Century Hill Drive<br>Latham, NY 12110 |
|   | ATTN:<br>Phone: | Jonathan Dippert<br>(518) 786-7400                                |
|   | Project Name:   | TERRAMOR                                                          |
|   | Project Number: | 22.2186                                                           |
|   | Report Date:    | 11/21/22                                                          |
| I | 4               |                                                                   |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

| Alpha<br>Sample ID | Client ID    | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|--------------|--------|--------------------|-------------------------|--------------|
| L2260165-01        | LOT-1-221027 | WATER  | SAUGERTIES,NY      | 10/27/22 11:10          | 10/27/22     |
| L2260165-02        | FB01-221027  | DW     | SAUGERTIES,NY      | 10/27/22 11:00          | 10/27/22     |
| L2260165-03        | TRIP BLANK   | DW     | SAUGERTIES,NY      | 10/27/22 00:00          | 10/27/22     |

Project Name: TERRAMOR Project Number: 22.2186 
 Lab Number:
 L2260165

 Report Date:
 11/21/22

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: TERRAMOR Project Number: 22.2186 
 Lab Number:
 L2260165

 Report Date:
 11/21/22

#### **Case Narrative (continued)**

#### **Report Submission**

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analyses of Asbestos, Uranium, Radium-226, Radium-228, Gross Alpha, Gross Beta, EPA 531.1, EPA 552.2, EPA 549.2, EPA 548.1, EPA 547, EPA 505, EPA 525.2, Bromate, Chlorite, and EPA 515.3 were subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

#### Sample Receipt

L2260165-01: The sample was received above the appropriate pH for the 1,4-Dioxane by EPA 522 analysis. The analysis was performed at the client's request.

#### Volatile Organics by Method 524.2

The WG1706698-3 LCS recoveries, associated with L2260165-01 and -03, are above the acceptance criteria for dichlorodifluoromethane (195%) and chloromethane (132%); however, the associated samples are nondetect to the RL for these target analytes. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Willelle M. Unonig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/21/22



## ORGANICS



## VOLATILES



|                    |                |                | Serial_No         | :11212218:55   |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2260165       |
| Project Number:    | 22.2186        |                | Report Date:      | 11/21/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2260165-01    |                | Date Collected:   | 10/27/22 11:10 |
| Client ID:         | LOT-1-221027   |                | Date Received:    | 10/27/22       |
| Sample Location:   | SAUGERTIES,NY  |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | l: EPA 504.1   |
| Analytical Method: | 14,504.1       |                | Extraction Date:  | 11/04/22 11:18 |
| Analytical Date:   | 11/04/22 12:42 |                |                   |                |
| Analyst:           | AMM            |                |                   |                |
| -                  |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                            | Result | Qualifier | Units | RL    | MDL   | Dilution Factor | Column |
|--------------------------------------|--------|-----------|-------|-------|-------|-----------------|--------|
| Microextractables by GC - Westboroug | n Lab  |           |       |       |       |                 |        |
| 1,2-Dibromoethane                    | ND     |           | ug/l  | 0.010 | 0.005 | 1               | A      |
| 1,2-Dibromo-3-chloropropane          | ND     |           | ug/l  | 0.010 | 0.003 | 1               | А      |
| 1,2,3-Trichloropropane               | ND     |           | ug/l  | 0.030 | 0.020 | 1               | А      |



|                                                                                |                                              |                | Serial_No                                        | 0:11212218:55                               |
|--------------------------------------------------------------------------------|----------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | TERRAMOR                                     |                | Lab Number:                                      | L2260165                                    |
| Project Number:                                                                | 22.2186                                      |                | Report Date:                                     | 11/21/22                                    |
|                                                                                |                                              | SAMPLE RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2260165-01<br>LOT-1-221027<br>SAUGERTIES,NY |                | Date Collected:<br>Date Received:<br>Field Prep: | 10/27/22 11:10<br>10/27/22<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Dw<br>16,524.2<br>10/28/22 14:50<br>GMT      |                |                                                  |                                             |

| Parameter                         | Result      | Qualifier | Units | RL   | MDL  | Dilution Factor |
|-----------------------------------|-------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - West | oorough Lab |           |       |      |      |                 |
| Dichlorodifluoromethane           | ND          |           | ug/l  | 0.50 | 0.16 | 1               |
| Chloromethane                     | ND          |           | ug/l  | 0.50 | 0.26 | 1               |
| Vinyl chloride                    | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| Bromomethane                      | ND          |           | ug/l  | 0.50 | 0.22 | 1               |
| Chloroethane                      | ND          |           | ug/l  | 0.50 | 0.18 | 1               |
| Trichlorofluoromethane            | ND          |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloroethene                | ND          |           | ug/l  | 0.50 | 0.15 | 1               |
| Methylene chloride                | ND          |           | ug/l  | 0.50 | 0.26 | 1               |
| Methyl tert butyl ether           | ND          |           | ug/l  | 0.50 | 0.13 | 1               |
| trans-1,2-Dichloroethene          | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| 1,1-Dichloroethane                | ND          |           | ug/l  | 0.50 | 0.16 | 1               |
| 2,2-Dichloropropane               | ND          |           | ug/l  | 0.50 | 0.17 | 1               |
| cis-1,2-Dichloroethene            | ND          |           | ug/l  | 0.50 | 0.17 | 1               |
| Chloroform                        | ND          |           | ug/l  | 0.50 | 0.15 | 1               |
| Bromochloromethane                | ND          |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1,1-Trichloroethane             | ND          |           | ug/l  | 0.50 | 0.16 | 1               |
| 1,1-Dichloropropene               | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| Carbon tetrachloride              | ND          |           | ug/l  | 0.50 | 0.18 | 1               |
| 1,2-Dichloroethane                | ND          |           | ug/l  | 0.50 | 0.15 | 1               |
| Benzene                           | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| Trichloroethene                   | ND          |           | ug/l  | 0.50 | 0.22 | 1               |
| 1,2-Dichloropropane               | ND          |           | ug/l  | 0.50 | 0.18 | 1               |
| Bromodichloromethane              | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| Dibromomethane                    | ND          |           | ug/l  | 0.50 | 0.17 | 1               |
| cis-1,3-Dichloropropene           | ND          |           | ug/l  | 0.50 | 0.20 | 1               |
| Toluene                           | ND          |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene         | ND          |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane             | ND          |           | ug/l  | 0.50 | 0.24 | 1               |



|                                                         |                                              |      |            |      | ç                                 | Serial_No | 0:11212218:55                               |  |
|---------------------------------------------------------|----------------------------------------------|------|------------|------|-----------------------------------|-----------|---------------------------------------------|--|
| Project Name:                                           | TERRAMOR                                     |      |            |      | Lab Nu                            | mber:     | L2260165                                    |  |
| Project Number:                                         | 22.2186                                      |      |            |      | Report                            | Date:     | 11/21/22                                    |  |
|                                                         | · • • • •                                    | SAMP | LE RESULTS | 5    |                                   |           |                                             |  |
| Lab ID:<br>Client ID:<br>Sample Location:               | L2260165-01<br>LOT-1-221027<br>SAUGERTIES,NY |      |            |      | Date Col<br>Date Rec<br>Field Pre | ceived:   | 10/27/22 11:10<br>10/27/22<br>Not Specified |  |
| Sample Depth:                                           |                                              |      |            |      |                                   |           |                                             |  |
| Parameter Result Qualifier Units RL MDL Dilution Factor |                                              |      |            |      |                                   |           |                                             |  |
| Volatile Organics b                                     | Volatile Organics by GC/MS - Westborough Lab |      |            |      |                                   |           |                                             |  |
| · · · · · · · · · · · · ·                               | ,                                            |      |            |      |                                   |           |                                             |  |
| 1,3-Dichloropropane                                     |                                              | ND   |            | ug/l | 0.50                              | 0.22      | 1                                           |  |
| Tetrachloroethene                                       |                                              | ND   |            | ug/l | 0.50                              | 0.24      | 1                                           |  |
| Dibromochloromethane                                    |                                              | ND   |            | ug/l | 0.50                              | 0.12      | 1                                           |  |
| 1,2-Dibromoethane                                       |                                              | ND   |            | ug/l | 0.50                              | 0.24      | 1                                           |  |
| Chlorobenzene                                           |                                              | ND   |            | ug/l | 0.50                              | 0.16      | 1                                           |  |
| 1,1,1,2-Tetrachloroethane                               | e                                            | ND   |            | ug/l | 0.50                              | 0.19      | 1                                           |  |
| Ethylbenzene                                            |                                              | ND   |            | ug/l | 0.50                              | 0.13      | 1                                           |  |
| p/m-Xylene                                              |                                              | ND   |            | ug/l | 0.50                              | 0.30      | 1                                           |  |
| o-Xylene                                                |                                              | ND   |            | ug/l | 0.50                              | 0.19      | 1                                           |  |
| Styrene                                                 |                                              | ND   |            | ug/l | 0.50                              | 0.16      | 1                                           |  |
| Isopropylbenzene                                        |                                              | ND   |            | ug/l | 0.50                              | 0.13      | 1                                           |  |
| Bromoform                                               |                                              | ND   |            | ug/l | 0.50                              | 0.25      | 1                                           |  |
| 1,1,2,2-Tetrachloroethane                               | e                                            | ND   |            | ug/l | 0.50                              | 0.14      | 1                                           |  |
| 1,2,3-Trichloropropane                                  |                                              | ND   |            | ug/l | 0.50                              | 0.24      | 1                                           |  |
| Xylenes, Total <sup>1</sup>                             |                                              | ND   |            | ug/l | 0.50                              | 0.19      | 1                                           |  |
| n-Propylbenzene                                         |                                              | ND   |            | ug/l | 0.50                              | 0.14      | 1                                           |  |
| Bromobenzene                                            |                                              | ND   |            | ug/l | 0.50                              | 0.13      | 1                                           |  |
| 1,3,5-Trimethylbenzene                                  |                                              | ND   |            | ug/l | 0.50                              | 0.15      | 1                                           |  |
| o-Chlorotoluene                                         |                                              | ND   |            | ug/l | 0.50                              | 0.17      | 1                                           |  |
| p-Chlorotoluene                                         |                                              | ND   |            | ug/l | 0.50                              | 0.15      | 1                                           |  |
| tert-Butylbenzene                                       |                                              | ND   |            | ug/l | 0.50                              | 0.14      | 1                                           |  |
| 1,2,4-Trimethylbenzene                                  |                                              | ND   |            | ug/l | 0.50                              | 0.13      | 1                                           |  |
| sec-Butylbenzene                                        |                                              | ND   |            | ug/l | 0.50                              | 0.11      | 1                                           |  |
| p-Isopropyltoluene                                      |                                              | ND   |            | ug/l | 0.50                              | 0.12      | 1                                           |  |
| 1,3-Dichlorobenzene                                     |                                              | ND   |            | ug/l | 0.50                              | 0.17      | 1                                           |  |
| 1,4-Dichlorobenzene                                     |                                              | ND   |            | ug/l | 0.50                              | 0.18      | 1                                           |  |
| n-Butylbenzene                                          |                                              | ND   |            | ug/l | 0.50                              | 0.25      | 1                                           |  |
| 1,2-Dichlorobenzene                                     |                                              | ND   |            | ug/l | 0.50                              | 0.16      | 1                                           |  |
| 1,2-Dibromo-3-chloroprop                                | bane                                         | ND   |            | ug/l | 0.50                              | 0.29      | 1                                           |  |
| 1,2,4-Trichlorobenzene                                  |                                              | ND   |            | ug/l | 0.50                              | 0.12      | 1                                           |  |
| Hexachlorobutadiene                                     |                                              | ND   |            | ug/l | 0.50                              | 0.15      | 1                                           |  |
| Naphthalene                                             |                                              | ND   |            | ug/l | 0.50                              | 0.14      | 1                                           |  |
| 1,2,3-Trichlorobenzene                                  |                                              | ND   |            | ug/l | 0.50                              | 0.17      | 1                                           |  |
|                                                         |                                              |      |            | -    |                                   |           |                                             |  |



|                     |                       |        |           |            | Se          | erial_No | 5:11212218:55          |
|---------------------|-----------------------|--------|-----------|------------|-------------|----------|------------------------|
| Project Name:       | TERRAMOR              |        |           |            | Lab Num     | ber:     | L2260165               |
| Project Number:     | 22.2186               |        |           |            | Report D    | ate:     | 11/21/22               |
|                     |                       | SAMP   | LE RESULT | S          |             |          |                        |
| Lab ID:             | L2260165-01           |        |           |            | Date Colle  | cted:    | 10/27/22 11:10         |
| Client ID:          | LOT-1-221027          |        |           |            | Date Rece   | ived:    | 10/27/22               |
| Sample Location:    | SAUGERTIES,NY         |        |           |            | Field Prep: |          | Not Specified          |
| Sample Depth:       |                       |        |           |            |             |          |                        |
| Parameter           |                       | Result | Qualifier | Units      | RL          | MDL      | <b>Dilution Factor</b> |
| Volatile Organics b | y GC/MS - Westborough | Lab    |           |            |             |          |                        |
|                     |                       |        |           |            |             |          | _                      |
| Surrogate           |                       |        |           | % Recovery | Qualifier   |          | ceptance<br>Criteria   |
| 1,2-Dichlorobenze   | ne-d4                 |        |           | 104        |             |          | 80-120                 |

85

4-Bromofluorobenzene



80-120

|                    |                |                | Serial_No         | :11212218:55   |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2260165       |
| Project Number:    | 22.2186        |                | Report Date:      | 11/21/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2260165-03    |                | Date Collected:   | 10/27/22 00:00 |
| Client ID:         | TRIP BLANK     |                | Date Received:    | 10/27/22       |
| Sample Location:   | SAUGERTIES,NY  |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | l: EPA 504.1   |
| Analytical Method: | 14,504.1       |                | Extraction Date:  | 11/04/22 11:18 |
| Analytical Date:   | 11/04/22 12:53 |                |                   |                |
| Analyst:           | AMM            |                |                   |                |
| -                  |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                            | Result | Qualifier | Units | RL    | MDL   | <b>Dilution Factor</b> | Column |
|--------------------------------------|--------|-----------|-------|-------|-------|------------------------|--------|
| Microextractables by GC - Westboroug | h Lab  |           |       |       |       |                        |        |
| 1,2-Dibromoethane                    | ND     |           | ug/l  | 0.010 | 0.005 | 1                      | A      |
| 1,2-Dibromo-3-chloropropane          | ND     |           | ug/l  | 0.010 | 0.003 | 1                      | А      |
| 1,2,3-Trichloropropane               | ND     |           | ug/l  | 0.030 | 0.020 | 1                      | А      |



|                    |                |                | Serial_N        | o:11212218:55  |
|--------------------|----------------|----------------|-----------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:     | L2260165       |
| Project Number:    | 22.2186        |                | Report Date:    | 11/21/22       |
|                    |                | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2260165-03    |                | Date Collected: | 10/27/22 00:00 |
| Client ID:         | TRIP BLANK     |                | Date Received:  | 10/27/22       |
| Sample Location:   | SAUGERTIES,NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                |                |                 |                |
| Matrix:            | Dw             |                |                 |                |
| Analytical Method: | 16,524.2       |                |                 |                |
| Analytical Date:   | 10/28/22 15:19 |                |                 |                |
| Analyst:           | GMT            |                |                 |                |
|                    |                |                |                 |                |

| Parameter                                    | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |  |
|----------------------------------------------|--------|-----------|-------|------|------|-----------------|--|--|
| Volatile Organics by GC/MS - Westborough Lab |        |           |       |      |      |                 |  |  |
| Dichlorodifluoromethane                      | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |
| Chloromethane                                | ND     |           | ug/l  | 0.50 | 0.26 | 1               |  |  |
| Vinyl chloride                               | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| Bromomethane                                 | ND     |           | ug/l  | 0.50 | 0.22 | 1               |  |  |
| Chloroethane                                 | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |
| Trichlorofluoromethane                       | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |
| 1,1-Dichloroethene                           | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |
| Methylene chloride                           | ND     |           | ug/l  | 0.50 | 0.26 | 1               |  |  |
| Methyl tert butyl ether                      | ND     |           | ug/l  | 0.50 | 0.13 | 1               |  |  |
| trans-1,2-Dichloroethene                     | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| 1,1-Dichloroethane                           | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |
| 2,2-Dichloropropane                          | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |
| cis-1,2-Dichloroethene                       | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |
| Chloroform                                   | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |
| Bromochloromethane                           | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |
| 1,1,1-Trichloroethane                        | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |
| 1,1-Dichloropropene                          | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| Carbon tetrachloride                         | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |
| 1,2-Dichloroethane                           | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |
| Benzene                                      | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| Trichloroethene                              | ND     |           | ug/l  | 0.50 | 0.22 | 1               |  |  |
| 1,2-Dichloropropane                          | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |
| Bromodichloromethane                         | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| Dibromomethane                               | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |
| cis-1,3-Dichloropropene                      | ND     |           | ug/l  | 0.50 | 0.20 | 1               |  |  |
| Toluene                                      | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| trans-1,3-Dichloropropene                    | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |
| 1,1,2-Trichloroethane                        | ND     |           | ug/l  | 0.50 | 0.24 | 1               |  |  |

| TetrachloroetheneNDug/l0.500.24DibromochloromethaneNDug/l0.500.121,2-DibromoethaneNDug/l0.500.24ChlorobenzeneNDug/l0.500.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /22<br>2 00:00<br>2<br>cified                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| SAMPLE RESULTSLab ID:L2260165-03Date Collected:10/27/22Client ID:TRIP BLANKDate Received:10/27/22Sample Location:SAUGERTIES,NYField Prep:Not SpectorSample Depth:ParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough Lab1,3-DichloropropaneNDug/l0.500.2210/27/221,3-DichloropropaneNDug/l0.500.2410/27/22TetrachloroetheneNDug/l0.500.2410/27/22DibromochloromethaneNDug/l0.500.2410/27/221,2-DibromoethaneNDug/l0.500.2410/27/22ChlorobenzeneNDug/l0.500.1610/27/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 00:00<br>2<br>ecified<br>Factor<br>1<br>1<br>1 |
| SAMPLE RESULTSLab ID:L2260165-03Date Collected:10/27/22Client ID:TRIP BLANKDate Received:10/27/22Sample Location:SAUGERTIES,NYField Prep:Not SpeSample Depth:1,3-DichloropropaneNDug/l0.500.221,3-DichloropropaneNDug/l0.500.24TetrachloroetheneNDug/l0.500.12DibromochloromethaneNDug/l0.500.24LiotobenzeneNDug/l0.500.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 00:00<br>2<br>ecified<br>Factor<br>1<br>1<br>1 |
| Client ID:<br>Sample Location:TRIP BLANK<br>SAUGERTIES,NYDate Received:<br>Field Prep:10/27/27<br>Not SpectSample Depth:ResultQualifierUnitsRLMDLDilutionParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough LabNDug/l0.500.22Output1,3-DichloropropaneNDug/l0.500.24OutputDibromochloromethaneNDug/l0.500.24Output1,2-DibromoethaneNDug/l0.500.24OutputChlorobenzeneNDug/l0.500.24OutputNDug/l0.500.24OutputOutputNDug/l0.500.24OutputNDug/l0.500.24OutputNDug/l0.500.24OutputNDug/l0.500.24OutputNDug/l0.500.16OutputNDug/l0.500.16Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2<br>cified<br>Factor<br>1<br>1<br>1             |
| Sample Location:SAUGERTIES,NYField Prep:Not SpectraSample Depth:ParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough LabNDug/l0.500.22Image: Comparison of the comparison of | Factor<br>1<br>1<br>1                            |
| Sample Depth:ParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough Lab1,3-DichloropropaneNDug/l0.500.22TetrachloroetheneNDug/l0.500.24DibromochloromethaneNDug/l0.500.121,2-DibromoethaneNDug/l0.500.24ChlorobenzeneNDug/l0.500.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>Factor</b> 1 1 1 1                            |
| ParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough Lab1,3-DichloropropaneNDug/l0.500.221TetrachloroetheneNDug/l0.500.241DibromochloromethaneNDug/l0.500.1211,2-DibromoethaneNDug/l0.500.241ChlorobenzeneNDug/l0.500.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>1                                      |
| ParameterResultQualifierUnitsRLMDLDilutionVolatile Organics by GC/MS - Westborough Lab1,3-DichloropropaneNDug/l0.500.221TetrachloroetheneNDug/l0.500.241DibromochloromethaneNDug/l0.500.1211,2-DibromoethaneNDug/l0.500.241ChlorobenzeneNDug/l0.500.241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>1<br>1                                      |
| 1,3-Dichloropropane     ND     ug/l     0.50     0.22       Tetrachloroethene     ND     ug/l     0.50     0.24       Dibromochloromethane     ND     ug/l     0.50     0.12       1,2-Dibromoethane     ND     ug/l     0.50     0.24       Chlorobenzene     ND     ug/l     0.50     0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                |
| TetrachloroetheneNDug/l0.500.24DibromochloromethaneNDug/l0.500.121,2-DibromoethaneNDug/l0.500.24ChlorobenzeneNDug/l0.500.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |
| Tetrachloroethene         ND         ug/l         0.50         0.24           Dibromochloromethane         ND         ug/l         0.50         0.12           1,2-Dibromoethane         ND         ug/l         0.50         0.24           Chlorobenzene         ND         ug/l         0.50         0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                |
| Dibromochloromethane         ND         ug/l         0.50         0.12           1,2-Dibromoethane         ND         ug/l         0.50         0.24           Chlorobenzene         ND         ug/l         0.50         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                  |
| ND         ug/l         0.50         0.24           Chlorobenzene         ND         ug/l         0.50         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |
| Chlorobenzene ND ug/l 0.50 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
| Ethylbenzene ND ug/l 0.50 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                |
| Isopropylbenzene ND ug/l 0.50 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                |
| Bromoform ND ug/l 0.50 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |
| 1,1,2,2-Tetrachloroethane ND ug/l 0.50 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                |
| 1,2,3-Trichloropropane ND ug/l 0.50 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
| Xylenes, Total <sup>1</sup> ND ug/l 0.50 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                |
| n-Propylbenzene ND ug/l 0.50 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                |
| Bromobenzene ND ug/l 0.50 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                |
| 1,3,5-Trimethylbenzene ND ug/l 0.50 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
| o-Chlorotoluene ND ug/l 0.50 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                |
| p-Chlorotoluene ND ug/l 0.50 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                |
| tert-Butylbenzene ND ug/l 0.50 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                |
| 1,2,4-Trimethylbenzene ND ug/l 0.50 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
| sec-Butylbenzene ND ug/l 0.50 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                |
| p-Isopropyltoluene ND ug/l 0.50 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                |
| 1,3-Dichlorobenzene ND ug/l 0.50 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |
| 1,4-Dichlorobenzene ND ug/l 0.50 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |
| n-Butylbenzene ND ug/l 0.50 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                |
| 1,2-Dichlorobenzene ND ug/l 0.50 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |
| 1,2-Dibromo-3-chloropropane ND ug/l 0.50 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                |
| 1,2,4-Trichlorobenzene ND ug/l 0.50 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                |
| Hexachlorobutadiene ND ug/l 0.50 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                |
| Naphthalene ND ug/l 0.50 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                |
| 1,2,3-Trichlorobenzene ND ug/l 0.50 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                  |



|                     |                       |        |           |            | Se          | rial_No | p:11212218:55        |
|---------------------|-----------------------|--------|-----------|------------|-------------|---------|----------------------|
| Project Name:       | TERRAMOR              |        |           |            | Lab Num     | ber:    | L2260165             |
| Project Number:     | 22.2186               |        |           |            | Report D    | ate:    | 11/21/22             |
|                     |                       | SAMP   | LE RESULT | S          |             |         |                      |
| Lab ID:             | L2260165-03           |        |           |            | Date Colle  | cted:   | 10/27/22 00:00       |
| Client ID:          | TRIP BLANK            |        |           |            | Date Rece   | ived:   | 10/27/22             |
| Sample Location:    | SAUGERTIES,NY         |        |           |            | Field Prep: |         | Not Specified        |
| Sample Depth:       |                       |        |           |            |             |         |                      |
| Parameter           |                       | Result | Qualifier | Units      | RL          | MDL     | Dilution Factor      |
| Volatile Organics b | y GC/MS - Westborough | Lab    |           |            |             |         |                      |
|                     |                       |        |           |            |             |         | _                    |
| Surrogate           |                       |        |           | % Recovery | Qualifier   |         | ceptance<br>Criteria |
| 1,2-Dichlorobenze   | ne-d4                 |        |           | 104        |             |         | 80-120               |

90

4-Bromofluorobenzene



80-120

Project Name: TERRAMOR

Project Number: 22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

#### Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| arameter                      | Result          | Qualifier Unit | s RL         | MDL         |
|-------------------------------|-----------------|----------------|--------------|-------------|
| olatile Organics by GC/MS - V | Vestborough Lab | for sample(s): | 01,03 Batch: | WG1706698-4 |
| Dichlorodifluoromethane       | ND              | ug/            | 1 0.50       | 0.16        |
| Chloromethane                 | ND              | ug/            | 1 0.50       | 0.26        |
| Vinyl chloride                | ND              | ug/            | 1 0.50       | 0.19        |
| Bromomethane                  | ND              | ug/            | íl 0.50      | 0.22        |
| Chloroethane                  | ND              | ug/            | íl 0.50      | 0.18        |
| Trichlorofluoromethane        | ND              | ug/            | 1 0.50       | 0.14        |
| 1,1-Dichloroethene            | ND              | ug/            | íl 0.50      | 0.15        |
| Methylene chloride            | ND              | ug/            | íl 0.50      | 0.26        |
| Methyl tert butyl ether       | ND              | ug/            | 1 0.50       | 0.13        |
| trans-1,2-Dichloroethene      | ND              | ug/            | 1 0.50       | 0.19        |
| 1,1-Dichloroethane            | ND              | ug/            | íl 0.50      | 0.16        |
| 2,2-Dichloropropane           | ND              | ug/            | íl 0.50      | 0.17        |
| cis-1,2-Dichloroethene        | ND              | ug/            | 1 0.50       | 0.17        |
| Chloroform                    | ND              | ug/            | 1 0.50       | 0.15        |
| Bromochloromethane            | ND              | ug/            | íl 0.50      | 0.14        |
| 1,1,1-Trichloroethane         | ND              | ug/            | 1 0.50       | 0.16        |
| 1,1-Dichloropropene           | ND              | ug/            | 1 0.50       | 0.19        |
| Carbon tetrachloride          | ND              | ug/            | 1 0.50       | 0.18        |
| 1,2-Dichloroethane            | ND              | ug/            | 1 0.50       | 0.15        |
| Benzene                       | ND              | ug/            | 1 0.50       | 0.19        |
| Trichloroethene               | ND              | ug/            | 1 0.50       | 0.22        |
| 1,2-Dichloropropane           | ND              | ug/            | 1 0.50       | 0.18        |
| Bromodichloromethane          | ND              | ug/            | íl 0.50      | 0.19        |
| Dibromomethane                | ND              | ug/            | 1 0.50       | 0.17        |
| cis-1,3-Dichloropropene       | ND              | ug/            | íl 0.50      | 0.20        |
| Toluene                       | ND              | ug/            | íl 0.50      | 0.19        |
| trans-1,3-Dichloropropene     | ND              | ug/            | íl 0.50      | 0.15        |
| 1,1,2-Trichloroethane         | ND              | ug/            | íl 0.50      | 0.24        |
| 1,3-Dichloropropane           | ND              | ug/            | 1 0.50       | 0.22        |



Project Name: TERRAMOR

Project Number: 22.2186

# Lab Number: L2260165 Report Date: 11/21/22

#### Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| Parameter                   | Result          | Qualifier Units      | RL       | MDL         |
|-----------------------------|-----------------|----------------------|----------|-------------|
| olatile Organics by GC/MS - | Westborough Lab | for sample(s): 01,02 | 3 Batch: | WG1706698-4 |
| Tetrachloroethene           | ND              | ug/l                 | 0.50     | 0.24        |
| Dibromochloromethane        | ND              | ug/l                 | 0.50     | 0.12        |
| 1,2-Dibromoethane           | ND              | ug/l                 | 0.50     | 0.24        |
| Chlorobenzene               | ND              | ug/l                 | 0.50     | 0.16        |
| 1,1,1,2-Tetrachloroethane   | ND              | ug/l                 | 0.50     | 0.19        |
| Ethylbenzene                | ND              | ug/l                 | 0.50     | 0.13        |
| p/m-Xylene                  | ND              | ug/l                 | 0.50     | 0.30        |
| o-Xylene                    | ND              | ug/l                 | 0.50     | 0.19        |
| Styrene                     | ND              | ug/l                 | 0.50     | 0.16        |
| Isopropylbenzene            | ND              | ug/l                 | 0.50     | 0.13        |
| Bromoform                   | ND              | ug/l                 | 0.50     | 0.25        |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/l                 | 0.50     | 0.14        |
| Xylenes, Total <sup>1</sup> | ND              | ug/l                 | 0.50     | 0.19        |
| 1,2,3-Trichloropropane      | ND              | ug/l                 | 0.50     | 0.24        |
| n-Propylbenzene             | ND              | ug/l                 | 0.50     | 0.14        |
| Bromobenzene                | ND              | ug/l                 | 0.50     | 0.13        |
| 1,3,5-Trimethylbenzene      | ND              | ug/l                 | 0.50     | 0.15        |
| o-Chlorotoluene             | ND              | ug/l                 | 0.50     | 0.17        |
| p-Chlorotoluene             | ND              | ug/l                 | 0.50     | 0.15        |
| tert-Butylbenzene           | ND              | ug/l                 | 0.50     | 0.14        |
| 1,2,4-Trimethylbenzene      | ND              | ug/l                 | 0.50     | 0.13        |
| sec-Butylbenzene            | ND              | ug/l                 | 0.50     | 0.11        |
| p-Isopropyltoluene          | ND              | ug/l                 | 0.50     | 0.12        |
| 1,3-Dichlorobenzene         | ND              | ug/l                 | 0.50     | 0.17        |
| 1,4-Dichlorobenzene         | ND              | ug/l                 | 0.50     | 0.18        |
| n-Butylbenzene              | ND              | ug/l                 | 0.50     | 0.25        |
| 1,2-Dichlorobenzene         | ND              | ug/l                 | 0.50     | 0.16        |
| 1,2-Dibromo-3-chloropropane | ND              | ug/l                 | 0.50     | 0.29        |
| 1,2,4-Trichlorobenzene      | ND              | ug/l                 | 0.50     | 0.12        |



 Lab Number:
 L2260165

 Report Date:
 11/21/22

Project Name: TERRAMOR

Project Number: 22.2186

#### Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| Parameter                      | Result Qu           | ualifier Units   | RL     | MDL         |
|--------------------------------|---------------------|------------------|--------|-------------|
| /olatile Organics by GC/MS - \ | Nestborough Lab for | sample(s): 01,03 | Batch: | WG1706698-4 |
| Hexachlorobutadiene            | ND                  | ug/l             | 0.50   | 0.15        |
| Naphthalene                    | ND                  | ug/l             | 0.50   | 0.14        |
| 1,2,3-Trichlorobenzene         | ND                  | ug/l             | 0.50   | 0.17        |

| Surrogate              | %Recovery | Acceptance<br>Criteria |
|------------------------|-----------|------------------------|
| 1,2-Dichlorobenzene-d4 | 102       | 80-120                 |
| 4-Bromofluorobenzene   | 87        | 80-120                 |



Serial\_No:11212218:55

| Project Name:   | TERRAMOR |                       | Lab Number:  | L2260165 |
|-----------------|----------|-----------------------|--------------|----------|
| Project Number: | 22.2186  |                       | Report Date: | 11/21/22 |
|                 |          | Method Blank Analysis |              |          |

## Batch Quality Control

| Analytical Method: | 14,504.1       | Extraction Method: | EPA 504.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 11/04/22 12:12 | Extraction Date:   | 11/04/22 11:18 |
| Analyst:           | AMM            |                    |                |

| Parameter                        | Result       | Qualifier    | Units   | RL     | MDL         |   |
|----------------------------------|--------------|--------------|---------|--------|-------------|---|
| Microextractables by GC - Westbo | rough Lab fo | or sample(s) | : 01,03 | Batch: | WG1708211-1 |   |
| 1,2-Dibromoethane                | ND           |              | ug/l    | 0.010  | 0.005       | А |
| 1,2-Dibromo-3-chloropropane      | ND           |              | ug/l    | 0.010  | 0.003       | A |
| 1,2,3-Trichloropropane           | ND           |              | ug/l    | 0.030  | 0.020       | А |



**Batch Quality Control** 

Project Name: TERRAMOR Project Number: 22.2186 Lab Number: L2260165 Report Date: 11/21/22

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03 Batch: WG1706698-3 Dichlorodifluoromethane Q 70-130 20 195 --Q Chloromethane 132 70-130 20 --Vinyl chloride 100 70-130 20 --Bromomethane 92 70-130 20 --Chloroethane 95 70-130 20 --Trichlorofluoromethane 90 70-130 20 --95 70-130 20 1.1-Dichloroethene --Methylene chloride 85 70-130 20 --Methyl tert butyl ether 78 70-130 20 \_ trans-1,2-Dichloroethene 90 70-130 20 --20 1,1-Dichloroethane 85 70-130 --20 2,2-Dichloropropane 95 70-130 -cis-1,2-Dichloroethene 85 70-130 20 --70-130 20 Chloroform 85 --Bromochloromethane 112 70-130 20 --1,1,1-Trichloroethane 98 70-130 20 --1,1-Dichloropropene 92 70-130 20 --Carbon tetrachloride 70-130 20 102 --70-130 20 1,2-Dichloroethane 98 --Benzene 98 70-130 20 --Trichloroethene 92 70-130 20 \_ -20 1,2-Dichloropropane 105 70-130 --100 20 Bromodichloromethane 70-130 --



Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186 Lab Number: L2260165 Report Date: 11/21/22

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03 Batch: WG1706698-3 Dibromomethane 88 70-130 20 -cis-1,3-Dichloropropene 88 70-130 20 --Toluene 90 70-130 20 -trans-1,3-Dichloropropene 88 70-130 20 --85 70-130 20 1,1,2-Trichloroethane --1,3-Dichloropropane 90 70-130 20 --Tetrachloroethene 98 70-130 20 --Dibromochloromethane 88 70-130 20 --1,2-Dibromoethane 82 70-130 20 \_ -20 Chlorobenzene 105 70-130 --20 1,1,1,2-Tetrachloroethane 95 70-130 --20 Ethylbenzene 100 70-130 -p/m-Xylene 104 70-130 20 --70-130 20 o-Xylene 102 --Styrene 102 70-130 20 --Isopropylbenzene 100 70-130 20 --Bromoform 85 70-130 20 --1,1,2,2-Tetrachloroethane 70-130 20 85 --70-130 20 1,2,3-Trichloropropane 88 -n-Propylbenzene 102 70-130 20 --Bromobenzene 108 70-130 20 \_ -70-130 20 1,3,5-Trimethylbenzene 100 --108 20 o-Chlorotoluene 70-130 --



Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186 Lab Number: L2260165 Report Date: 11/21/22

LCSD LCS %Recovery RPD %Recovery %Recovery Limits RPD Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,03 Batch: WG1706698-3 p-Chlorotoluene 105 70-130 20 -tert-Butylbenzene 100 70-130 20 --1,2,4-Trimethylbenzene 102 70-130 20 -sec-Butylbenzene 100 70-130 20 -p-Isopropyltoluene 102 70-130 20 --105 70-130 20 1,3-Dichlorobenzene --1.4-Dichlorobenzene 108 70-130 20 --20 n-Butylbenzene 98 70-130 --1,2-Dichlorobenzene 100 70-130 20 --85 70-130 20 1,2-Dibromo-3-chloropropane --100 70-130 20 1,2,4-Trichlorobenzene --20 Hexachlorobutadiene 88 70-130 --70-130 20 Naphthalene 78 --1,2,3-Trichlorobenzene 92 70-130 20 --

| Surrogate              | LCS            | LCSD           | Acceptance |
|------------------------|----------------|----------------|------------|
|                        | %Recovery Qual | %Recovery Qual | Criteria   |
| 1,2-Dichlorobenzene-d4 | 95             |                | 80-120     |
| 4-Bromofluorobenzene   | 102            |                | 80-120     |



### Lab Control Sample Analysis Batch Quality Control

Project Name:TERRAMORProject Number:22.2186

|                                           | LCS            |                | LCSD       |          | %Recovery |     |      | RPD    |        |
|-------------------------------------------|----------------|----------------|------------|----------|-----------|-----|------|--------|--------|
| Parameter                                 | %Recovery      | Qual           | %Recovery  | Qual     | Limits    | RPD | Qual | Limits | Column |
| Microextractables by GC - Westborough Lab | Associated san | nple(s): 01,03 | Batch: WG1 | 708211-2 |           |     |      |        |        |
| 1,2-Dibromoethane                         | 90             |                | -          |          | 80-120    | -   |      |        | А      |
| 1,2-Dibromo-3-chloropropane               | 91             |                | -          |          | 80-120    | -   |      |        | А      |
| 1,2,3-Trichloropropane                    | 99             |                | -          |          | 80-120    | -   |      |        | А      |



## Matrix Spike Analysis Batch Quality Control

| Project Name:         | TERRAMOR |
|-----------------------|----------|
| Due 's st Norse to su |          |

Project Number: 22.2186

| Parameter                 | Native<br>Sample | MS<br>Added | MS<br>Found   | MS<br>%Recovery | Qual      | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD Qua    | RPD<br>al Limits |
|---------------------------|------------------|-------------|---------------|-----------------|-----------|--------------|------------------|-------------------------|------------|------------------|
| Volatile Organics by GC/N | NS - Westborough | Lab Assoc   | iated sample( | s): 01,03 QC    | Batch ID: | WG17066      | 698-6 QC Sa      | ample: L2260318-01      | Client ID: | MS Sample        |
| Dichlorodifluoromethane   | ND               | 4           | 6.8           | 170             | Q         | -            | -                | 70-130                  | -          | 20               |
| Chloromethane             | ND               | 4           | 5.0           | 125             |           | -            | -                | 70-130                  | -          | 20               |
| Vinyl chloride            | ND               | 4           | 3.7           | 92              |           | -            | -                | 70-130                  | -          | 20               |
| Bromomethane              | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| Chloroethane              | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| Trichlorofluoromethane    | ND               | 4           | 3.7           | 92              |           | -            | -                | 70-130                  | -          | 20               |
| 1,1-Dichloroethene        | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| Methylene chloride        | ND               | 4           | 3.2           | 80              |           | -            | -                | 70-130                  | -          | 20               |
| Methyl tert butyl ether   | ND               | 4           | 2.7           | 68              | Q         | -            | -                | 70-130                  | -          | 20               |
| trans-1,2-Dichloroethene  | ND               | 4           | 3.4           | 85              |           | -            | -                | 70-130                  | -          | 20               |
| 1,1-Dichloroethane        | ND               | 4           | 3.3           | 82              |           | -            | -                | 70-130                  | -          | 20               |
| 2,2-Dichloropropane       | ND               | 4           | 3.2           | 80              |           | -            | -                | 70-130                  | -          | 20               |
| cis-1,2-Dichloroethene    | ND               | 4           | 3.0           | 75              |           | -            | -                | 70-130                  | -          | 20               |
| Chloroform                | 0.21J            | 4           | 3.4           | 85              |           | -            | -                | 70-130                  | -          | 20               |
| Bromochloromethane        | ND               | 4           | 4.0           | 100             |           | -            | -                | 70-130                  | -          | 20               |
| 1,1,1-Trichloroethane     | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| 1,1-Dichloropropene       | ND               | 4           | 3.2           | 80              |           | -            | -                | 70-130                  | -          | 20               |
| Carbon tetrachloride      | ND               | 4           | 3.6           | 90              |           | -            | -                | 70-130                  | -          | 20               |
| 1,2-Dichloroethane        | ND               | 4           | 3.4           | 85              |           | -            | -                | 70-130                  | -          | 20               |
| Benzene                   | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| Trichloroethene           | ND               | 4           | 3.1           | 78              |           | -            | -                | 70-130                  | -          | 20               |
| 1,2-Dichloropropane       | ND               | 4           | 3.5           | 88              |           | -            | -                | 70-130                  | -          | 20               |
| Bromodichloromethane      | ND               | 4           | 3.4           | 85              |           | -            | -                | 70-130                  | -          | 20               |
| Dibromomethane            | ND               | 4           | 3.3           | 82              |           | -            | -                | 70-130                  | -          | 20               |



## Matrix Spike Analysis Batch Quality Control

| Project Name:       | TERRAMOR |
|---------------------|----------|
| Due to a Alexandrea |          |

Project Number: 22.2186

| Parameter                  | Native<br>Sample | MS<br>Added | MS<br>Found   | MS<br>%Recovery | MSD<br>Qual Foun | -            | Recovery<br>Qual Limits | RPD Qua    | RPD<br>al Limits |
|----------------------------|------------------|-------------|---------------|-----------------|------------------|--------------|-------------------------|------------|------------------|
| Volatile Organics by GC/MS | S - Westborough  | Lab Assoc   | iated sample( | s): 01,03 QC    | Batch ID: WG170  | )6698-6 QC S | ample: L2260318-01      | Client ID: | MS Sample        |
| cis-1,3-Dichloropropene    | ND               | 4           | 3.1           | 78              | -                | -            | 70-130                  | -          | 20               |
| Toluene                    | ND               | 4           | 3.0           | 75              | -                | -            | 70-130                  | -          | 20               |
| trans-1,3-Dichloropropene  | ND               | 4           | 3.1           | 78              | -                | -            | 70-130                  | -          | 20               |
| 1,1,2-Trichloroethane      | ND               | 4           | 3.1           | 78              | -                | -            | 70-130                  | -          | 20               |
| 1,3-Dichloropropane        | ND               | 4           | 3.2           | 80              | -                | -            | 70-130                  | -          | 20               |
| Tetrachloroethene          | ND               | 4           | 3.6           | 90              | -                | -            | 70-130                  | -          | 20               |
| Dibromochloromethane       | ND               | 4           | 3.0           | 75              | -                | -            | 70-130                  | -          | 20               |
| 1,2-Dibromoethane          | ND               | 4           | 3.0           | 75              | -                | -            | 70-130                  | -          | 20               |
| Chlorobenzene              | ND               | 4           | 3.5           | 88              | -                | -            | 70-130                  | -          | 20               |
| 1,1,1,2-Tetrachloroethane  | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| Ethylbenzene               | ND               | 4           | 3.2           | 80              | -                | -            | 70-130                  | -          | 20               |
| p/m-Xylene                 | ND               | 8           | 6.8           | 85              | -                | -            | 70-130                  | -          | 20               |
| o-Xylene                   | ND               | 4           | 3.3           | 82              | -                | -            | 70-130                  | -          | 20               |
| Styrene                    | ND               | 4           | 3.3           | 82              | -                | -            | 70-130                  | -          | 20               |
| Isopropylbenzene           | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| Bromoform                  | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| 1,1,2,2-Tetrachloroethane  | ND               | 4           | 5.0           | 125             | -                | -            | 70-130                  | -          | 20               |
| 1,2,3-Trichloropropane     | ND               | 4           | 3.2           | 80              | -                | -            | 70-130                  | -          | 20               |
| n-Propylbenzene            | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| Bromobenzene               | ND               | 4           | 3.5           | 88              | -                | -            | 70-130                  | -          | 20               |
| 1,3,5-Trimethylbenzene     | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| o-Chlorotoluene            | ND               | 4           | 3.4           | 85              | -                | -            | 70-130                  | -          | 20               |
| p-Chlorotoluene            | ND               | 4           | 3.5           | 88              | -                | -            | 70-130                  | -          | 20               |
| tert-Butylbenzene          | ND               | 4           | 3.2           | 80              | -                | -            | 70-130                  | -          | 20               |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR | Batch Quality Control |
|-----------------|----------|-----------------------|
| Project Number: | 22.2186  |                       |

| Native<br>Sample | MS<br>Adde                                                                           | MS<br>d Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MS<br>%Recovery                                                                                                                                              | / Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MSD<br>Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MSD<br>%Recovery                                                                                                                                                                                                                                                                                                                                                     | Qual                                                                                                                                                                                                                                                                                                                          | Recovery<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RPD                                                                                                                                                                                                                                                                                                                                                                                                 | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RPD<br>Limits                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Westborough    | Lab A                                                                                | ssociated sample(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s): 01,03 Q                                                                                                                                                  | C Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WG17066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 698-6 QC Sa                                                                                                                                                                                                                                                                                                                                                          | ample: L                                                                                                                                                                                                                                                                                                                      | _2260318-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Clien                                                                                                                                                                                                                                                                                                                                                                                               | t ID: M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S Sample                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ND               | 4                                                                                    | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 88                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 90                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 82                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62                                                                                                                                                           | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ND               | 4                                                                                    | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 78                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               | 70-130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | Sample<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Sample         Addet           ND         A           ND         A | SampleAddedFoundWestborough LabAssociated sampleND43.5ND43.3ND43.3ND43.5ND43.6ND43.3ND43.6ND43.4ND43.6ND43.6ND43.6ND43.6ND43.6ND43.6ND43.6ND43.6ND43.1ND42.5 | Sample         Added         Found         %Recovery           Westborough Lab         Associated sample(s: 01,03)         Q           ND         4 $3.5$ $88$ ND         4 $3.5$ $88$ ND         4 $3.3$ $82$ ND         4 $3.3$ $82$ ND         4 $3.3$ $82$ ND         4 $3.5$ $88$ ND         4 $3.6$ $90$ ND         4 $3.3$ $82$ ND         4 $2.5$ $62$ | SampleAddedFound%RecoveryQualWestborough LabAssociated sample(): $01,03$ QCBatch IDND4 $3.5$ $88$ ND4 $3.3$ $82$ ND4 $3.3$ $82$ ND4 $3.3$ $82$ ND4 $3.6$ $90$ | SampleAddedFound%RecoveryQualFoundWestborough LabAssociated sample(s): 01,03QC Batch ID: WG17066ND43.588-ND43.382-ND43.382-ND43.382-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.690-ND43.6Q-ND43.6Q-ND43.6Q-ND43.6Q-ND43.6Q-ND4< | SampleAddedFound%RecoveryQualFound%RecoveryWestborough LabAssociated sample(s): 01,03QC Batch ID: WG1706698-6QC SaND43.588ND43.382ND43.382ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.382ND43.690ND43.682ND43.682ND43.682ND43.682ND43.62.562 | SampleAddedFound%RecoveryQualFound%RecoveryQualWestborough LabAssociated sample(s): 01,03QC Batch ID: WG1706698-6QC Sample: LND43.588ND43.382ND43.382ND43.382ND43.382ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.690ND43.178ND43.382ND43.382ND43.382ND43.382ND43.602ND43.602ND43.6 <td>SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsWestborough LabAssociated sample(s): 01,03QCBatch ID: WG1706698-6QC Sample: L2260318-01ND43.58870-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.48570-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.17870-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.382Q</td> <td>SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsRPD• Westborough LabAssociated sample(s): 01,03QCBatch ID: WG1706698-6QC Sample: L2260318-01ClientND43.58870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.17870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130-<!--</td--><td>SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsRPDQual• Westborough LabAssociated sample(): 0.133QCBatch ID: WG1706698-6QC Sample: L260318-0Client ID: M3ND43.58870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.68270-130-ND43.68270-130-ND43.68270-130-ND43.68270-130-<t< td=""></t<></td></td> | SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsWestborough LabAssociated sample(s): 01,03QCBatch ID: WG1706698-6QC Sample: L2260318-01ND43.58870-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.48570-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.69070-130ND43.17870-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.38270-130ND43.382Q | SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsRPD• Westborough LabAssociated sample(s): 01,03QCBatch ID: WG1706698-6QC Sample: L2260318-01ClientND43.58870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.48570-130-ND43.17870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130- </td <td>SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsRPDQual• Westborough LabAssociated sample(): 0.133QCBatch ID: WG1706698-6QC Sample: L260318-0Client ID: M3ND43.58870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.68270-130-ND43.68270-130-ND43.68270-130-ND43.68270-130-<t< td=""></t<></td> | SampleAddedFound%RecoveryQualFound%RecoveryQualLimitsRPDQual• Westborough LabAssociated sample(): 0.133QCBatch ID: WG1706698-6QC Sample: L260318-0Client ID: M3ND43.58870-130-ND43.38270-130-ND43.38270-130-ND43.38270-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.69070-130-ND43.68270-130-ND43.68270-130-ND43.68270-130-ND43.68270-130- <t< td=""></t<> |

|                        | MS                   | MSD                  | Acceptance |
|------------------------|----------------------|----------------------|------------|
| Surrogate              | % Recovery Qualifier | % Recovery Qualifier | Criteria   |
| 1,2-Dichlorobenzene-d4 | 100                  |                      | 80-120     |
| 4-Bromofluorobenzene   | 100                  |                      | 80-120     |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR | Batch Quality Control | Lab Number:  | L2260165 |
|-----------------|----------|-----------------------|--------------|----------|
| Project Number: | 22.2186  |                       | Report Date: | 11/21/22 |

| Parameter                   | Native<br>Sample  | MS<br>Added | MS<br>Found     | MS<br>%Recovery | Qual       | MSD<br>Found | MSD<br>%Recovery | Recover<br>Qual Limits | y<br>RPD  | RPD<br>Qual Limits | <u>Column</u> |
|-----------------------------|-------------------|-------------|-----------------|-----------------|------------|--------------|------------------|------------------------|-----------|--------------------|---------------|
| Microextractables by GC -   | · Westborough Lab | Associate   | ed sample(s): ( | 01,03 QC Ba     | atch ID: W | G1708211-:   | 3 QC Samp        | le: L2260862-01        | Client ID | : MS Sample        |               |
| 1,2-Dibromoethane           | ND                | 0.252       | 0.232           | 92              |            | -            | -                | 80-120                 | -         | 20                 | А             |
| 1,2-Dibromo-3-chloropropane | ND                | 0.252       | 0.221           | 88              |            | -            | -                | 80-120                 | -         | 20                 | А             |
| 1,2,3-Trichloropropane      | ND                | 0.252       | 0.246           | 98              |            | -            | -                | 80-120                 | -         | 20                 | А             |



Project Name: TERRAMOR

Project Number: 22.2186

Lab Number:

L2260165 11/21/22 Report Date:

| arameter                                    | Native Sample               | Duplicate Sample | Units    | RPD        | RPD<br>Qual Limits         |
|---------------------------------------------|-----------------------------|------------------|----------|------------|----------------------------|
| platile Organics by GC/MS - Westborough Lab | Associated sample(s): 01,03 | QC Batch ID: WG1 | 706698-5 | QC Sample: | L2259667-01 Client ID: DUP |
| Dichlorodifluoromethane                     | ND                          | ND               | ug/l     | NC         | 20                         |
| Chloromethane                               | ND                          | ND               | ug/l     | NC         | 20                         |
| Vinyl chloride                              | ND                          | ND               | ug/l     | NC         | 20                         |
| Bromomethane                                | ND                          | ND               | ug/l     | NC         | 20                         |
| Chloroethane                                | ND                          | ND               | ug/l     | NC         | 20                         |
| Trichlorofluoromethane                      | ND                          | ND               | ug/l     | NC         | 20                         |
| 1,1-Dichloroethene                          | ND                          | ND               | ug/l     | NC         | 20                         |
| Methylene chloride                          | ND                          | ND               | ug/l     | NC         | 20                         |
| Methyl tert butyl ether                     | ND                          | ND               | ug/l     | NC         | 20                         |
| trans-1,2-Dichloroethene                    | ND                          | ND               | ug/l     | NC         | 20                         |
| 1,1-Dichloroethane                          | ND                          | ND               | ug/l     | NC         | 20                         |
| 2,2-Dichloropropane                         | ND                          | ND               | ug/l     | NC         | 20                         |
| cis-1,2-Dichloroethene                      | ND                          | ND               | ug/l     | NC         | 20                         |
| Chloroform                                  | ND                          | ND               | ug/l     | NC         | 20                         |
| Bromochloromethane                          | ND                          | ND               | ug/l     | NC         | 20                         |
| 1,1,1-Trichloroethane                       | ND                          | ND               | ug/l     | NC         | 20                         |
| 1,1-Dichloropropene                         | ND                          | ND               | ug/l     | NC         | 20                         |
| Carbon tetrachloride                        | ND                          | ND               | ug/l     | NC         | 20                         |
| 1,2-Dichloroethane                          | ND                          | ND               | ug/l     | NC         | 20                         |
| Benzene                                     | ND                          | ND               | ug/l     | NC         | 20                         |
| Trichloroethene                             | ND                          | ND               | ug/l     | NC         | 20                         |



Project Name: TERRAMOR

Project Number: 22.2186

Lab Number:

| arameter                                    | Native Sample | Duplicate Sample | Units | RPD | RPD<br>Qual Limits         |
|---------------------------------------------|---------------|------------------|-------|-----|----------------------------|
| platile Organics by GC/MS - Westborough Lab |               |                  |       |     | L2259667-01 Client ID: DUP |
| 1,2-Dichloropropane                         | ND            | ND               | ug/l  | NC  | 20                         |
| Bromodichloromethane                        | ND            | ND               | ug/l  | NC  | 20                         |
| Dibromomethane                              | ND            | ND               | ug/l  | NC  | 20                         |
| cis-1,3-Dichloropropene                     | ND            | ND               | ug/l  | NC  | 20                         |
| Toluene                                     | ND            | ND               | ug/l  | NC  | 20                         |
| trans-1,3-Dichloropropene                   | ND            | ND               | ug/l  | NC  | 20                         |
| 1,1,2-Trichloroethane                       | ND            | ND               | ug/l  | NC  | 20                         |
| 1,3-Dichloropropane                         | ND            | ND               | ug/l  | NC  | 20                         |
| Tetrachloroethene                           | ND            | ND               | ug/l  | NC  | 20                         |
| Dibromochloromethane                        | ND            | ND               | ug/l  | NC  | 20                         |
| 1,2-Dibromoethane                           | ND            | ND               | ug/l  | NC  | 20                         |
| Chlorobenzene                               | ND            | ND               | ug/l  | NC  | 20                         |
| 1,1,1,2-Tetrachloroethane                   | ND            | ND               | ug/l  | NC  | 20                         |
| Ethylbenzene                                | ND            | ND               | ug/l  | NC  | 20                         |
| p/m-Xylene                                  | ND            | ND               | ug/l  | NC  | 20                         |
| o-Xylene                                    | ND            | ND               | ug/l  | NC  | 20                         |
| Styrene                                     | ND            | ND               | ug/l  | NC  | 20                         |
| Isopropylbenzene                            | ND            | ND               | ug/l  | NC  | 20                         |
| Bromoform                                   | ND            | ND               | ug/l  | NC  | 20                         |
| 1,1,2,2-Tetrachloroethane                   | ND            | ND               | ug/l  | NC  | 20                         |
| Xylene (Total) <sup>1</sup>                 | ND            | ND               | ug/l  | NC  | 20                         |



Project Name: TERRAMOR

Project Number: 22.2186

Lab Number:

L2260165 11/21/22 Report Date:

| arameter                                    | Native Sample             | Duplicate Sample   | Units     | RPD        | Qual        | RPD<br>Limits  |
|---------------------------------------------|---------------------------|--------------------|-----------|------------|-------------|----------------|
| platile Organics by GC/MS - Westborough Lab | Associated sample(s): 01, | 03 QC Batch ID: WG | 1706698-5 | QC Sample: | L2259667-01 | Client ID: DUP |
| 1,2,3-Trichloropropane                      | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,3-Dichloropropene, Total                  | ND                        | ND                 | ug/l      | NC         |             | 20             |
| n-Propylbenzene                             | ND                        | ND                 | ug/l      | NC         |             | 20             |
| Trihalomethanes, Total                      | ND                        | ND                 | ug/l      | NC         |             | 20             |
| Bromobenzene                                | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,3,5-Trimethylbenzene                      | ND                        | ND                 | ug/l      | NC         |             | 20             |
| o-Chlorotoluene                             | ND                        | ND                 | ug/l      | NC         |             | 20             |
| p-Chlorotoluene                             | ND                        | ND                 | ug/l      | NC         |             | 20             |
| tert-Butylbenzene                           | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,2,4-Trimethylbenzene                      | ND                        | ND                 | ug/l      | NC         |             | 20             |
| sec-Butylbenzene                            | ND                        | ND                 | ug/l      | NC         |             | 20             |
| p-Isopropyltoluene                          | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,3-Dichlorobenzene                         | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,4-Dichlorobenzene                         | ND                        | ND                 | ug/l      | NC         |             | 20             |
| n-Butylbenzene                              | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,2-Dichlorobenzene                         | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,2-Dibromo-3-chloropropane                 | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,2,4-Trichlorobenzene                      | ND                        | ND                 | ug/l      | NC         |             | 20             |
| Hexachlorobutadiene                         | ND                        | ND                 | ug/l      | NC         |             | 20             |
| Naphthalene                                 | ND                        | ND                 | ug/l      | NC         |             | 20             |
| 1,2,3-Trichlorobenzene                      | ND                        | ND                 | ug/l      | NC         |             | 20             |



80-120

| Project Name:<br>Project Number:   | TERRAMOR<br>22.2186   | Lab Duplicate Analysis<br>Batch Quality Control |       |               |           |          | Lab Numbe<br>Report Dat |                        | L2260165<br>11/21/22 |     |
|------------------------------------|-----------------------|-------------------------------------------------|-------|---------------|-----------|----------|-------------------------|------------------------|----------------------|-----|
| Parameter                          |                       | Native Sample                                   |       | Duplicate \$  | Sample    | Units    | RPD                     | Qual                   | RPD<br>Limits        |     |
| Volatile Organics by GC/<br>Sample | /MS - Westborough Lab | Associated sample(s):                           | 01,03 | QC Batch      | ID: WG17  | 706698-5 | QC Sample:              | L2259667-01            | Client ID:           | DUP |
| Surrogate                          |                       |                                                 | %     | 6<br>Recovery | Qualifier | %Recove  | ry Qualifier            | Acceptance<br>Criteria |                      |     |
| 1,2-Dichlorobenzer                 | ne-d4                 |                                                 |       | 96            |           | 101      |                         | 80-120                 |                      |     |

93

91



4-Bromofluorobenzene

## SEMIVOLATILES



|                                                                                |                                              |                | Serial_No                                        | 0:11212218:55                               |
|--------------------------------------------------------------------------------|----------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | TERRAMOR                                     |                | Lab Number:                                      | L2260165                                    |
| Project Number:                                                                | 22.2186                                      |                | Report Date:                                     | 11/21/22                                    |
|                                                                                |                                              | SAMPLE RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2260165-01<br>LOT-1-221027<br>SAUGERTIES,NY |                | Date Collected:<br>Date Received:<br>Field Prep: | 10/27/22 11:10<br>10/27/22<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Dw<br>120,522<br>11/17/22 14:47<br>AMV       |                | Extraction Method<br>Extraction Date:            | d: EPA 522<br>11/14/22 07:10                |

| Parameter                              | Result | Qualifier | Units      | RL        | MDL   | Dilution Factor   |
|----------------------------------------|--------|-----------|------------|-----------|-------|-------------------|
| 1,4 Dioxane by EPA 522 - Mansfield Lab |        |           |            |           |       |                   |
| 1,4-Dioxane                            | ND     |           | ug/l       | 0.147     | 0.147 | 1                 |
| Surrogate                              |        |           | % Recovery | Qualifier |       | eptance<br>iteria |
| 1,4-Dioxane-d8                         |        |           | 85         |           | 7     | 70-130            |



|                    |                |                | Serial_No         | 0:11212218:55  |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2260165       |
| Project Number:    | 22.2186        |                | Report Date:      | 11/21/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2260165-01    |                | Date Collected:   | 10/27/22 11:10 |
| Client ID:         | LOT-1-221027   |                | Date Received:    | 10/27/22       |
| Sample Location:   | SAUGERTIES,NY  |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | l: EPA 537.1   |
| Analytical Method: | 133,537.1      |                | Extraction Date:  | 11/05/22 10:00 |
| Analytical Date:   | 11/06/22 01:26 |                |                   |                |
| Analyst:           | JPW            |                |                   |                |
|                    |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                                               | Result | Qualifier | Units | RL   | MDL   | Dilution Factor |  |  |
|---------------------------------------------------------|--------|-----------|-------|------|-------|-----------------|--|--|
| Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab |        |           |       |      |       |                 |  |  |
| Perfluorooctanoic Acid (PFOA)                           | 1.27   | J         | ng/l  | 1.87 | 0.626 | 1               |  |  |
| Perfluorooctanesulfonic Acid (PFOS)                     | 0.937  | J         | ng/l  | 1.87 | 0.626 | 1               |  |  |

| % Recovery | Acceptance<br>Qualifier Criteria |                                                                                                                                   |
|------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 92         | 70-130                           |                                                                                                                                   |
| 91         | 70-130                           |                                                                                                                                   |
| 97         | 70-130                           |                                                                                                                                   |
| 92         | 70-130                           |                                                                                                                                   |
|            | 92<br>91<br>97                   | % Recovery         Qualifier         Criteria           92         70-130           91         70-130           97         70-130 |



|                    |                |                | Serial_No         | 0:11212218:55  |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2260165       |
| Project Number:    | 22.2186        |                | Report Date:      | 11/21/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2260165-02    |                | Date Collected:   | 10/27/22 11:00 |
| Client ID:         | FB01-221027    |                | Date Received:    | 10/27/22       |
| Sample Location:   | SAUGERTIES,NY  |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | l: EPA 537.1   |
| Analytical Method: | 133,537.1      |                | Extraction Date:  | 11/05/22 10:00 |
| Analytical Date:   | 11/06/22 01:35 |                |                   |                |
| Analyst:           | JPW            |                |                   |                |
| -                  |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                                        | Result Q                                                              | ualifier Units | RL        | MDL   | Dilution Factor |
|--------------------------------------------------|-----------------------------------------------------------------------|----------------|-----------|-------|-----------------|
| Perfluorinated Alkyl Acids by EPA 537.1 - M      | ansfield Lab                                                          |                |           |       |                 |
| Perfluorooctanoic Acid (PFOA)                    | ND                                                                    | ng/l           | 1.74      | 0.583 | 1               |
| Perfluorooctanesulfonic Acid (PFOS)              | ND                                                                    | ng/l           | 1.74      | 0.583 | 1               |
| Surrogate                                        |                                                                       | % Recovery     | Qualifier |       | otance<br>teria |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA   | )                                                                     | 110            |           | 7     | 0-130           |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoi | Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) |                |           | 7     | 0-130           |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)   |                                                                       | 113            |           | 7     | 0-130           |

107

N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)



70-130

| Project Name:   | TERRAMOR |                             | Lab Number:  | L2260165 |
|-----------------|----------|-----------------------------|--------------|----------|
| Project Number: | 22.2186  |                             | Report Date: | 11/21/22 |
|                 |          | Matter I Direct Association |              |          |

#### Method Blank Analysis Batch Quality Control

| Analytical Method: | 133,537.1      | Extraction Method: | EPA 537.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 11/06/22 01:09 | Extraction Date:   | 11/05/22 10:00 |
| Analyst:           | JPW            |                    |                |

| Parameter                           | Result      | Qualifier     | Units        | RL    | MDL                |
|-------------------------------------|-------------|---------------|--------------|-------|--------------------|
| Perfluorinated Alkyl Acids by EPA 8 | 537.1 - Man | sfield Lab fo | r sample(s): | 01-02 | Batch: WG1708494-1 |
| Perfluorooctanoic Acid (PFOA)       | ND          |               | ng/l         | 2.00  | 0.668              |
| Perfluorooctanesulfonic Acid (PFOS) | ND          |               | ng/l         | 2.00  | 0.668              |

|                                                                       |           | Acceptance |          |  |
|-----------------------------------------------------------------------|-----------|------------|----------|--|
| Surrogate                                                             | %Recovery | Qualifier  | Criteria |  |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                       | 100       |            | 70-130   |  |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) | 98        |            | 70-130   |  |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                        | 98        |            | 70-130   |  |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) | 98        |            | 70-130   |  |



Serial\_No:11212218:55

70-130

| Project Name:                                      | TERRAMOR                         |                                                | Lab Number:                            | L2260165                  |
|----------------------------------------------------|----------------------------------|------------------------------------------------|----------------------------------------|---------------------------|
| Project Number:                                    | 22.2186                          |                                                | Report Date:                           | 11/21/22                  |
|                                                    |                                  | Method Blank Analysis<br>Batch Quality Control |                                        |                           |
| Analytical Method:<br>Analytical Date:<br>Analyst: | 120,522<br>11/16/22 06:17<br>AMV |                                                | Extraction Method:<br>Extraction Date: | EPA 522<br>11/14/22 07:10 |

| Parameter                     | Result Qualifier         | r Units   | RL         | MDL                           |
|-------------------------------|--------------------------|-----------|------------|-------------------------------|
| 1,4 Dioxane by EPA 522 - Mans | field Lab for sample(s): | 01 Batch: | WG171209   | 6-1                           |
| 1,4-Dioxane                   | ND                       | ug/l      | 0.150      | 0.150                         |
| rrogate                       |                          | %Re       | covery Qua | Acceptance<br>lifier Criteria |

93

1,4-Dioxane-d8

## Lab Control Sample Analysis Batch Quality Control

Project Name:TERRAMORProject Number:22.2186

|                                              | LCS               |             | LCSD             |           | %Recovery |     |      | RPD    |  |
|----------------------------------------------|-------------------|-------------|------------------|-----------|-----------|-----|------|--------|--|
| Parameter                                    | %Recovery         | Qual        | %Recovery        | Qual      | Limits    | RPD | Qual | Limits |  |
| Perfluorinated Alkyl Acids by EPA 537.1 - Ma | ansfield Lab Asso | ciated samp | ole(s): 01-02 Ba | atch: WG1 | 708494-2  |     |      |        |  |
| Perfluorooctanoic Acid (PFOA)                | 116               |             | -                |           | 70-130    | -   |      | 30     |  |
| Perfluorooctanesulfonic Acid (PFOS)          | 111               |             | -                |           | 70-130    | -   |      | 30     |  |

|                                                                       | LCS       |      | LCSD      |      | Acceptance |
|-----------------------------------------------------------------------|-----------|------|-----------|------|------------|
| Surrogate                                                             | %Recovery | Qual | %Recovery | Qual | Criteria   |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                       | 113       |      |           |      | 70-130     |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) | 118       |      |           |      | 70-130     |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                        | 119       |      |           |      | 70-130     |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) | 114       |      |           |      | 70-130     |



| Project Name:   | TERRAMOR | Batch Quality Control | Lab Number:  | L2260165 |
|-----------------|----------|-----------------------|--------------|----------|
| Project Number: | 22.2186  |                       | Report Date: | 11/21/22 |

| Parameter                              | LCS<br>%Recovery   | Qual   | LCSD<br>%Recovery | Qual   | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|----------------------------------------|--------------------|--------|-------------------|--------|---------------------|-----|------|---------------|--|
| 1,4 Dioxane by EPA 522 - Mansfield Lab | Associated sample( | s): 01 | Batch: WG1712096- | 2 WG17 | 12096-3             |     |      |               |  |
| 1,4-Dioxane                            | 99                 |        | 99                |        | 70-130              | 0   |      | 30            |  |

| Surrogate      | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|----------------|------------------|------|-------------------|------|------------------------|
| 1,4-Dioxane-d8 | 103              |      | 99                |      | 70-130                 |



## Matrix Spike Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186

\_\_\_\_

Lab Number: L2260165 Report Date: 11/21/22

| Parameter                                                                                | Native<br>Sample | MS<br>Added   | MS<br>Found | MS<br>%Recovery   | MSD<br>Qual Foun | -             | Recovery<br>Qual Limits | RPD      | RPD<br>Qual Limits |
|------------------------------------------------------------------------------------------|------------------|---------------|-------------|-------------------|------------------|---------------|-------------------------|----------|--------------------|
| Perfluorinated Alkyl Acids by E<br>Sample                                                | PA 537.1 -       | Mansfield Lab | Associated  | d sample(s): 01-0 | 2 QC Batch ID    | : WG1708494-3 | QC Sample: L226         | 61822-01 | I Client ID: MS    |
| Perfluorobutanesulfonic Acid (PFBS)                                                      | 2.02             | 127           | 111         | 86                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorohexanoic Acid (PFHxA)                                                           | 14.6             | 143           | 143         | 90                | -                | -             | 70-130                  | -        | 30                 |
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-<br>Heptafluoropropoxy]-Propanoic Acid<br>(HFPO-DA) | ND               | 143           | 136         | 95                | -                | -             | 70-130                  | -        | 30                 |
| Perfluoroheptanoic Acid (PFHpA)                                                          | 5.62             | 143           | 141         | 95                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorohexanesulfonic Acid (PFHxS)                                                     | 2.54             | 130           | 124         | 93                | -                | -             | 70-130                  | -        | 30                 |
| 4,8-Dioxa-3h-Perfluorononanoic Acid<br>(ADONA)                                           | ND               | 135           | 128         | 95                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorooctanoic Acid (PFOA)                                                            | 21.5             | 143           | 162         | 98                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorononanoic Acid (PFNA)                                                            | 1.76J            | 143           | 142         | 99                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorooctanesulfonic Acid (PFOS)                                                      | 9.27             | 132           | 136         | 96                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorodecanoic Acid (PFDA)                                                            | 0.699J           | 143           | 143         | 100               | -                | -             | 70-130                  | -        | 30                 |
| 9-Chlorohexadecafluoro-3-<br>Oxanone-1-Sulfonic Acid (9Cl-<br>PF3ONS)                    | ND               | 133           | 123         | 92                | -                | -             | 70-130                  | -        | 30                 |
| N-Methyl<br>Perfluorooctanesulfonamidoacetic<br>Acid (NMeFOSAA)                          | ND               | 143           | 136         | 95                | -                | -             | 70-130                  | -        | 30                 |
| Perfluoroundecanoic Acid (PFUnA)                                                         | ND               | 143           | 150         | 105               | -                | -             | 70-130                  | -        | 30                 |
| N-Ethyl<br>Perfluorooctanesulfonamidoacetic<br>Acid (NEtFOSAA)                           | ND               | 143           | 139         | 97                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorododecanoic Acid (PFDoA)                                                         | ND               | 143           | 146         | 102               | -                | -             | 70-130                  | -        | 30                 |
| 11-Chloroeicosafluoro-3-<br>Oxaundecane-1-Sulfonic Acid (11Cl-<br>PF3OUdS)               | ND               | 135           | 116         | 86                | -                | -             | 70-130                  | -        | 30                 |
| Perfluorotridecanoic Acid (PFTrDA)                                                       | ND               | 143           | 146         | 102               | -                | -             | 70-130                  | -        | 30                 |
| Perfluorotetradecanoic Acid (PFTA)                                                       | ND               | 143           | 151         | 106               | -                | -             | 70-130                  | -        | 30                 |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR | Batch Quality Control | Lab Number:  | L2260165 |
|-----------------|----------|-----------------------|--------------|----------|
| Project Number: | 22.2186  |                       | Report Date: | 11/21/22 |

|                     |               |                    |                  |             | Recovery        |               | RPD        |
|---------------------|---------------|--------------------|------------------|-------------|-----------------|---------------|------------|
| nple Added          | Found         | %Recovery          | Qual Found       | %Recovery   | Qual Limits     | RPD Qual      | Limits     |
| 37.1 - Mansfield La | ab Associated | d sample(s): 01-02 | 2 QC Batch ID: V | NG1708494-3 | QC Sample: L226 | 51822-01 Clie | ent ID: MS |
|                     |               |                    |                  |             |                 |               |            |

|                                                                                                  | MS         | 5         | MS         | SD        | Acceptance |  |
|--------------------------------------------------------------------------------------------------|------------|-----------|------------|-----------|------------|--|
| Surrogate                                                                                        | % Recovery | Qualifier | % Recovery | Qualifier | Criteria   |  |
| -<br>2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic<br>Acid (M3HFPO-DA) | 100        |           |            |           | 70-130     |  |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)                            | 100        |           |            |           | 70-130     |  |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                                                   | 102        |           |            |           | 70-130     |  |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                                                  | 94         |           |            |           | 70-130     |  |
|                                                                                                  |            |           |            |           |            |  |



Project Name: TERRAMOR

Project Number: 22.2186

La

Lab Number: L2260165 Report Date: 11/21/22

| rameter                                                                               | Native Sample                | Duplicate Sample     | Units       | RPD   | RPD<br>Qual Limits           |
|---------------------------------------------------------------------------------------|------------------------------|----------------------|-------------|-------|------------------------------|
| rfluorinated Alkyl Acids by EPA 537.1 - Mansfi<br>JP Sample                           | eld Lab Associated sample(s) | : 01-02 QC Batch ID: | WG1708494-4 | QC Sa | mple: L2261823-01 Client ID: |
| Perfluorobutanesulfonic Acid (PFBS)                                                   | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorohexanoic Acid (PFHxA)                                                        | 1.12J                        | 1.01J                | ng/l        | NC    | 30                           |
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-<br>Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluoroheptanoic Acid (PFHpA)                                                       | 0.648J                       | 0.614J               | ng/l        | NC    | 30                           |
| Perfluorohexanesulfonic Acid (PFHxS)                                                  | ND                           | ND                   | ng/l        | NC    | 30                           |
| 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)                                           | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorooctanoic Acid (PFOA)                                                         | 0.973J                       | 0.902J               | ng/l        | NC    | 30                           |
| Perfluorononanoic Acid (PFNA)                                                         | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorooctanesulfonic Acid (PFOS)                                                   | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorodecanoic Acid (PFDA)                                                         | ND                           | ND                   | ng/l        | NC    | 30                           |
| 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic<br>Acid (9CI-PF3ONS)                      | ND                           | ND                   | ng/l        | NC    | 30                           |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid<br>(NMeFOSAA)                          | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluoroundecanoic Acid (PFUnA)                                                      | ND                           | ND                   | ng/l        | NC    | 30                           |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid<br>(NEtFOSAA)                           | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorododecanoic Acid (PFDoA)                                                      | ND                           | ND                   | ng/l        | NC    | 30                           |
| 11-Chloroeicosafluoro-3-Oxaundecane-1-<br>Sulfonic Acid (11CI-PF3OUdS)                | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorotridecanoic Acid (PFTrDA)                                                    | ND                           | ND                   | ng/l        | NC    | 30                           |
| Perfluorotetradecanoic Acid (PFTA)                                                    | ND                           | ND                   | ng/l        | NC    | 30                           |



| Project Name:<br>Project Number:        | TERRAMOR<br>22.2186      | Lab Duplicate Analysis<br>Batch Quality Control |                   |                     |       |                        | er:<br>te:    | L2260165<br>11/21/22 |
|-----------------------------------------|--------------------------|-------------------------------------------------|-------------------|---------------------|-------|------------------------|---------------|----------------------|
| Parameter                               |                          | Native Sample                                   | Duplicate Sam     | ole Units           | RPD   | Qual                   | RPD<br>Limits |                      |
| Perfluorinated Alkyl Acid<br>DUP Sample | ls by EPA 537.1 - Mai    | nsfield Lab Associated sample                   | e(s): 01-02 QC Ba | tch ID: WG1708494-4 | QC Sa | mple: L226             | 61823-01      | Client ID:           |
| Surrogate                               |                          |                                                 | %Recovery Qua     | alifier %Recovery Q |       | Acceptance<br>Criteria | 9             |                      |
| Perfluoro-n-[1 2-13                     | C2lbexanoic Acid (13C-PF | HxA)                                            | 102               | 101                 |       | 70-130                 |               |                      |

| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                                             | 102 | 101 | 70-130 |  |
|---------------------------------------------------------------------------------------------|-----|-----|--------|--|
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-13C3-Propanoic Acid<br>(M3HFPO-DA) | 98  | 97  | 70-130 |  |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                                              | 102 | 99  | 70-130 |  |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)                       | 100 | 100 | 70-130 |  |



# SEMIVOLATILES

High Resolution Mass Spectrometry



|                                                                                |                                              |                | Serial_No:11212218:55                                                     |                                             |  |  |
|--------------------------------------------------------------------------------|----------------------------------------------|----------------|---------------------------------------------------------------------------|---------------------------------------------|--|--|
| Project Name:                                                                  | TERRAMOR                                     |                | Lab Number:                                                               | L2260165                                    |  |  |
| Project Number:                                                                | 22.2186                                      |                | Report Date:                                                              | 11/21/22                                    |  |  |
|                                                                                |                                              | SAMPLE RESULTS |                                                                           |                                             |  |  |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2260165-01<br>LOT-1-221027<br>SAUGERTIES,NY |                | Date Collected:<br>Date Received:<br>Field Prep:                          | 10/27/22 11:10<br>10/27/22<br>Not Specified |  |  |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Dw<br>132,1613B<br>11/09/22 16:13<br>CP      |                | Extraction Method<br>Extraction Date:<br>Cleanup Method:<br>Cleanup Date: | 11/04/22 12:30                              |  |  |

| Parameter                       | Result              | Qualifier | EMPC | Units | RL    | MDL   | Dilution Factor |
|---------------------------------|---------------------|-----------|------|-------|-------|-------|-----------------|
| Dioxins & Furans by Isotope Dil | ution HRMS - Mansfi | eld Lab   |      |       |       |       |                 |
| 2,3,7,8-TCDD                    | ND                  |           |      | pg/l  | 9.80  | 2.04  | 1               |
| 1,2,3,7,8-PeCDD                 | ND                  |           |      | pg/l  | 49.0  | 10.2  | 1               |
| 1,2,3,4,7,8-HxCDD               | ND                  |           |      | pg/l  | 49.0  | 12.3  | 1               |
| 1,2,3,6,7,8-HxCDD               | ND                  |           |      | pg/l  | 49.0  | 15.2  | 1               |
| 1,2,3,7,8,9-HxCDD               | ND                  |           |      | pg/l  | 49.0  | 14.3  | 1               |
| 1,2,3,4,6,7,8-HpCDD             | ND                  |           |      | pg/l  | 49.0  | 14.2  | 1               |
| OCDD                            | ND                  |           |      | pg/l  | 98.0  | 24.9  | 1               |
| 2,3,7,8-TCDF                    | ND                  |           |      | pg/l  | 9.80  | 3.00  | 1               |
| 1,2,3,7,8-PeCDF                 | ND                  |           |      | pg/l  | 49.0  | 6.86  | 1               |
| 2,3,4,7,8-PeCDF                 | ND                  |           |      | pg/l  | 49.0  | 10.2  | 1               |
| 1,2,3,4,7,8-HxCDF               | ND                  |           |      | pg/l  | 49.0  | 10.9  | 1               |
| 1,2,3,6,7,8-HxCDF               | ND                  |           |      | pg/l  | 49.0  | 15.6  | 1               |
| 1,2,3,7,8,9-HxCDF               | ND                  |           |      | pg/l  | 49.0  | 16.1  | 1               |
| 2,3,4,6,7,8-HxCDF               | ND                  |           |      | pg/l  | 49.0  | 15.5  | 1               |
| 1,2,3,4,6,7,8-HpCDF             | ND                  |           |      | pg/l  | 49.0  | 13.2  | 1               |
| 1,2,3,4,7,8,9-HpCDF             | ND                  |           |      | pg/l  | 49.0  | 12.5  | 1               |
| OCDF                            | ND                  |           |      | pg/l  | 98.0  | 31.8  | 1               |
| Total TCDD                      | ND                  |           |      | pg/l  | 9.80  | 2.04  | 1               |
| Total PeCDD                     | ND                  |           |      | pg/l  | 49.0  | 10.2  | 1               |
| Total HxCDD                     | ND                  |           |      | pg/l  | 49.0  | 12.3  | 1               |
| Total HpCDD                     | ND                  |           |      | pg/l  | 49.0  | 14.2  | 1               |
| Total TCDF                      | ND                  |           |      | pg/l  | 9.80  | 3.00  | 1               |
| Total PeCDF                     | ND                  |           |      | pg/l  | 49.0  | 6.86  | 1               |
| Total HxCDF                     | ND                  |           |      | pg/l  | 49.0  | 10.9  | 1               |
| Total HpCDF                     | ND                  |           |      | pg/l  | 49.0  | 13.2  | 1               |
| Total PCDD                      | ND                  |           |      | pg/l  | 9.80  | 2.04  | 1               |
| Total PCDF                      | ND                  |           |      | pg/l  | 9.80  | 3.00  | 1               |
| Toxic Equivalency (TEQ)         | ND                  |           |      | pg/l  | 0.029 | 0.029 | 1               |



| Parameter             |                             | Result | Qualifier | EMPC  | Units | RL                          | MDL     | Dilution Factor            |
|-----------------------|-----------------------------|--------|-----------|-------|-------|-----------------------------|---------|----------------------------|
| Sample Depth:         |                             |        |           |       |       |                             |         |                            |
| Sample Location:      | SAUGERTIES,NY               |        |           |       | F     | ield Prep:                  | -       | Not Specified              |
| Lab ID:<br>Client ID: | L2260165-01<br>LOT-1-221027 |        |           |       | _     | ate Collecte<br>ate Receive |         | 10/27/22 11:10<br>10/27/22 |
|                       |                             | SA     | MPLE RE   | SULTS |       |                             |         |                            |
| Project Number:       | 22.2186                     |        |           |       | l     | Report Date                 | e:      | 11/21/22                   |
| Project Name:         | TERRAMOR                    |        |           |       |       | Lab Numbe                   | er:     | L2260165                   |
|                       |                             |        |           |       |       | Seria                       | al_No:1 | 1212218:55                 |

Dioxins & Furans by Isotope Dilution HRMS - Mansfield Lab

| Surrogate/Cleanup Standard | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------------|------------|----------------------------------|
| 13C12-2,3,7,8-TCDF         | 51         | 24-169                           |
| 13C12-2,3,7,8-TCDD         | 56         | 25-164                           |
| 13C12-1,2,3,7,8-PeCDF      | 68         | 24-185                           |
| 13C12-2,3,4,7,8-PeCDF      | 67         | 21-178                           |
| 13C12-1,2,3,7,8-PeCDD      | 84         | 25-181                           |
| 13C12-1,2,3,4,7,8-HxCDF    | 48         | 26-152                           |
| 13C12-1,2,3,6,7,8-HxCDF    | 41         | 26-123                           |
| 13C12-2,3,4,6,7,8-HxCDF    | 41         | 28-136                           |
| 13C12-1,2,3,7,8,9-HxCDF    | 43         | 29-147                           |
| 13C12-1,2,3,4,7,8-HxCDD    | 48         | 32-141                           |
| 13C12-1,2,3,6,7,8-HxCDD    | 46         | 28-130                           |
| 13C12-1,2,3,4,6,7,8-HpCDF  | 44         | 28-143                           |
| 13C12-1,2,3,4,7,8,9-HpCDF  | 47         | 26-138                           |
| 13C12-1,2,3,4,6,7,8-HpCDD  | 57         | 23-140                           |
| 13C12-OCDD                 | 63         | 17-157                           |
| 37CL4-2,3,7,8-TCDD         | 170        | 35-197                           |
|                            |            |                                  |



 Lab Number:
 L2260165

 Report Date:
 11/21/22

Project Name: TERRAMOR

Project Number: 22.2186

## Method Blank Analysis Batch Quality Control

| Analytical Method: | 132,1613B      |
|--------------------|----------------|
| Analytical Date:   | 11/09/22 11:57 |
| Analyst:           | CP             |

Extraction Method:EPA 1613BExtraction Date:11/04/22 12:30Cleanup Method:EPA 1613BCleanup Date:11/07/22

| Parameter                     | Result            | Qualifier   | EMPC       | Units    | RL       | MDL         |
|-------------------------------|-------------------|-------------|------------|----------|----------|-------------|
| Dioxins & Furans by Isotope D | ilution HRMS - Ma | nsfield Lab | for sample | e(s): 01 | Batch: \ | NG1708207-1 |
| 2,3,7,8-TCDD                  | ND                |             |            | pg/l     | 10.0     | 2.08        |
| 1,2,3,7,8-PeCDD               | ND                |             |            | pg/l     | 50.0     | 10.4        |
| 1,2,3,4,7,8-HxCDD             | ND                |             |            | pg/l     | 50.0     | 12.5        |
| 1,2,3,6,7,8-HxCDD             | ND                |             |            | pg/l     | 50.0     | 15.6        |
| 1,2,3,7,8,9-HxCDD             | ND                |             |            | pg/l     | 50.0     | 14.6        |
| 1,2,3,4,6,7,8-HpCDD           | ND                |             |            | pg/l     | 50.0     | 14.5        |
| OCDD                          | ND                |             |            | pg/l     | 100      | 25.4        |
| 2,3,7,8-TCDF                  | ND                |             |            | pg/l     | 10.0     | 3.06        |
| 1,2,3,7,8-PeCDF               | ND                |             |            | pg/l     | 50.0     | 7.00        |
| 2,3,4,7,8-PeCDF               | ND                |             |            | pg/l     | 50.0     | 10.5        |
| 1,2,3,4,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0     | 11.1        |
| 1,2,3,6,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0     | 15.9        |
| 1,2,3,7,8,9-HxCDF             | ND                |             |            | pg/l     | 50.0     | 16.5        |
| 2,3,4,6,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0     | 15.8        |
| 1,2,3,4,6,7,8-HpCDF           | ND                |             |            | pg/l     | 50.0     | 13.4        |
| 1,2,3,4,7,8,9-HpCDF           | ND                |             |            | pg/l     | 50.0     | 12.7        |
| OCDF                          | ND                |             |            | pg/l     | 100      | 32.4        |
| Total TCDD                    | ND                |             |            | pg/l     | 10.0     | 2.08        |
| Total PeCDD                   | ND                |             |            | pg/l     | 50.0     | 10.4        |
| Total HxCDD                   | ND                |             |            | pg/l     | 50.0     | 12.5        |
| Total HpCDD                   | ND                |             |            | pg/l     | 50.0     | 14.5        |
| Total TCDF                    | ND                |             |            | pg/l     | 10.0     | 3.06        |
| Total PeCDF                   | ND                |             |            | pg/l     | 50.0     | 7.00        |
| Total HxCDF                   | ND                |             |            | pg/l     | 50.0     | 11.1        |
| Total HpCDF                   | ND                |             |            | pg/l     | 50.0     | 13.4        |
| Total PCDD                    | ND                |             |            | pg/l     | 10.0     | 2.08        |
| Total PCDF                    | ND                |             |            | pg/l     | 10.0     | 3.06        |
| Toxic Equivalency (TEQ)       | ND                |             |            | pg/l     | 0.030    | 0.030       |



L2260165

11/21/22

Lab Number:

Report Date:

Project Name: TERRAMOR

132,1613B

CP

11/09/22 11:57

Project Number: 22.2186

Analytical Method:

Analytical Date:

Analyst:

## Method Blank Analysis Batch Quality Control

Extraction Method:EPA 1613BExtraction Date:11/04/22 12:30Cleanup Method:EPA 1613BCleanup Date:11/07/22

| Parameter                              | Result   | Qualifier   | EMPC       | Units    | RL          | MDL                    |
|----------------------------------------|----------|-------------|------------|----------|-------------|------------------------|
| Dioxins & Furans by Isotope Dilution H | RMS - Ma | nsfield Lab | for sample | e(s): 01 | Batch: WG1  | 708207-1               |
| Surrogate/Cleanup Standar              | d        |             |            | %Recove  | y Qualifier | Acceptance<br>Criteria |
| 13C12-2,3,7,8-TCDF                     |          |             |            | 77       |             | 24-169                 |
| 13C12-2,3,7,8-TCDD                     |          |             |            | 85       |             | 25-164                 |
| 13C12-1,2,3,7,8-PeCDF                  |          |             |            | 110      |             | 24-185                 |
| 13C12-2,3,4,7,8-PeCDF                  |          |             |            | 104      |             | 21-178                 |
| 13C12-1,2,3,7,8-PeCDD                  |          |             |            | 140      |             | 25-181                 |
| 13C12-1,2,3,4,7,8-HxCDF                |          |             |            | 86       |             | 26-152                 |
| 13C12-1,2,3,6,7,8-HxCDF                |          |             |            | 83       |             | 26-123                 |
| 13C12-2,3,4,6,7,8-HxCDF                |          |             |            | 78       |             | 28-136                 |
| 13C12-1,2,3,7,8,9-HxCDF                |          |             |            | 89       |             | 29-147                 |
| 13C12-1,2,3,4,7,8-HxCDD                |          |             |            | 85       |             | 32-141                 |
| 13C12-1,2,3,6,7,8-HxCDD                |          |             |            | 89       |             | 28-130                 |
| 13C12-1,2,3,4,6,7,8-HpCDF              |          |             |            | 87       |             | 28-143                 |
| 13C12-1,2,3,4,7,8,9-HpCDF              |          |             |            | 96       |             | 26-138                 |
| 13C12-1,2,3,4,6,7,8-HpCDD              |          |             |            | 106      |             | 23-140                 |
| 13C12-OCDD                             |          |             |            | 116      |             | 17-157                 |
| 37CL4-2,3,7,8-TCDD                     |          |             |            | 124      |             | 35-197                 |



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** TERRAMOR Project Number: 22.2186

Lab Number: L2260165 Report Date: 11/21/22

| Parameter                                   | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD        | RPD<br>Qual Limits |  |
|---------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|------------|--------------------|--|
| Dioxins & Furans by Isotope Dilution HRMS - | Mansfield Lab    | Associated sa | mple(s): 01       | Batch: WG | 1708207-2 WC        | 61708207-3 |                    |  |
| 2,3,7,8-TCDD                                | 102              |               | 103               |           | 67-158              | 1          | 25                 |  |
| 1,2,3,7,8-PeCDD                             | 83               |               | 90                |           | 70-142              | 8          | 25                 |  |
| 1,2,3,4,7,8-HxCDD                           | 94               |               | 107               |           | 70-164              | 13         | 25                 |  |
| 1,2,3,6,7,8-HxCDD                           | 97               |               | 93                |           | 76-134              | 4          | 25                 |  |
| 1,2,3,7,8,9-HxCDD                           | 97               |               | 94                |           | 64-162              | 3          | 25                 |  |
| 1,2,3,4,6,7,8-HpCDD                         | 85               |               | 94                |           | 70-140              | 10         | 25                 |  |
| OCDD                                        | 102              |               | 100               |           | 78-144              | 2          | 25                 |  |
| 2,3,7,8-TCDF                                | 100              |               | 92                |           | 75-158              | 8          | 25                 |  |
| 1,2,3,7,8-PeCDF                             | 89               |               | 88                |           | 80-134              | 1          | 25                 |  |
| 2,3,4,7,8-PeCDF                             | 80               |               | 88                |           | 68-160              | 10         | 25                 |  |
| 1,2,3,4,7,8-HxCDF                           | 100              |               | 99                |           | 72-134              | 1          | 25                 |  |
| 1,2,3,6,7,8-HxCDF                           | 101              |               | 100               |           | 84-130              | 1          | 25                 |  |
| 1,2,3,7,8,9-HxCDF                           | 109              |               | 109               |           | 78-130              | 0          | 25                 |  |
| 2,3,4,6,7,8-HxCDF                           | 103              |               | 100               |           | 70-156              | 3          | 25                 |  |
| 1,2,3,4,6,7,8-HpCDF                         | 109              |               | 117               |           | 82-122              | 7          | 25                 |  |
| 1,2,3,4,7,8,9-HpCDF                         | 106              |               | 110               |           | 78-138              | 4          | 25                 |  |
| OCDF                                        | 89               |               | 94                |           | 63-170              | 5          | 25                 |  |



## Lab Control Sample Analysis Batch Quality Control

Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Dioxins & Furans by Isotope Dilution HRMS - Mansfield Lab Associated sample(s): 01 Batch: WG1708207-2 WG1708207-3

| Surrogate/Cleanup Standard | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------------|-----------------------|------------------------|------------------------|
|                            | 39                    | 58                     | 24-169                 |
| 13C12-2,3,7,8-TCDD         | 43                    | 50                     | 25-164                 |
| 13C12-1,2,3,7,8-PeCDF      | 59                    | 73                     | 24-185                 |
| 13C12-2,3,4,7,8-PeCDF      | 62                    | 70                     | 21-178                 |
| 13C12-1,2,3,7,8-PeCDD      | 82                    | 94                     | 25-181                 |
| 13C12-1,2,3,4,7,8-HxCDF    | 52                    | 63                     | 26-152                 |
| 13C12-1,2,3,6,7,8-HxCDF    | 49                    | 63                     | 26-123                 |
| 13C12-2,3,4,6,7,8-HxCDF    | 49                    | 61                     | 28-136                 |
| 13C12-1,2,3,7,8,9-HxCDF    | 50                    | 64                     | 29-147                 |
| 13C12-1,2,3,4,7,8-HxCDD    | 56                    | 57                     | 32-141                 |
| 13C12-1,2,3,6,7,8-HxCDD    | 56                    | 70                     | 28-130                 |
| 13C12-1,2,3,4,6,7,8-HpCDF  | 49                    | 59                     | 28-143                 |
| 13C12-1,2,3,4,7,8,9-HpCDF  | 54                    | 72                     | 26-138                 |
| 13C12-1,2,3,4,6,7,8-HpCDD  | 66                    | 74                     | 23-140                 |
| 13C12-OCDD                 | 38                    | 91                     | 17-157                 |
| 37CL4-2,3,7,8-TCDD         | 115                   | 109                    | 35-197                 |



# METALS



## Serial\_No:11212218:55

| MOR           | Lab Number:                             | L2260165                                          |
|---------------|-----------------------------------------|---------------------------------------------------|
|               | Report Date:                            | 11/21/22                                          |
| SAMPLE RESULT | S                                       |                                                   |
| 5-01          | Date Collected:                         | 10/27/22 11:10                                    |
| 21027         | Date Received:                          | 10/27/22                                          |
| RTIES,NY      | Field Prep:                             | Not Specified                                     |
|               | MOR<br>5<br>55-01<br>221027<br>RTIES,NY | SAMPLE RESULTS SET Date Collected: Date Received: |

## Sample Depth:

Dw

Matrix:

|                   |             |           |       |        |        | Dilution | Date           | Date           | Prep      | Analytical |        |
|-------------------|-------------|-----------|-------|--------|--------|----------|----------------|----------------|-----------|------------|--------|
| Parameter         | Result      | Qualifier | Units | RL     | MDL    | Factor   | Prepared       | Analyzed       | Method    | Method     | Analys |
| Total Metals - Ma | nsfield Lab |           |       |        |        |          |                |                |           |            |        |
| Arsenic, Total    | 0.0021      |           | mg/l  | 0.0010 | 0.0002 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Barium, Total     | 0.0386      |           | mg/l  | 0.0010 | 0.0002 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Cadmium, Total    | ND          |           | mg/l  | 0.0002 | 0.0001 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Calcium, Total    | 3.92        |           | mg/l  | 0.100  | 0.0350 | 1        | 11/03/22 18:11 | 11/07/22 21:04 | EPA 3005A | 19,200.7   | GCL    |
| Chromium, Total   | 0.0008      | J         | mg/l  | 0.0010 | 0.0002 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Copper, Total     | 0.0178      |           | mg/l  | 0.0010 | 0.0004 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Iron, Total       | 0.486       |           | mg/l  | 0.0500 | 0.0090 | 1        | 11/03/22 18:11 | 11/04/22 19:10 | EPA 3005A | 19,200.7   | DMB    |
| Lead, Total       | ND          |           | mg/l  | 0.0010 | 0.0003 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Manganese, Total  | 0.0522      |           | mg/l  | 0.0100 | 0.0016 | 1        | 11/03/22 18:11 | 11/04/22 19:10 | EPA 3005A | 19,200.7   | DMB    |
| Mercury, Total    | ND          |           | mg/l  | 0.0002 | 0.0001 | 1        | 11/03/22 18:34 | 11/04/22 18:19 | EPA 245.1 | 3,245.1    | DJR    |
| Selenium, Total   | ND          |           | mg/l  | 0.0050 | 0.0017 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Silver, Total     | ND          |           | mg/l  | 0.0004 | 0.0002 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |
| Sodium, Total     | 105.        |           | mg/l  | 2.00   | 0.120  | 1        | 11/03/22 18:11 | 11/04/22 19:10 | EPA 3005A | 19,200.7   | DMB    |
| Zinc, Total       | 0.0098      | J         | mg/l  | 0.0100 | 0.0034 | 1        | 11/03/22 18:11 | 11/10/22 01:05 | EPA 3005A | 3,200.8    | EGW    |



Project Name: TERRAMOR Project Number: 22.2186 
 Lab Number:
 L2260165

 Report Date:
 11/21/22

# Method Blank Analysis Batch Quality Control

| Parameter                | Result Q    | ualifier | Units    | RL      | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-------------|----------|----------|---------|--------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfield | Lab for sar | mple(s): | 01 Batch | n: WG17 | 06322- | 1                  |                  |                  |                      |         |
| Arsenic, Total           | ND          |          | mg/l     | 0.0010  | 0.0002 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Barium, Total            | ND          |          | mg/l     | 0.0010  | 0.0002 | 1                  | 11/03/22 18:11   | 11/09/22 12:01   | 3,200.8              | EGW     |
| Cadmium, Total           | ND          |          | mg/l     | 0.0002  | 0.0001 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Chromium, Total          | 0.0002      | J        | mg/l     | 0.0010  | 0.0002 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Copper, Total            | ND          |          | mg/l     | 0.0010  | 0.0004 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Lead, Total              | ND          |          | mg/l     | 0.0010  | 0.0003 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Selenium, Total          | ND          |          | mg/l     | 0.0050  | 0.0017 | 1                  | 11/03/22 18:11   | 11/09/22 12:01   | 3,200.8              | EGW     |
| Silver, Total            | ND          |          | mg/l     | 0.0004  | 0.0002 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |
| Zinc, Total              | ND          |          | mg/l     | 0.0100  | 0.0034 | 1                  | 11/03/22 18:11   | 11/07/22 19:35   | 3,200.8              | EGW     |

## **Prep Information**

Digestion Method: EPA 3005A

| Parameter             | Result Qualifier        | Units   | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|-------------------------|---------|---------|---------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfi | ield Lab for sample(s): | 01 Batc | h: WG17 | 706324- | 1                  |                  |                  |                      |         |
| Calcium, Total        | ND                      | mg/l    | 0.100   | 0.0350  | 1                  | 11/03/22 18:11   | 11/07/22 19:27   | 19,200.7             | GCL     |
| Iron, Total           | ND                      | mg/l    | 0.0500  | 0.0090  | 1                  | 11/03/22 18:11   | 11/04/22 16:02   | 19,200.7             | DMB     |
| Manganese, Total      | ND                      | mg/l    | 0.0100  | 0.0016  | 1                  | 11/03/22 18:11   | 11/04/22 16:02   | 19,200.7             | DMB     |
| Sodium, Total         | ND                      | mg/l    | 2.00    | 0.120   | 1                  | 11/03/22 18:11   | 11/04/22 16:02   | 19,200.7             | DMB     |

## **Prep Information**

Digestion Method: EPA 3005A

| Parameter               | Result Qualifier      | Units    | RL      | MDL     | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method |     |
|-------------------------|-----------------------|----------|---------|---------|--------------------|------------------|------------------|----------------------|-----|
| Total Metals - Mansfiel | ld Lab for sample(s): | 01 Batch | n: WG17 | 706326- | 1                  |                  |                  |                      |     |
| Mercury, Total          | ND                    | mg/l     | 0.0002  | 0.0001  | 1                  | 11/03/22 18:34   | 11/04/22 18:12   | 3,245.1              | DJR |



Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

# Method Blank Analysis Batch Quality Control

## **Prep Information**

Digestion Method: EPA 245.1



# Lab Control Sample Analysis Batch Quality Control

**Project Name:** TERRAMOR Project Number: 22.2186

Lab Number: L2260165 Report Date: 11/21/22

| rameter                          | LCS<br>%Recovery Qu             | LCSD<br>al %Recovery Qual | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|----------------------------------|---------------------------------|---------------------------|---------------------|-----|------|------------|
| tal Metals - Mansfield Lab Assoc | ciated sample(s): 01 Batch: WG1 | 706322-2                  |                     |     |      |            |
| Arsenic, Total                   | 105                             | -                         | 85-115              | -   |      |            |
| Barium, Total                    | 113                             | -                         | 85-115              | -   |      |            |
| Cadmium, Total                   | 96                              | -                         | 85-115              | -   |      |            |
| Chromium, Total                  | 93                              | -                         | 85-115              | -   |      |            |
| Copper, Total                    | 90                              | -                         | 85-115              | -   |      |            |
| Lead, Total                      | 97                              | -                         | 85-115              | -   |      |            |
| Selenium, Total                  | 102                             | -                         | 85-115              | -   |      |            |
| Silver, Total                    | 96                              | -                         | 85-115              | -   |      |            |
| Zinc, Total                      | 95                              | -                         | 85-115              | -   |      |            |
| tal Metals - Mansfield Lab Assoc | ciated sample(s): 01 Batch: WG1 | 706324-2                  |                     |     |      |            |
| Calcium, Total                   | 105                             | -                         | 85-115              | -   |      |            |
| Iron, Total                      | 95                              | -                         | 85-115              | -   |      |            |
| Manganese, Total                 | 88                              | -                         | 85-115              | -   |      |            |
| Manganese, rotai                 |                                 |                           |                     |     |      |            |

-

85-115

-

100



Mercury, Total

## Matrix Spike Analysis Batch Quality Control

Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

70-130

-

-

-

| Parameter                | Native<br>Sample   | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qual | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD   | Qual | RPD<br>Limits |
|--------------------------|--------------------|-------------|-------------|-----------------|------|--------------|------------------|-------------------------|-------|------|---------------|
| Total Metals - Mansfield | Lab Associated sam | ple(s): 01  | QC Batch II | D: WG1706322    | -3   | QC Sample    | : L2259495-01    | Client ID: MS S         | ample |      |               |
| Arsenic, Total           | 0.0009J            | 0.12        | 0.1259      | 105             |      | -            | -                | 70-130                  | -     |      | 20            |
| Barium, Total            | 0.0155             | 2           | 2.004       | 99              |      | -            | -                | 70-130                  | -     |      | 20            |
| Cadmium, Total           | ND                 | 0.053       | 0.0491      | 93              |      | -            | -                | 70-130                  | -     |      | 20            |
| Chromium, Total          | 0.0002J            | 0.2         | 0.1777      | 89              |      | -            | -                | 70-130                  | -     |      | 20            |
| Copper, Total            | 0.0192             | 0.25        | 0.2297      | 84              |      | -            | -                | 70-130                  | -     |      | 20            |
| Lead, Total              | 0.0026             | 0.53        | 0.5049      | 95              |      | -            | -                | 70-130                  | -     |      | 20            |
| Selenium, Total          | ND                 | 0.12        | 0.1334      | 111             |      | -            | -                | 70-130                  | -     |      | 20            |
| Silver, Total            | ND                 | 0.05        | 0.0472      | 94              |      | -            | -                | 70-130                  | -     |      | 20            |
| Zinc, Total              | 0.0774             | 0.5         | 0.4960      | 84              |      | -            | -                | 70-130                  | -     |      | 20            |
| Total Metals - Mansfield | Lab Associated sam | ple(s): 01  | QC Batch II | D: WG1706322    | -5   | QC Sample    | : L2259862-07    | Client ID: MS S         | ample |      |               |
| Arsenic, Total           | 0.0009J            | 0.12        | 0.1290      | 108             |      | -            | -                | 70-130                  | -     |      | 20            |
| Barium, Total            | 2.562              | 2           | 5.030       | 123             |      | -            | -                | 70-130                  | -     |      | 20            |
| Cadmium, Total           | ND                 | 0.053       | 0.0568      | 107             |      | -            | -                | 70-130                  | -     |      | 20            |
| Chromium, Total          | 0.0006J            | 0.2         | 0.2050      | 102             |      | -            | -                | 70-130                  | -     |      | 20            |
| Copper, Total            | 0.0053             | 0.25        | 0.2616      | 102             |      | -            | -                | 70-130                  | -     |      | 20            |
| Lead, Total              | ND                 | 0.53        | 0.5079      | 96              |      | -            | -                | 70-130                  | -     |      | 20            |
| Selenium, Total          | 0.0027J            | 0.12        | 0.1297      | 108             |      | -            | -                | 70-130                  | -     |      | 20            |
| Silver, Total            | ND                 | 0.05        | 0.0498      | 100             |      | -            | -                | 70-130                  | -     |      | 20            |

98



20

Zinc, Total

0.0058J

0.5

0.4915

# Matrix Spike Analysis Batch Quality Control

Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

| arameter                   | Native<br>Sample   | MS<br>Added | MS<br>Found | MS<br>%Recovery |     | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Limits | RPD     | RPD<br>Limits |
|----------------------------|--------------------|-------------|-------------|-----------------|-----|--------------|------------------|--------------------|---------|---------------|
| Total Metals - Mansfield L | _ab Associated sam | nple(s): 01 | QC Batch    | ID: WG170632    | 4-3 | QC Sample    | : L2259495-01    | Client ID: MS Sa   | ample   |               |
| Calcium, Total             | 58.9               | 10          | 68.6        | 97              |     | -            | -                | 75-125             | -       | 20            |
| Iron, Total                | 0.0168J            | 1           | 0.999       | 100             |     | -            | -                | 75-125             | -       | 20            |
| Manganese, Total           | 0.003J             | 0.5         | 0.458       | 92              |     | -            | -                | 75-125             | -       | 20            |
| Sodium, Total              | 68.4               | 10          | 79.3        | 109             |     | -            | -                | 75-125             | -       | 20            |
| Fotal Metals - Mansfield L | _ab Associated sam | nple(s): 01 | QC Batch    | ID: WG170632    | 4-7 | QC Sample    | : L2259862-07    | Client ID: MS Sa   | ample   |               |
| Calcium, Total             | 30.2               | 10          | 40.7        | 105             |     | -            | -                | 75-125             | -       | 20            |
| Iron, Total                | 0.166              | 1           | 1.09        | 92              |     | -            | -                | 75-125             | -       | 20            |
| Manganese, Total           | 0.0526             | 0.5         | 0.474       | 84              |     | -            | -                | 75-125             | -       | 20            |
| Sodium, Total              | 225.               | 10          | 221         | 0               | Q   | -            | -                | 75-125             | -       | 20            |
| Total Metals - Mansfield L | _ab Associated sam | nple(s): 01 | QC Batch    | ID: WG170632    | 6-3 | QC Sample    | : L2260165-01    | Client ID: LOT-1   | -221027 |               |
| Mercury, Total             | ND                 | 0.005       | 0.0050      | 99              |     | -            | -                | 70-130             | -       | 20            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186

Lab Number: L2260165 11/21/22 Report Date:

| Parameter                                             | Native Sample Du         | plicate Sample | Units       | RPD        | Qual       | RPD Limits |
|-------------------------------------------------------|--------------------------|----------------|-------------|------------|------------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1706322-6 | QC Sample:     | L2259862-07 | Client ID: | DUP Sample |            |
| Arsenic, Total                                        | 0.0009J                  | 0.0008J        | mg/l        | NC         |            | 20         |
| Barium, Total                                         | 2.562                    | 2.572          | mg/l        | 0          |            | 20         |
| Cadmium, Total                                        | ND                       | ND             | mg/l        | NC         |            | 20         |
| Chromium, Total                                       | 0.0006J                  | 0.0008J        | mg/l        | NC         |            | 20         |
| Copper, Total                                         | 0.0053                   | 0.0053         | mg/l        | 0          |            | 20         |
| Lead, Total                                           | ND                       | ND             | mg/l        | NC         |            | 20         |
| Selenium, Total                                       | 0.0027J                  | 0.0025J        | mg/l        | NC         |            | 20         |
| Silver, Total                                         | ND                       | ND             | mg/l        | NC         |            | 20         |
| Zinc, Total                                           | 0.0058J                  | 0.0052J        | mg/l        | NC         |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1706324-4 | QC Sample:     | L2259495-01 | Client ID: | DUP Sample |            |
| Iron, Total                                           | 0.0168J                  | 0.0151J        | mg/l        | NC         |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1706324-4 | QC Sample:     | L2259495-01 | Client ID: | DUP Sample |            |
| Calcium, Total                                        | 58.9                     | 59.3           | mg/l        | 1          |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1706324-8 | QC Sample:     | L2259862-07 | Client ID: | DUP Sample |            |
| Iron, Total                                           | 0.166                    | 0.169          | mg/l        | 2          |            | 20         |
| Manganese, Total                                      | 0.0526                   | 0.0534         | mg/l        | 2          |            | 20         |
| Sodium, Total                                         | 225.                     | 224            | mg/l        | 0          |            | 20         |
|                                                       |                          |                |             |            |            |            |



| Project Name:TERRAMORProject Number:22.2186 |                              | Lab Duplicate Analysis<br>Batch Quality Control |             |               |             |            | Lab Number:<br>Report Date: | L2200103   |
|---------------------------------------------|------------------------------|-------------------------------------------------|-------------|---------------|-------------|------------|-----------------------------|------------|
| Parameter                                   |                              | Native Samp                                     | le Dup      | licate Sample | Units       | RPD        |                             | RPD Limits |
| Total Metals - Mansfield                    | Lab Associated sample(s): 01 | QC Batch ID:                                    | WG1706324-8 | QC Sample:    | L2259862-07 | Client ID: | DUP Sample                  |            |
| Calcium, Total                              |                              | 30.2                                            |             | 30.2          | mg/l        | 0          |                             | 20         |

| Total Metals - Mansfield Lab Associated sample(s): 0 | QC Batch ID: WG1706326-4 | QC Sample: L2260165-01 Client ID: LOT-1-221027 |
|------------------------------------------------------|--------------------------|------------------------------------------------|

| Mercury, Total | ND | ND | mg/l | NC | 20 |
|----------------|----|----|------|----|----|
| -              |    |    | -    |    |    |



# INORGANICS & MISCELLANEOUS



Serial\_No:11212218:55

L2260165

11/21/22

Lab Number:

**Report Date:** 

Project Name: TERRAMOR

Dw

Project Number: 22.2186

### SAMPLE RESULTS

| Lab ID:          | L2260165-01   | Date Collected: | 10/27/22 11:10 |
|------------------|---------------|-----------------|----------------|
| Client ID:       | LOT-1-221027  | Date Received:  | 10/27/22       |
| Sample Location: | SAUGERTIES,NY | Field Prep:     | Not Specified  |

Sample Depth: Matrix:

| Parameter             | Result Qu           | ualifier Units | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|---------------------|----------------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V | Westborough Lab     |                |       |       |                    |                  |                  |                      |         |
| Turbidity             | 21                  | NTU            | 0.20  | 0.20  | 1                  | -                | 10/28/22 18:56   | 44,180.1             | AAS     |
| Odor @ 60 C           | NO ODOR             | TON            | 1     | 1.0   | 1                  | -                | 10/28/22 09:15   | 121,2150B            | KEP     |
| Color, Apparent       | N/A                 | A.P.C.U.       | 5     | 5.0   | 1                  | -                | 10/28/22 17:27   | 121,2120B            | AAS     |
| Alkalinity, Total     | 145.                | mg CaCO3/L     | 2.00  | NA    | 1                  | -                | 11/07/22 07:56   | 121,2320B            | MT      |
| Cyanide, Total        | ND                  | mg/l           | 0.005 | 0.001 | 1                  | 10/31/22 03:20   | 11/01/22 14:48   | 121,4500CN-CE        | JER     |
| Nitrogen, Nitrite     | ND                  | mg/l           | 0.050 | 0.014 | 1                  | -                | 10/29/22 02:43   | 44,353.2             | KAF     |
| Nitrogen, Nitrate     | ND                  | mg/l           | 0.10  | 0.023 | 1                  | -                | 10/29/22 02:43   | 44,353.2             | KAF     |
| Bacteria in Water - W | estborough Lab      |                |       |       |                    |                  |                  |                      |         |
| Coliform, Total       | Positive            | col/100ml      | -     | NA    | 1                  | -                | 10/28/22 13:25   | 121,9223B            | DRV     |
| Escherichia Coli      | Negative            | col/100ml      | -     | NA    | 1                  | -                | 10/28/22 13:25   | 121,9223B            | DRV     |
| Anions by Ion Chrom   | atography - Westbor | rough Lab      |       |       |                    |                  |                  |                      |         |
| Chloride              | 53.8                | mg/l           | 5.00  | 0.839 | 10                 | -                | 11/14/22 04:49   | 44,300.0             | JT,     |
| Fluoride              | 0.096               | mg/l           | 0.050 | 0.037 | 1                  | -                | 11/13/22 21:00   | 44,300.0             | JT,     |
| Sulfate               | 18.2                | mg/l           | 1.00  | 0.454 | 1                  | -                | 11/13/22 21:00   | 44,300.0             | JT,     |



Project Name:TERRAMORProject Number:22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

# Method Blank Analysis Batch Quality Control

| Parameter               | Result Qualifier      | · Units       | RL       | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-------------------------|-----------------------|---------------|----------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 05368-1            |                  |                  |                      |         |
| Odor                    | NO ODOR               | TON           | 1        | 1.0   | 1                  | -                | 10/28/22 09:15   | 121,2150B            | KEP     |
| Bacteria in Water - Wes | stborough Lab for sam | ple(s): 01 [  | Batch: \ | NG170 | 5495-1             |                  |                  |                      |         |
| Coliform, Total         | Negative              | col/100ml     | -        | NA    | 1                  | -                | 10/28/22 13:25   | 121,9223B            | DRV     |
| Escherichia Coli        | Negative              | col/100ml     | -        | NA    | 1                  | -                | 10/28/22 13:25   | 121,9223B            | DRV     |
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 05599-1            |                  |                  |                      |         |
| Turbidity               | ND                    | NTU           | 0.20     | 0.20  | 1                  | -                | 10/28/22 18:56   | 44,180.1             | AAS     |
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 05659-1            |                  |                  |                      |         |
| Nitrogen, Nitrite       | ND                    | mg/l          | 0.050    | 0.014 | 1                  | -                | 10/29/22 02:21   | 44,353.2             | KAF     |
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 05664-1            |                  |                  |                      |         |
| Nitrogen, Nitrate       | ND                    | mg/l          | 0.10     | 0.023 | 1                  | -                | 10/29/22 02:28   | 44,353.2             | KAF     |
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 06049-1            |                  |                  |                      |         |
| Cyanide, Total          | ND                    | mg/l          | 0.005    | 0.001 | 1                  | 10/31/22 03:20   | 11/01/22 14:40   | 121,4500CN-CI        | E JER   |
| General Chemistry - We  | estborough Lab for sa | mple(s): 01   | Batch:   | WG17  | 08884-1            |                  |                  |                      |         |
| Alkalinity, Total       | ND                    | mg CaCO3/L    | 2.00     | NA    | 1                  | -                | 11/07/22 07:56   | 121,2320B            | MT      |
| Anions by Ion Chromate  | ography - Westboroug  | h Lab for sar | nple(s): | 01 B  | atch: WG           | 1711808-1        |                  |                      |         |
| Fluoride                | ND                    | mg/l          | 0.050    | 0.037 | 1                  | -                | 11/13/22 20:17   | 44,300.0             | JT,     |
| Sulfate                 | ND                    | mg/l          | 1.00     | 0.454 | 1                  | -                | 11/13/22 20:17   | 44,300.0             | JT,     |
| Anions by Ion Chromate  | ography - Westboroug  | h Lab for sar | mple(s): | 01 B  | atch: WG           | 1711810-1        |                  |                      |         |
| Sulfate                 | ND                    | mg/l          | 1.00     | 0.454 | 1                  | -                | 11/13/22 19:09   | 44,300.0             | JT,     |
| Anions by Ion Chromate  | ography - Westboroud  | h Lab for sar | nple(s): | 01 B  | atch: WG           | 1711810-1        |                  |                      |         |
| Chloride                | 0.140 J               | mg/l          | 0.500    | 0.083 | 1                  | -                | 11/13/22 19:09   | 44,300.0             | JT,     |



# Lab Control Sample Analysis

**Batch Quality Control** 

 Lab Number:
 L2260165

 Report Date:
 11/21/22

LCS LCSD %Recovery %Recovery %Recovery Limits RPD **RPD Limits** Qual Parameter Qual Qual General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1705599-2 Turbidity 105 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1705659-2 Nitrogen, Nitrite 96 90-110 20 General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1705664-2 Nitrogen, Nitrate 98 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1706049-2 Cyanide, Total 103 90-110 -General Chemistry - Westborough Lab Associated sample(s): 01 Batch: WG1708884-2 Alkalinity, Total 93 90-110 10 Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 Batch: WG1711808-2 Fluoride 100 -90-110 Sulfate 100 90-110 -Anions by Ion Chromatography - Westborough Lab Associated sample(s): 01 Batch: WG1711810-2 Chloride 102 -90-110 Sulfate 100 90-110 -



**Project Name:** 

**Project Number:** 

TERRAMOR

22.2186

# Matrix Spike Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186

Lab Number: L2260165 **Report Date:** 11/21/22

| Parameter                           | Native<br>Sample  | MS<br>Added | MS<br>Found | MS<br>%Recovery | Qual      | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits |        |            | RPD<br>Limits |
|-------------------------------------|-------------------|-------------|-------------|-----------------|-----------|--------------|------------------|-------------------------|--------|------------|---------------|
| General Chemistry - Westb           | orough Lab Asso   | ciated sam  | ole(s): 01  | QC Batch ID: \  | WG17056   | 659-4        | QC Sample: L226  | 60633-01 Client         | ID: MS | S Sample   | 9             |
| Nitrogen, Nitrite                   | ND                | 4           | 4.0         | 100             |           | -            | -                | 80-120                  | -      |            | 20            |
| General Chemistry - Westb           | orough Lab Asso   | ciated sam  | ole(s): 01  | QC Batch ID: \  | WG17056   | 664-4        | QC Sample: L220  | 60633-01 Client         | ID: MS | S Sample   | 9             |
| Nitrogen, Nitrate                   | 45.               | 4           | 47          | 50              | Q         | -            | -                | 83-113                  | -      |            | 6             |
| General Chemistry - Westb           | orough Lab Asso   | ciated sam  | ole(s): 01  | QC Batch ID: \  | WG17060   | 049-3        | QC Sample: L220  | 60698-01 Client         | ID: MS | S Sample   | 9             |
| Cyanide, Total                      | ND                | 0.2         | 0.220       | 110             |           | -            | -                | 90-110                  | -      |            | 30            |
| General Chemistry - Westb           | orough Lab Asso   | ciated sam  | ole(s): 01  | QC Batch ID: \  | WG17088   | 384-4        | QC Sample: L226  | 60334-03 Client         | ID: MS | S Sample   | 9             |
| Alkalinity, Total                   | 37.0              | 100         | 154         | 117             | Q         | -            | -                | 86-116                  | -      |            | 10            |
| Anions by Ion Chromatogra           | aphy - Westborou  | gh Lab Ass  | ociated sam | nple(s): 01 Q   | C Batch I | D: WG1       | 711808-3 QC S    | Sample: L226016         | 5-01 C | Client ID: | LOT-1         |
| Fluoride                            | 0.096             | 0.4         | 0.492       | 99              |           | -            | -                | 90-110                  | -      |            | 15            |
| Sulfate                             | 18.2              | 8           | 25.4        | 90              |           | -            | -                | 90-110                  | -      |            | 20            |
| Anions by Ion Chromatogra<br>Sample | aphy - Westborouç | gh Lab Ass  | ociated sam | nple(s): 01 Q   | C Batch I | D: WG1       | 711810-3 QC S    | Sample: L226166         | 2-01 C | Client ID: | MS            |
| Chloride                            | 159.              | 40          | 200         | 102             |           | -            | -                | 90-110                  | -      |            | 18            |
| Sulfate                             | 73.6              | 8           | 79.1        | 71              | Q         | -            | -                | 90-110                  | -      |            | 20            |



# Lab Duplicate Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: 22.2186

Lab Number:

L2260165 11/21/22 Report Date:

| Parameter                                              | Native Sample                  | Duplicate Samp   | le Units I          | RPD Qua        | I RPD Limits        |
|--------------------------------------------------------|--------------------------------|------------------|---------------------|----------------|---------------------|
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1705368-2      | QC Sample: L2260165 | -01 Client ID: | LOT-1-221027        |
| Odor                                                   | NO ODOR                        | NO ODOR          | TON                 | NC             |                     |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1705578-1      | QC Sample: L2260165 | -01 Client ID: | LOT-1-221027        |
| Color, Apparent                                        | N/A                            | N/A              | A.P.C.U.            | NC             |                     |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1705599-3      | QC Sample: L2260425 | -18 Client ID: | DUP Sample          |
| Turbidity                                              | 0.39                           | 0.37             | NTU                 | 5              | 13                  |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1705659-3      | QC Sample: L2260633 | -01 Client ID: | DUP Sample          |
| Nitrogen, Nitrite                                      | ND                             | ND               | mg/l                | NC             | 20                  |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1705664-3      | QC Sample: L2260633 | -01 Client ID: | DUP Sample          |
| Nitrogen, Nitrate                                      | 45.                            | 45               | mg/l                | 0              | 6                   |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1706049-4      | QC Sample: L2260698 | -02 Client ID: | DUP Sample          |
| Cyanide, Total                                         | ND                             | 0.001J           | mg/l                | NC             | 30                  |
| General Chemistry - Westborough Lab Associa            | ted sample(s): 01 QC Batch ID: | WG1708884-3      | QC Sample: L2260334 | -03 Client ID: | DUP Sample          |
| Alkalinity, Total                                      | 37.0                           | 39.4             | mg CaCO3/L          | 6              | 10                  |
| Anions by Ion Chromatography - Westborough L<br>221027 | ab Associated sample(s): 01 C  | C Batch ID: WG17 | 711808-4 QC Sample  | e: L2260165-0  | 01 Client ID: LOT-1 |
| Fluoride                                               | 0.096                          | 0.094            | mg/l                | 2              | 15                  |
| Sulfate                                                | 18.2                           | 18.1             | mg/l                | 1              | 20                  |



| Project Name:<br>Project Number:  | TERRAMOR<br>22.2186      | L                        | ab Duplicate Analy<br>Batch Quality Control | sis    | Lab Num<br>Report Da               |            | L2260165<br>11/21/22 |
|-----------------------------------|--------------------------|--------------------------|---------------------------------------------|--------|------------------------------------|------------|----------------------|
| Parameter                         |                          | Native Sample            | Duplicate Sample                            | Unite  | s RPD                              | RPD        | ) Limits             |
| Anions by Ion Chromatog<br>Sample | graphy - Westborough Lab | Associated sample(s): 01 | QC Batch ID: WG171181                       | 10-4 C | QC Sample: L2261662-0 <sup>-</sup> | 1 Client I | D: DUP               |
| Sulfate                           |                          | 73.6                     | 73.9                                        | mg/l   | 1                                  |            | 20                   |
| Anions by Ion Chromatog<br>Sample | graphy - Westborough Lab | Associated sample(s): 01 | QC Batch ID: WG171181                       | 10-4 C | QC Sample: L2261662-0 <sup>-</sup> | 1 Client I | D: DUP               |
| Chloride                          |                          | 159.                     | 158                                         | mg/l   | 1                                  |            | 18                   |



# Project Name:TERRAMORProject Number:22.2186

### Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

### **Cooler Information**

| Cooler | Custody Seal |
|--------|--------------|
| A      | Absent       |
| В      | Absent       |

| Container Information |                                        |        | Initial | Final | Temp |      |        | Frozen    |                                                                                                                                                                                                    |
|-----------------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID          | Container Type                         | Cooler | рН      | pН    |      | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                        |
| L2260165-01A          | Vial Ascorbic Acid/HCl preserved       | В      | NA      |       | 3.8  | Y    | Absent |           | 524.2(14)                                                                                                                                                                                          |
| L2260165-01B          | Vial Ascorbic Acid/HCl preserved       | В      | NA      |       | 3.8  | Y    | Absent |           | 524.2(14)                                                                                                                                                                                          |
| L2260165-01C          | Vial Na2S2O3 preserved                 | В      | NA      |       | 3.8  | Y    | Absent |           | 504(14)                                                                                                                                                                                            |
| L2260165-01D          | Vial Na2S2O3 preserved                 | В      | NA      |       | 3.8  | Y    | Absent |           | 504(14)                                                                                                                                                                                            |
| L2260165-01E          | Bacteria Cup Na2S2O3 preserved         | А      | NA      |       | 2.0  | Y    | Absent |           | T-COLI-C(1.25)                                                                                                                                                                                     |
| L2260165-01F          | Bacteria Cup Na2S2O3 preserved         | А      | NA      |       | 2.0  | Y    | Absent |           | T-COLI-C(1.25)                                                                                                                                                                                     |
| L2260165-01G          | Plastic 250ml unpreserved/No Headspace | А      | NA      |       | 2.0  | Y    | Absent |           | ALK-T-2320(14)                                                                                                                                                                                     |
| L2260165-01H          | Plastic 250ml HNO3 preserved           | В      | <2      | <2    | 3.8  | Y    | Absent |           | CD-2008T(180),CA-UI(180),ZN-<br>2008T(180),FE-UI(180),CU-2008T(180),HG-<br>U(28),SE-2008T(180),AG-2008T(180),AS-<br>2008T(180),MN-UI(180),NA-UI(180),BA-<br>2008T(180),CR-2008T(180),PB-2008T(180) |
| L2260165-01I          | Plastic 250ml NaOH preserved           | В      | >12     | >12   | 3.8  | Y    | Absent |           | TCN-4500(14)                                                                                                                                                                                       |
| L2260165-01J          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01K          | Plastic 950ml unpreserved              | A      | 7       | 7     | 2.0  | Y    | Absent |           | SO4-300(28),CL-300(28),F-300(28),TURB-<br>180(2),NO2-353(2),NO3-353(2)                                                                                                                             |
| L2260165-01L          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01M          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01N          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01O          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01P          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |
| L2260165-01Q          | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 2.0  | Y    | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180)                                                                                                                             |



# Project Name:TERRAMORProject Number:22.2186

# Serial\_No:11212218:55 *Lab Number:* L2260165 *Report Date:* 11/21/22

| Container Info | Initial                                | Final  | Temp |    |     | Frozen |        |           |                                                                        |
|----------------|----------------------------------------|--------|------|----|-----|--------|--------|-----------|------------------------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | pН   | pН |     | Pres   | Seal   | Date/Time | Analysis(*)                                                            |
| L2260165-01R   | Plastic 950ml HNO3 preserved           | А      | <2   | <2 | 2.0 | Y      | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180) |
| L2260165-01S   | Plastic 950ml HNO3 preserved           | А      | <2   | <2 | 2.0 | Y      | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180) |
| L2260165-01T   | Plastic 950ml HNO3 preserved           | А      | <2   | <2 | 2.0 | Y      | Absent |           | SUB-RA228(180),SUB-URANIUM(180),SUB-<br>ALPHA/BETA(180),SUB-RA226(180) |
| L2260165-01U   | Amber 500ml unpreserved                | В      | 7    | 7  | 3.8 | Y      | Absent |           | A2-DIOXIN-1613(365)                                                    |
| L2260165-01V   | Amber 500ml unpreserved                | В      | 7    | 7  | 3.8 | Y      | Absent |           | A2-DIOXIN-1613(365)                                                    |
| L2260165-01W   | Amber 500ml NaSulfite/NaHSO4 preserved | В      | 4    | 4  | 3.8 | Ν      | Absent |           | A2-14DIOXANE-522(28)                                                   |
| L2260165-01X   | Amber 500ml NaSulfite/NaHSO4 preserved | В      | 4    | 4  | 3.8 | Ν      | Absent |           | A2-14DIOXANE-522(28)                                                   |
| L2260165-01Y   | Amber 1000ml unpreserved               | В      | 7    | 7  | 3.8 | Y      | Absent |           | COLOR-A-2120(2),ODOR-2150(1)                                           |
| L2260165-01Z   | Plastic 250ml Trizma preserved         | А      | NA   |    | 2.0 | Y      | Absent |           | A2-537.1-PFOA/PFOS(14)                                                 |
| L2260165-01Z1  | Plastic 250ml Trizma preserved         | А      | NA   |    | 2.0 | Y      | Absent |           | A2-537.1-PFOA/PFOS(14)                                                 |
| L2260165-02A   | Plastic 250ml Trizma preserved         | А      | NA   |    | 2.0 | Y      | Absent |           | A2-537.1-PFOA/PFOS(14)                                                 |
| L2260165-02B   | Plastic 250ml Trizma preserved         | NA     | NA   |    |     | Y      | Absent |           | A2-537.1-PFOA/PFOS(14)                                                 |
| L2260165-03A   | Vial Ascorbic Acid/HCl preserved       | В      | NA   |    | 3.8 | Y      | Absent |           | 524.2(14)                                                              |
| L2260165-03B   | Vial Ascorbic Acid/HCl preserved       | В      | NA   |    | 3.8 | Y      | Absent |           | 524.2(14)                                                              |
| L2260165-03C   | Vial Na2S2O3 preserved                 | В      | NA   |    | 3.8 | Y      | Absent |           | 504(14)                                                                |
| L2260165-03D   | Vial Na2S2O3 preserved                 | В      | NA   |    | 3.8 | Y      | Absent |           | 504(14)                                                                |



## Project Name: TERRAMOR

# Project Number: 22.2186

## Serial\_No:11212218:55 Lab Number: L2260165 Report Date: 11/21/22

## PFAS PARAMETER SUMMARY

| Parameter                                                                                               | Acronym                    | CAS Number  |
|---------------------------------------------------------------------------------------------------------|----------------------------|-------------|
| PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)                                                                 |                            |             |
| Perfluorooctadecanoic Acid                                                                              | PFODA                      | 16517-11-6  |
| Perfluorohexadecanoic Acid                                                                              | PFHxDA                     | 67905-19-5  |
| Perfluorotetradecanoic Acid                                                                             | PFTA/PFTeDA                | 376-06-7    |
| Perfluorotridecanoic Acid                                                                               | PFTrDA                     | 72629-94-8  |
| Perfluorododecanoic Acid                                                                                | PFDoA                      | 307-55-1    |
| Perfluoroundecanoic Acid                                                                                | PFUnA                      | 2058-94-8   |
| Perfluorodecanoic Acid                                                                                  | PFDA                       | 335-76-2    |
| Perfluorononanoic Acid                                                                                  | PFNA                       | 375-95-1    |
| Perfluorooctanoic Acid                                                                                  | PFOA                       | 335-67-1    |
| Perfluoroheptanoic Acid                                                                                 | PFHpA                      | 375-85-9    |
| Perfluorohexanoic Acid                                                                                  | PFHxA                      | 307-24-4    |
| Perfluoropentanoic Acid                                                                                 | PFPeA                      | 2706-90-3   |
| Perfluorobutanoic Acid                                                                                  | PFBA                       | 375-22-4    |
| PERFLUOROALKYL SULFONIC ACIDS (PFSAs)                                                                   |                            |             |
| Perfluorododecanesulfonic Acid                                                                          | PFDoDS/PFDoS               | 79780-39-5  |
| Perfluorodecanesulfonic Acid                                                                            | PFDS                       | 335-77-3    |
| Perfluorononanesulfonic Acid                                                                            | PFNS                       | 68259-12-1  |
| Perfluorooctanesulfonic Acid                                                                            | PFOS                       | 1763-23-1   |
| Perfluoroheptanesulfonic Acid                                                                           | PFHpS                      | 375-92-8    |
| Perfluorohexanesulfonic Acid                                                                            | PFHxS                      | 355-46-4    |
| Perfluoropentanesulfonic Acid                                                                           | PFPeS                      | 2706-91-4   |
| Perfluorobutanesulfonic Acid                                                                            | PFBS                       | 375-73-5    |
| Perfluoropropanesulfonic Acid                                                                           | PFPrS                      | 423-41-6    |
| FLUOROTELOMERS                                                                                          |                            |             |
| 1H,1H,2H,2H-Perfluorododecanesulfonic Acid                                                              | 10:2FTS                    | 120226-60-0 |
| 1H,1H,2H,2H-Perfluorodecanesulfonic Acid                                                                | 8:2FTS                     | 39108-34-4  |
| 1H,1H,2H,2H-Perfluorooctanesulfonic Acid                                                                | 6:2FTS                     | 27619-97-2  |
| 1H,1H,2H,2H-Perfluorohexanesulfonic Acid                                                                | 4:2FTS                     | 757124-72-4 |
| PERFLUOROALKANE SULFONAMIDES (FASAs)                                                                    |                            |             |
| Perfluorooctanesulfonamide                                                                              | FOSA/PFOSA                 | 754-91-6    |
| N-Ethyl Perfluorooctane Sulfonamide                                                                     | NEtFOSA                    | 4151-50-2   |
| N-Methyl Perfluorooctane Sulfonamide                                                                    | NMeFOSA                    | 31506-32-8  |
| PERFLUOROALKANE SULFONYL SUBSTANCES                                                                     | NECEOOF                    |             |
| N-Ethyl Perfluorooctanesulfonamido Ethanol                                                              | NEtFOSE                    | 1691-99-2   |
| N-Methyl Perfluorooctanesulfonamido Ethanol                                                             | NMeFOSE                    | 24448-09-7  |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid                                                           | NEtFOSAA                   | 2991-50-6   |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid                                                          | NMeFOSAA                   | 2355-31-9   |
| PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS                                                         |                            |             |
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid                                 | HFPO-DA                    | 13252-13-6  |
| 4,8-Dioxa-3h-Perfluorononanoic Acid                                                                     | ADONA                      | 919005-14-4 |
| CHLORO-PERFLUOROALKYL SULFONIC ACIDS                                                                    |                            | 700054 00 0 |
| 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid<br>9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid | 11CI-PF3OUdS<br>9CI-PF3ONS | 763051-92-9 |
|                                                                                                         | 901-FT 30113               | 756426-58-1 |
| PERFLUOROETHER SULFONIC ACIDS (PFESAs)                                                                  |                            |             |
| Perfluoro(2-Ethoxyethane)Sulfonic Acid                                                                  | PFEESA                     | 113507-82-7 |
| PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)                                                      |                            |             |
| Perfluoro-3-Methoxypropanoic Acid                                                                       | PFMPA                      | 377-73-1    |
| Perfluoro-4-Methoxybutanoic Acid                                                                        | PFMBA                      | 863090-89-5 |
| Nonafluoro-3,6-Dioxaheptanoic Acid                                                                      | NFDHA                      | 151772-58-6 |



Project Name: TERRAMOR

Project Number: 22.2186

## PFAS PARAMETER SUMMARY

| Parameter                              | Acronym | CAS Number  |
|----------------------------------------|---------|-------------|
| FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs) |         |             |
| 3-Perfluoroheptyl Propanoic Acid       | 7:3FTCA | 812-70-4    |
| 2H,2H,3H,3H-Perfluorooctanoic Acid     | 5:3FTCA | 914637-49-3 |
| 3-Perfluoropropyl Propanoic Acid       | 3:3FTCA | 356-02-5    |

## Serial\_No:11212218:55

# Project Name: TERRAMOR

Project Number: 22.2186

## Lab Number: L2260165

## **Report Date:** 11/21/22

#### GLOSSARY

#### Acronyms

| Acronyms |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.                                                                                                                                   |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: DU Report with 'J' Qualifiers



### Project Name: TERRAMOR

Project Number: 22.2186

## Lab Number: L2260165 Report Date: 11/21/22

#### Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers



### Project Name: TERRAMOR

### Project Number: 22.2186

### Serial\_No:11212218:55

Lab Number: L2260165

**Report Date:** 11/21/22

#### Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)



Project Name: TERRAMOR Project Number: 22.2186

 Lab Number:
 L2260165

 Report Date:
 11/21/22

#### REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 120 Determination of 1,4-Dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography/Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM). EPA Method 522, EPA/600/R-08/101. Version 1.0, September 2008.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 132 Method 1613 Revision B: Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. USEPA Office of Water, October 1994.
- 133 Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D/8270E:** <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

| Westborough, MA 01581<br>8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NEW YORK<br>CHAIN OF<br>CUSTODY<br>Mansfield, MA 02048<br>320 Forbes Blvd                                       | Service Centers<br>Mahwah, NJ 07430: 35 Whitney Rd, Suite 5<br>Albany, NY 12205: 14 Walker Way<br>Tonawanda, NY 14150: 275 Cooper Ave, Suite 105<br>Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                | Pag          | je<br>of <mark>/</mark> | Date Rec'd<br>in Lab [ |                        |              |         | 6 28/22                                     |                                                       |                                                                                                                                                                                                                     | ALPHA Job #<br>L 2260165<br>Billing Information                   |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------------------|------------------------|------------------------|--------------|---------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------|
| TEL: 508-898-9220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEL: 508-822-9300                                                                                               | Project Name: Terra mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                |              |                         | ASP-A ASP-B            |                        |              |         |                                             |                                                       | Same as Client Info                                                                                                                                                                                                 |                                                                   |                       |
| FAX: 508-898-9193 FAX: 508-822-3288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 | Project Location: Sauce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                | NV             |              | 1000                    | EQuIS (1 File)         |                        |              |         |                                             |                                                       | File                                                                                                                                                                                                                | PO#                                                               |                       |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S and the second                                                                                                | Project # 22.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                |              |                         | 18                     | Othe                   |              | ne)     | L .                                         | 20013 (4                                              | rile)                                                                                                                                                                                                               | POB                                                               |                       |
| Client: C.T. M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ale                                                                                                             | (Use Project name as Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                |                |              |                         | Real                   | -                      | Requ         |         |                                             | 1                                                     | The Property                                                                                                                                                                                                        | Discontration                                                     | _                     |
| Address: 50 Centu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | Project Manager: Jo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | the second s | in t           | _            |                         | Negi                   | NY TO                  |              | reme    |                                             | M D + 122                                             |                                                                                                                                                                                                                     | Disposal Site Information                                         |                       |
| Latham, NY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12110                                                                                                           | ALPHAQuote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lipp                                                                                                           | ert            |              |                         | 1 🗄                    |                        |              |         | _                                           | IY Part 37                                            | 5                                                                                                                                                                                                                   | Please identify below location<br>applicable disposal facilities. | of                    |
| Phone: 518 786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 | Turn-Around Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                |              |                         |                        | AWQ Standards NY CP-51 |              |         |                                             |                                                       |                                                                                                                                                                                                                     |                                                                   |                       |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 100                                                                                                           | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M                                                                                                              |                |              |                         | 1 🗄                    |                        |              |         |                                             | ther                                                  |                                                                                                                                                                                                                     | Disposal Facility:                                                |                       |
| Email: J. dipport 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Octube into                                                                                                     | Rush (only if pre approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                |              |                         | NY Unrestricted Use    |                        |              |         |                                             |                                                       |                                                                                                                                                                                                                     |                                                                   |                       |
| Contraction of the local division of the loc | the second se | And and a second s |                                                                                                                | # of Days      | 5            |                         |                        | _                      | Sewer D      | Dischar | ge                                          |                                                       |                                                                                                                                                                                                                     | Other:                                                            |                       |
| These samples have be<br>Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                |              |                         | ANA                    | LYSIS                  |              | _       |                                             |                                                       |                                                                                                                                                                                                                     | Sample Filtration                                                 |                       |
| X Bacterielogia<br>Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ial samples -                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                |              |                         | STARY 1:               | ما                     | )ioXa4e      | 2       | 205 504                                     |                                                       |                                                                                                                                                                                                                     | Done<br>Lab to do<br>Preservation<br>Lab to do                    | t<br>a<br>l<br>B<br>o |
| ALPHA Lab ID<br>(Lab Use Only) Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 | nple ID Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                |                |              | Sampler's<br>Initials   | 537                    | Part                   | 1,4-D        | 524.    | 513 37                                      |                                                       |                                                                                                                                                                                                                     | (Please Specify below) Sample Specific Comments                   |                       |
| 60165 -01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOT-1-2                                                                                                         | 21027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/27                                                                                                          | 1110           | GW           | AR                      | ×                      | X                      | X            | 1       | 1                                           |                                                       | -                                                                                                                                                                                                                   | Sample Specific Comments                                          | _                     |
| -62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eizh Bink                                                                                                       | FB01-221027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/27                                                                                                          | 1100           | 0            | AR                      | X                      | ~                      | ^            | X       | <u>×</u>                                    |                                                       | -                                                                                                                                                                                                                   |                                                                   | 4                     |
| -03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Trip Blank                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/27                                                                                                          | -              |              | AIN                     | ×                      |                        |              | 1.2     | 1                                           | _                                                     | -                                                                                                                                                                                                                   |                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 101-1                                                                                                          |                |              | 3                       |                        |                        |              | ×       | X                                           |                                                       | -                                                                                                                                                                                                                   |                                                                   | 4                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                |                |              |                         |                        |                        |              | _       |                                             |                                                       |                                                                                                                                                                                                                     |                                                                   | +                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .0                                                                                                             |                |              |                         |                        |                        |              | -       |                                             |                                                       | -                                                                                                                                                                                                                   |                                                                   | +                     |
| A = None P<br>B = HCi A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Fidstru                                                                                                       | Westboro: Certification No<br>Mansfield: Certification No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Con                                                                                                            | Container Type |              | P - A                   |                        | V                      | $\checkmark$ |         |                                             | Please print clearly, legil<br>and completely. Sample |                                                                                                                                                                                                                     |                                                                   |                       |
| E = NaOH B<br>F = MeOH C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = Glass<br>= Bacteria Cup<br>= Cube                                                                             | Reliminished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                |                | P            |                         |                        |                        | 9 <u>/</u> B |         |                                             |                                                       | not be logged in and<br>turnaround time clock will not<br>start until any ambiguities are<br>resolved. BY EXECUTING<br>THIS COC, THE CLIENT<br>HAS READ AND AGREES<br>TO BE BOUND BY ALPHA'S<br>TERMS & CONDITIONS. |                                                                   |                       |
| $H = Na_2S_2O_3$ E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = Other<br>= Encore<br>= BOD Bottle                                                                             | Encore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                | 122 122 12 1 |                         | Received By:           |                        |              |         | Date/Time<br>10/27/22_320<br>10/28/22 00 00 |                                                       |                                                                                                                                                                                                                     |                                                                   |                       |
| Form No: 01-25 HC (rev. 30-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | iept-2013)                                                                                                      | ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                |                |              |                         |                        |                        |              |         |                                             |                                                       |                                                                                                                                                                                                                     | (See reverse side.)                                               |                       |

|                                                                                            | 0                               |                                                | Subcontra              | ect Chain of Custod         | У                                              |                                                |             |  |  |  |
|--------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------|------------------------|-----------------------------|------------------------------------------------|------------------------------------------------|-------------|--|--|--|
|                                                                                            | GE<br>20<br>Ch                  | EL Laboratorie<br>40 savage ro<br>arleston, SC | es, LLC<br>ad<br>29407 |                             | Alpha Job Number<br>L2260165                   |                                                |             |  |  |  |
| Clier                                                                                      | nt Information                  | 2183年1998年                                     | Project Int            | formation                   | Regulatory Requ                                | uirements/Report Li                            | mits        |  |  |  |
| Client: Alpha Analytical Labs<br>Address: Eight Walkup Drive<br>Westborough, MA 01581-1019 |                                 | Project Location<br>Project Manage             |                        |                             | State/Federal Program:<br>Regulatory Criteria: | State/Federal Program:<br>Regulatory Criteria: |             |  |  |  |
| Phone: 716-427-5223<br>Email: cfox@alphalab.com                                            |                                 | Turnarou<br>Due Date<br>Deliverables:          |                        | erables Information         |                                                | A. Stand                                       |             |  |  |  |
|                                                                                            | 國民主導出的國家                        | Project Specific                               | c Requireme            | ents and/or Report Re       | quirements                                     |                                                | 2月11日1月     |  |  |  |
|                                                                                            | ference following Alpha Job     |                                                |                        | : L2260165                  | Report to include Method Blar                  | ik, LCS/LCSD:                                  |             |  |  |  |
| Additional Comme                                                                           | nts: Send all results/reports t | o subreports@alphala                           | ab.com                 |                             |                                                |                                                |             |  |  |  |
| and the second                                                                             |                                 | a la ser la ser                                | Store Free             | LIS PROF STRAN              | What Specific sector                           | Status and Electron                            |             |  |  |  |
| Lab ID                                                                                     | Client ID                       | Collection<br>Date/Time                        | Sample<br>Matrix       | Ana                         | lysis                                          |                                                | Batch<br>QC |  |  |  |
|                                                                                            | LOT-1-221027                    | 10-27-22 11:10                                 | DW                     | Gross Alpha/Beta; Radium 22 | 26; Radium 228; Uranium by EPA 200.8           |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
| 24<br>(4)                                                                                  |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                | _           |  |  |  |
|                                                                                            | Relinquished                    |                                                |                        | Date/Time:                  | Received By:                                   | Date/Time:                                     |             |  |  |  |
|                                                                                            | 0                               | unt 0                                          |                        | 10/31/27                    |                                                |                                                |             |  |  |  |
|                                                                                            |                                 |                                                |                        |                             |                                                |                                                |             |  |  |  |
| Form No: AL_subco                                                                          | c                               |                                                |                        |                             |                                                |                                                |             |  |  |  |



# EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

Custome Custome Project ID

| EMSL Order ID: | 042227035 |
|----------------|-----------|
| Customer ID:   | ALPH55A   |
| Customer PO:   |           |
| Project ID:    |           |

| Alpha Analytical, Inc.       Fax:       (508) 898-9193         8 Walkup Drive       Received:       10/28/2022         Westborough, MA 01581       Analyzed:       11/10/2022 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

L2260165 Proj:

# Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

|                                |                                   |                                     |                             |                  | ASBESTOS                       |                    |                           |               |                      |  |  |  |
|--------------------------------|-----------------------------------|-------------------------------------|-----------------------------|------------------|--------------------------------|--------------------|---------------------------|---------------|----------------------|--|--|--|
| Sample ID<br>Client / EMSL     | Sample<br>Filtration<br>Date/Time | Original<br>Sample Vol.<br>Filtered | Effective<br>Filter<br>Area | Area<br>Analyzed | Asbestos<br>Types              | Fibers<br>Detected | Analytical<br>Sensitivity | Concentration | Confidence<br>Limits |  |  |  |
|                                |                                   | (ml)                                | (mm²)                       | (mm²)            | MFL (million fibers per liter) |                    |                           |               |                      |  |  |  |
| Lot-1-221027<br>042227035-0001 | 10/28/2022<br>11:55 AM            | 10                                  | 1335                        | 0.2620           | None Detected                  | ND                 | 0.51                      | <0.51         | 0.00 - 1.90          |  |  |  |
| Collection Date/Time:          | 10/27/2022 11:10 AM               |                                     |                             |                  |                                |                    |                           |               |                      |  |  |  |

Due to excessive particulate the analytical sensitivity of 0.2 MFL as required by the method was not reached.

Bottle supplied by client

Analyst(s) Ted Young

(1)

Somantha Remotion

Samantha Rundstrom, Laboratory Manager or Other Approved Signatory

Any questions please contact Samantha Rundstrom-Cruz.

Initial report from: 11/10/2022 13:41:53

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection performed by the client. Pre-cleaned sample containers are available for purchase from EMSL. Note if sample containers are provided by the client, acceptable bottle blank level is defined as <0.01MFL for >=10um fibers. ND=None Detected. No Fibers Detected: the value will be reported as less than 369% of the concentration equivalent to one fiber. 1 to 4 fibers: The result will be reported as less than the corresponding upper 95% confidence limit (Poisson),5 to 30 fibers: Mean and 95% confidence intervals will be reported on the basis of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted



Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAC NYS ELAP 10872, NJ DEP 03036, FL DOH E87975, PA ID# 68-00367

Serial\_No:11212218:55





a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

November 15, 2022

Analytical Subreports Alpha Analytical Inc 8 Walkup Drive Westborough, Massachusetts 01581

Re: Analytical Subreports Westborough MA Work Order: 598977 SDG: L2260165

Dear Analytical Subreports:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on November 01, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1614.

Sincerely,

Jordan Melton for Delaney Stone Project Manager

Purchase Order: L2260165 Enclosures



2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### Certificate of Analysis Report for

ALPL001 Alpha Analytical Inc

#### Client SDG: L2260165 GEL Work Order: 598977

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- J See case narrative for an explanation
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Delaney Stone.

Joolan Melton

Reviewed by

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### **Certificate of Analysis**

Report Date: November 15, 2022

|            | Company :<br>Address :          | Alpha Analytical Inc<br>8 Walkup Drive                                   |        |         |          |                   | -                    |              |        |
|------------|---------------------------------|--------------------------------------------------------------------------|--------|---------|----------|-------------------|----------------------|--------------|--------|
|            | Contact:<br>Project:            | Westborough, Massach<br>Analytical Subreports<br>Analytical Subreports V |        | 1A      |          |                   |                      |              |        |
|            | Client Sample ID:<br>Sample ID: | LOT-1-221027<br>598977001                                                |        |         |          | oject:<br>ent ID: | ALPL00420<br>ALPL001 |              |        |
|            | Matrix:                         | DW                                                                       |        |         |          |                   |                      |              |        |
|            | Collect Date:                   | 27-OCT-22 11:10                                                          |        |         |          |                   |                      |              |        |
|            | Receive Date:<br>Collector:     | 01-NOV-22<br>Client                                                      |        |         |          |                   |                      |              |        |
|            | concetor.                       | Chem                                                                     |        |         |          |                   |                      |              |        |
| Parameter  | Quali                           | ifier Result                                                             | DL     | RL      | Units    | PF DF             | Analyst Date         | Time Batch   | Method |
| Metals Ana | alysis-ICP-MS                   |                                                                          |        |         |          |                   |                      |              |        |
|            | 8 Uranium "As Rece              |                                                                          | = .    |         | _        |                   |                      |              |        |
| Uranium    |                                 | 0.280                                                                    | 0.0670 | 0.200   | ug/L     | 1.00 1            | PRB 11/11/22         | 1535 2336824 | . 1    |
|            | ing Prep Methods w              |                                                                          |        |         | Dete     | <b>—</b>          | Dury Datal           |              |        |
| Method     |                                 | ription                                                                  |        | Analyst | Date     | Tim               |                      |              |        |
| EPA 200.2  |                                 | IS 200.2 PREP                                                            |        | PC1     | 11/03/22 | 1000              | 2336822              |              |        |
|            | • •                             | nods were performed:                                                     |        |         |          |                   |                      |              |        |
| Method     | Descr                           |                                                                          |        |         | A        | Analyst Co        | mments               |              |        |
| 1          | EPA 20                          | 00.8                                                                     |        |         |          |                   |                      |              |        |

#### Notes:

Column headers are defined as follows:DF: Dilution FactorLc/LC: Critical LevelDL: Detection LimitPF: Prep FactorMDA: Minimum Detectable ActivityRL: Reporting LimitMDC: Minimum Detectable ConcentrationSQL: Sample Quantitation Limit

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **Certificate of Analysis**

| Company :<br>Address :                                                                               | Alpha Ana<br>8 Walkup                   | alytical Inc<br>Drive                         |                         |                                                               |               |      |                    |              |           |              |           |      |
|------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------|-------------------------|---------------------------------------------------------------|---------------|------|--------------------|--------------|-----------|--------------|-----------|------|
|                                                                                                      | Westborou                               | igh, Massachus                                | etts 01581              |                                                               |               |      |                    | Rep          | ort Date: | November 1   | 5, 2022   |      |
| Contact:                                                                                             | Analytical                              | Subreports                                    |                         |                                                               |               |      |                    |              |           |              |           |      |
| Project:                                                                                             | Analytical                              | Subreports We                                 | estborough N            | ЛА                                                            |               |      |                    |              |           |              |           |      |
| Client Samp<br>Sample ID:<br>Matrix:<br>Collect Date<br>Receive Date<br>Collector:                   | 5989<br>DW<br>: 27-C                    | -1-221027<br>977001<br>9CT-22<br>1OV-22<br>nt |                         |                                                               |               |      | oject:<br>ient ID: | ALPL<br>ALPL |           |              |           |      |
| Parameter                                                                                            | Qualifi                                 |                                               | ncertainty              | MDC                                                           | TPU           | RL   | Units              | PF D         | F Analyst | Date Tin     | ne Batch  | Mtd. |
| Rad Gas Flow Pro<br>EPA 904.0 Radiu                                                                  | um-228, DW "A                           | s Received"                                   |                         |                                                               |               |      |                    |              |           |              |           |      |
| Radium-228                                                                                           | U                                       | -0.511                                        | +/-0.482                | 0.922                                                         | +/-0.482      | 1.00 | pCi/L              |              | JE1       | 11/14/22 153 | 2 233844  | 2 1  |
| Gross Alpha/Beta                                                                                     | a in Drinking W                         |                                               |                         |                                                               |               |      |                    |              |           |              |           |      |
| Alpha                                                                                                |                                         | 3.86                                          | +/-2.38                 | 2.75                                                          | +/-2.48       | 3.00 | pCi/L              |              | KP1       | 11/10/22 074 | 2 233795  | 8 2  |
| Beta                                                                                                 | U                                       | 2.38                                          | +/-1.73                 | 2.72                                                          | +/-1.76       | 4.00 | pCi/L              |              |           |              |           |      |
| Rad Radium-226                                                                                       | C Duinting Wa                           |                                               | 111                     |                                                               |               |      |                    |              |           |              |           |      |
| <i>EPA 903.1 Ra220</i><br>Radium-226                                                                 | Drinking Wal                            | er "As Received<br>0.253                      | a**<br>+/-0.179         | 0.212                                                         | +/-0.186      | 1.00 | pCi/L              |              | I VD1     | 11/14/22 080 | 1 222011  | 1 2  |
| Kauluiii-220                                                                                         |                                         | 0.233                                         | +/-0.179                | 0.212                                                         | +/-0.180      | 1.00 | pCI/L              |              | LAFI      | 11/14/22 080 | 4 255644  | 1 3  |
| The following Ana                                                                                    | U C                                     | ls were perfor                                | med                     |                                                               |               |      |                    |              |           |              |           |      |
| Method                                                                                               | Description                             |                                               |                         |                                                               |               |      |                    |              |           |              |           |      |
| 1                                                                                                    | EPA 904.0/ EPA                          | 9320                                          |                         |                                                               |               |      |                    |              |           |              |           |      |
| 2                                                                                                    | EPA 900.0                               |                                               |                         |                                                               |               |      |                    |              |           |              |           |      |
| 3                                                                                                    | EPA 903.1                               |                                               |                         |                                                               |               |      |                    |              |           |              |           |      |
| Surrogate/Tracer                                                                                     | Recovery                                | Test                                          |                         |                                                               |               |      |                    | Batch ID     | Recovery  | w% Accep     | table Lim | nits |
| Barium Carrier                                                                                       |                                         | EPA 904.0                                     | Radium-228              | 8, DW "As Received"                                           | '             |      |                    | 2338442      | 111       | (259         | %-125%)   |      |
| Yttrium Carrier                                                                                      |                                         | EPA 904.0                                     | Radium-228              | 8, DW "As Received"                                           | ,             |      |                    | 2338442      | 51.9      | 9 (259       | %-125%)   |      |
| Notes:<br>The MDC is a sa<br>TPU and Coun                                                            |                                         |                                               | ated at the 9           | 95% confidence lev                                            | el (1.96-sigm | a).  |                    |              |           |              |           |      |
| Column header<br>DF: Dilution Fa<br>DL: Detection I<br>Lc/LC: Critical<br>MDA: Minimu<br>MDC: Minimu | actor<br>Limit<br>Level<br>m Detectable | Activity                                      | PF: P:<br>RL: R<br>TPU: | Method<br>rep Factor<br>Reporting Limit<br>Total Propagated U | Jncertainty   |      |                    |              |           |              |           |      |

Serial\_No:11212218:55

#### **GEL LABORATORIES LLC**

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

#### **QC Summary**

Report Date: November 15, 2022

Page 1 of 2

Alpha Analytical Inc 8 Walkup Drive Westborough, Massachusetts Contact: Analytical Subreports

Workorder: 598977

| Parmname                                | NOM  | Sample Qual | QC    | Units | RPD/D% | REC% | Range      | Anlst | Date    | Time    |
|-----------------------------------------|------|-------------|-------|-------|--------|------|------------|-------|---------|---------|
| Metals Analysis - ICPMSBatch2336824     |      |             |       |       |        |      |            |       |         |         |
| QC1205233502 598977001 DUP<br>Uranium   |      | 0.280       | 0.270 | ug/L  | 3.64 ^ |      | (+/-0.200) | PRB   | 11/11/2 | 2 15:38 |
| QC1205233500 LCS<br>Uranium             | 50.0 |             | 51.3  | ug/L  |        | 103  | (85%-115%) |       | 11/11/2 | 2 15:22 |
| QC1205233501 LCSD<br>Uranium            | 50.0 |             | 52.2  | ug/L  | 1.64   | 104  | (0%-20%)   |       | 11/11/2 | 2 15:25 |
| QC1205233499 MB<br>Uranium              |      | U           | ND    | ug/L  |        |      |            |       | 11/11/2 | 2 15:18 |
| QC1205233503 598977001 MS<br>Uranium    | 50.0 | 0.280       | 51.8  | ug/L  |        | 103  | (75%-125%) |       | 11/11/2 | 2 15:41 |
| QC1205233504 598977001 SDILT<br>Uranium |      | 0.280 J     | 0.100 | ug/L  | 78.6   |      | (0%-10%)   |       | 11/11/2 | 2 15:44 |

#### Notes:

The Qualifiers in this report are defined as follows:

- < Result is less than value reported
- > Result is greater than value reported
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- N Metals--The Matrix spike sample recovery is not within specified control limits
- $N\!/\!A$   $\,$  RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit

#### Page 520ft h2&DG: L2260165

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

#### **QC Summary**

| Parmna  | ame                                | NOM                | Sample Qual             | QC           | Units        | RPD/D%          | REC%        | Range     | Anlst       | 0     | e 2 of 2<br>Time |
|---------|------------------------------------|--------------------|-------------------------|--------------|--------------|-----------------|-------------|-----------|-------------|-------|------------------|
| NJ      | Consult Case Narrative, Data       | Summary packag     | e, or Project Manager   | concerning   | this qualif  | ier             |             |           |             |       |                  |
| Q       | One or more quality control cr     | iteria have not be | en met. Refer to the a  | pplicable na | rrative or 1 | DER.            |             |           |             |       |                  |
| R       | Sample results are rejected        |                    |                         |              |              |                 |             |           |             |       |                  |
| U       | Analyte was analyzed for, but      | not detected abov  | ve the MDL, MDA, M      | IDC or LOE   | ).           |                 |             |           |             |       |                  |
| Х       | Consult Case Narrative, Data S     | Summary packag     | e, or Project Manager   | concerning   | this qualif  | ier             |             |           |             |       |                  |
| Y       | Other specific qualifiers were     | required to prope  | rly define the results. | Consult case | e narrative  |                 |             |           |             |       |                  |
| ۸       | RPD of sample and duplicate        | evaluated using +  | -/-RL. Concentrations   | are <5X the  | e RL. Qua    | lifier Not App  | licable for | Radiochem | istry.      |       |                  |
| h       | Preparation or preservation ho     | lding time was ex  | kceeded                 |              |              |                 |             |           |             |       |                  |
| N/A inc | dicates that spike recovery limits | do not apply wh    | en sample concentrati   | on exceeds   | spike conc   | . by a factor c | f 4 or more | or %RPD 1 | not applica | ıble. |                  |

<sup>^</sup> The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

\* Indicates that a Quality Control parameter was not within specifications.

Wardsondam

-----

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Serial\_No:11212218:55

## **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

## **QC Summary**

Report Date: November 15, 2022

| Client :                     | Alpha Analytical Inc  |                   | <u>x</u>           |      | <u>ummar</u>       | <u>/</u> | I      | Report Da | ate: November 15<br>Page 1 of 3 |             | 2              |
|------------------------------|-----------------------|-------------------|--------------------|------|--------------------|----------|--------|-----------|---------------------------------|-------------|----------------|
|                              | 8 Walkup Drive        |                   |                    |      |                    |          |        |           | _                               |             |                |
| Contact                      | Westborough, Massach  |                   |                    |      |                    |          |        |           |                                 |             |                |
| Contact:                     | Analytical Subreports |                   |                    |      |                    |          |        |           |                                 |             |                |
| Workorder:                   | 598977                |                   |                    |      |                    |          |        |           |                                 |             |                |
| Parmname                     |                       | NOM               | Sample (           | Qual | QC                 | Units    | RPD%   | REC%      | Range Anls                      | st          | Date Time      |
| <b>Rad Gas Flow</b><br>Batch | 2337958               |                   |                    |      |                    |          |        |           |                                 |             |                |
| QC1205235594                 | 598923001 DUP         |                   |                    | _    |                    |          |        |           |                                 |             |                |
| Alpha                        |                       | U                 | -0.185             | U    | 0.330              | pCi/L    | 0      |           | N/A K                           | XP1         | 11/10/2207:45  |
|                              |                       | Uncert:           | +/-1.12            |      | +/-1.30            |          |        |           |                                 |             |                |
|                              |                       | TPU:              | +/-1.12            | τī   | +/-1.31            | ъCi/I    | 0      |           | NT / A                          |             |                |
| Beta                         |                       | U<br>Uncert:      | 0.260<br>+/-1.92   | U    | 0.0114<br>+/-1.22  | pCi/L    | 0      |           | N/A                             |             |                |
|                              |                       | Uncert:<br>TPU:   | +/-1.92<br>+/-1.92 |      | +/-1.22<br>+/-1.22 |          |        |           |                                 |             |                |
| QC1205235597                 | LCS                   | 110.              | 7/71.74            |      | ⊤/ <b>-1.</b> ∠∠   |          |        |           |                                 |             |                |
| Alpha                        | LCJ                   | 33.7              |                    |      | 27.7               | pCi/L    |        | 82.2      | (80%-120%) K                    | KP1         | 11/10/2207:45  |
| 7 upin                       |                       | Uncert:           |                    |      | +/-4.77            | P~       |        | 02.2      | (00/0 120.0)                    | 11 1        | 11/10/2207     |
|                              |                       | TPU:              |                    |      | +/-6.85            |          |        |           |                                 |             |                |
| Beta                         |                       | 29.8              |                    |      | 32.3               | pCi/L    | -      | 109       | (80%-120%)                      |             |                |
|                              |                       | Uncert:           |                    |      | +/-4.00            |          |        |           | <b>X</b> <sup>-</sup>           |             |                |
|                              |                       | TPU:              |                    |      | +/-5.90            |          |        |           |                                 |             |                |
| QC1205235593                 | MB                    |                   |                    |      |                    |          |        |           |                                 |             |                |
| Alpha                        |                       |                   |                    | U    | 0.585              | pCi/L    |        |           | K                               | KP1         | 11/10/2207:44  |
|                              |                       | Uncert:           |                    |      | +/-0.958           |          |        |           |                                 |             |                |
|                              |                       | TPU:              |                    |      | +/-0.964           |          |        |           |                                 |             |                |
| Beta                         |                       |                   |                    | U    | 0.773              | pCi/L    |        |           |                                 |             |                |
|                              |                       | Uncert:           |                    |      | +/-2.07            |          |        |           |                                 |             |                |
|                              | ·····                 | TPU:              |                    |      | +/-2.07            |          |        |           |                                 |             |                |
| QC1205235595                 | 598923001 MS          |                   | 0.105              |      | 20.2               | C:/I     |        | <0 *      | 7004 12004) I                   |             | 11/10/00 10.10 |
| Alpha                        |                       | 33.7 U            | -0.185             |      | 20.2               | pCi/L    | 1      | 60*       | * (70%-130%) K                  | <b>(</b> P1 | 11/10/2212:16  |
|                              |                       | Uncert:           | +/-1.12            |      | +/-5.95            |          |        |           |                                 |             |                |
| <b>P</b> (                   |                       | TPU:              | +/-1.12            |      | +/-6.93            | ъCi/I    |        | 116       | (700/ 1200/)                    |             |                |
| Beta                         |                       | 29.8 U<br>Uncert: | 0.260<br>+/-1.92   |      | 34.4<br>+/-4.29    | pCi/L    |        | 116       | (70%-130%)                      |             |                |
|                              |                       | Uncert:<br>TPU:   | +/-1.92<br>+/-1.92 |      | +/-4.29<br>+/-6.23 |          |        |           |                                 |             |                |
| 0C1205235596                 | 598923001 MSD         | 110.              | ⊤/-1./2            |      | T/-0.25            |          |        |           |                                 |             |                |
| Alpha                        | J70745001 11012       | 33.7 U            | -0.185             |      | 28.0               | pCi/L    | 32.5   | * 83.2    | (0%-20%) K                      | K₽1         | 11/10/2207:41  |
| лірна                        |                       | Uncert:           | +/-1.12            |      | +/-6.72            | PC: -    | 52.0   | 03.2      | (0/0 20/0)                      | *1 1        | 11/10/2207     |
|                              |                       | TPU:              | +/-1.12            |      | +/-8.46            |          |        |           |                                 |             |                |
| Beta                         |                       | 29.8 U            | 0.260              |      | 28.8               | pCi/L    | . 17.7 | 96.7      | (0%-20%)                        |             |                |
| -                            |                       | Uncert:           | +/-1.92            |      | +/-3.78            |          |        |           | <b>X</b>                        |             |                |
|                              |                       | TPU:              | +/-1.92            |      | +/-5.47            |          |        |           |                                 |             |                |
| Batch                        | 2338442               |                   |                    |      |                    |          |        |           |                                 |             |                |
| OC1205236675                 | 599610001 DUP         |                   |                    |      |                    |          |        |           |                                 |             |                |
| Radium-228                   | <i>b))</i>            | U                 | -0.0842            | U    | -0.0133            | pCi/L    | . 0    |           | N/A J                           | JE1         | 11/14/2215:32  |
| <u> </u>                     |                       | Uncert:           | +/-0.364           | C    | +/-0.406           | P        | -      |           |                                 | ь.          | 11/1/2010      |
|                              |                       | TPU:              | +/-0.364           |      | +/-0.406           |          |        |           |                                 |             |                |
| QC1205236677                 | LCS                   |                   |                    |      |                    |          |        |           |                                 |             |                |

QC1205236677 LCS

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

|                     |               |                 | <u>Q</u> Q | <u>_ S</u> | <u>ummary</u>      | 7     |      |      |                                       |      |               |
|---------------------|---------------|-----------------|------------|------------|--------------------|-------|------|------|---------------------------------------|------|---------------|
| Workorder:          | 598977        |                 |            |            |                    |       |      |      | Page 2 o                              | f 3  |               |
| Parmname            |               | NOM             | Sample Q   | ual        | QC                 | Units | RPD% | REC% | Range A                               | nlst | Date Time     |
| <b>Rad Gas Flow</b> |               |                 |            |            |                    |       |      |      |                                       |      |               |
| Batch               | 2338442       |                 |            |            |                    |       |      |      |                                       |      |               |
| Radium-228          |               | 9.94            |            |            | 8.72               | pCi/L |      | 87.7 | (80%-120%)                            | JE1  | 11/14/2215:32 |
|                     |               | Uncert:         |            |            | +/-1.55            |       |      |      |                                       |      |               |
|                     |               | TPU:            |            |            | +/-2.09            |       |      |      |                                       |      |               |
| QC1205236674        | MB            |                 |            |            |                    |       |      |      |                                       |      |               |
| Radium-228          |               |                 |            | U          | -0.0499            | pCi/L |      |      |                                       | JE1  | 11/14/2215:32 |
|                     |               | Uncert:         |            |            | +/-0.466           |       |      |      |                                       |      |               |
|                     |               | TPU:            |            |            | +/-0.466           |       |      |      |                                       |      |               |
| -                   | 599610001 MS  |                 |            |            |                    |       |      |      |                                       |      |               |
| Radium-228          |               | 19.9 U          | -0.0842    |            | 18.4               | pCi/L |      | 92.5 | (70%-130%)                            | JE1  | 11/14/2215:32 |
|                     |               | Uncert:         | +/-0.364   |            | +/-1.72            |       |      |      |                                       |      |               |
| D 10 444            |               | TPU:            | +/-0.364   |            | +/-3.44            |       |      |      |                                       |      |               |
| Rad Ra-226<br>Batch | 2338441 -     |                 |            |            |                    |       |      |      |                                       |      |               |
|                     |               |                 |            |            |                    |       |      |      |                                       |      |               |
| QC1205236669        | 599608001 DUP |                 |            |            |                    |       |      |      |                                       |      |               |
| Radium-226          |               | U               | 0.152      | U          | -0.0130            | pCi/L | 0    |      | N/A                                   | LXP1 | 11/14/2208:21 |
|                     |               | Uncert:         | +/-0.157   |            | +/-0.0673          |       |      |      |                                       |      |               |
| 0.0100500.0051      |               | TPU:            | +/-0.161   |            | +/-0.0673          |       |      |      |                                       |      |               |
| QC1205236671        | LCS           | 12.4            |            |            | 10.1               | 0.1   |      | 00.6 | (0.00/ 11.00/)                        |      | 11/1/2200 01  |
| Radium-226          |               | 13.4            |            |            | 12.1<br>+/-1.01    | pCi/L |      | 90.6 | (90%-110%)                            | LXPI | 11/14/2208:21 |
|                     |               | Uncert:<br>TPU: |            |            | +/-1.01<br>+/-2.22 |       |      |      |                                       |      |               |
| QC1205236668        | MB            | IPU:            |            |            | +/-2.22            |       |      |      |                                       |      |               |
| Radium-226          | MD            |                 |            | U          | 0.0508             | pCi/L |      |      |                                       | LXP1 | 11/14/2208:21 |
| Radium-220          |               | Uncert:         |            | U          | +/-0.111           | pei/L |      |      |                                       | LAII | 11/14/2200.21 |
|                     |               | TPU:            |            |            | +/-0.112           |       |      |      |                                       |      |               |
| OC1205236670        | 599608001 MS  | 11 0.           |            |            | ., 0.112           |       |      |      |                                       |      |               |
| Radium-226          |               | 13.4 U          | 0.152      |            | 11.4               | pCi/L |      | 85   | (80%-120%)                            | LXP1 | 11/14/2208:21 |
|                     |               | Uncert:         | +/-0.157   |            | +/-1.18            | r     |      |      | · · · · · · · · · · · · · · · · · · · |      |               |
|                     |               | TPU:            | +/-0.161   |            | +/-2.69            |       |      |      |                                       |      |               |

#### Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- \*\* Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low
- FA Failed analysis.
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- M M if above MDC and less than LLD

### **QC Summary**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### **QC Summary**

|        | _                                                                |                      | $\underline{\mathbf{v}}$      | iiiiiai      | <u>y</u>     |               |                |             |             |              |      |
|--------|------------------------------------------------------------------|----------------------|-------------------------------|--------------|--------------|---------------|----------------|-------------|-------------|--------------|------|
| Worko  | rder: 598977                                                     |                      |                               |              |              |               |                | Page 3      | 3 of 3      |              |      |
| Parmna | ime                                                              | NOM                  | Sample Qual                   | QC           | Units        | RPD%          | REC%           | Range       | Anlst       | Date         | Time |
| М      | REMP Result > MDC/CL an                                          | d < RDL              |                               |              |              |               |                |             |             |              |      |
| N/A    | RPD or %Recovery limits do                                       | not apply.           |                               |              |              |               |                |             |             |              |      |
| N1     | See case narrative                                               |                      |                               |              |              |               |                |             |             |              |      |
| ND     | Analyte concentration is not                                     | detected above the   | detection limit               |              |              |               |                |             |             |              |      |
| NJ     | Consult Case Narrative, Data                                     | Summary package      | , or Project Manager con      | cerning th   | is qualifier |               |                |             |             |              |      |
| Q      | One or more quality control of                                   | criteria have not be | en met. Refer to the appli    | icable narr  | ative or DI  | ER.           |                |             |             |              |      |
| R      | Sample results are rejected                                      |                      |                               |              |              |               |                |             |             |              |      |
| U      | Analyte was analyzed for, bu                                     | t not detected abov  | e the MDL, MDA, MDC           | or LOD.      |              |               |                |             |             |              |      |
| UI     | Gamma SpectroscopyUncertain identification                       |                      |                               |              |              |               |                |             |             |              |      |
| UJ     | Gamma SpectroscopyUnce                                           | rtain identification |                               |              |              |               |                |             |             |              |      |
| UL     | Not considered detected. The                                     | associated number    | is the reported concentration | ation, whic  | h may be i   | inaccurate d  | lue to a low   | bias.       |             |              |      |
| Х      | Consult Case Narrative, Data                                     | Summary package      | , or Project Manager cor      | cerning th   | is qualifier |               |                |             |             |              |      |
| Y      | Other specific qualifiers were                                   | e required to proper | ly define the results. Cor    | nsult case r | arrative.    |               |                |             |             |              |      |
| ^      | RPD of sample and duplicate                                      | evaluated using +/   | -RL. Concentrations are       | <5X the H    | RL. Qualif   | ïer Not App   | olicable for F | Radiochemi  | istry.      |              |      |
| h      | Preparation or preservation h                                    | olding time was ex   | ceeded                        |              |              |               |                |             |             |              |      |
| N/A in | dicates that spike recovery lin                                  | nits do not apply wl | nen sample concentration      | exceeds s    | pike conc.   | by a factor   | of 4 or more   | or %RPD     | not applic  | able.        |      |
|        | icates analyte is a surrogate/tra                                |                      |                               |              |              |               |                |             |             |              |      |
|        | Relative Percent Difference (R                                   |                      |                               |              |              |               |                |             |             |              |      |
|        | mes (5X) the contract required<br>used to evaluate the DUP resul |                      | .). In cases where either t   | ine sample   | or duplica   | te value is i | ess than 5X    | the RL, a c | control lim | it of +/- ti | ne   |
|        | S. PSD, and SDILT results, the                                   |                      | e measured amounts, not       | final cond   | entrations   |               |                |             |             |              |      |

PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                | 548977                                |             |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------|-------------|
|                                                                                            |                                                                                                                      | S                                                                            | ubcontrac                                                         | Subcontract Chain of Custody                                                        | ody                                                            | , L                                   |             |
|                                                                                            |                                                                                                                      | GEL<br>2040<br>Charl                                                         | GEL Laboratories, LLC<br>2040 savage road<br>Charleston, SC 29407 | , LLC<br>9407                                                                       |                                                                | Alpha Job Number<br>L2260165          | umber       |
| Client                                                                                     | Client Information                                                                                                   |                                                                              | <b>Project Information</b>                                        | rmation                                                                             | Regulatory                                                     | Regulatory Requirements/Report Limits | ts          |
| Client: Alpha Analytical Labs<br>Address: Eight Walkup Drive<br>Westborough, MA 01581-1019 | tical Labs<br>Drive<br>h, MA 01581-1019                                                                              | Project Location: NY<br>Project Manager: Candace Fox<br>Throaround & Delwars | NY<br>Candace Fo<br>Malive                                        | ct Location: NY<br>ct Manager: Candace Fox<br>Turnaround & Deliverables Information | State/Federal Program:<br>Regulatory Criteria:                 | ram:                                  |             |
| Phone: 716-427-5223<br>Email: cfox@alphalab.com                                            | 23<br>ab.com                                                                                                         | Due Date:<br>Deliverables:                                                   |                                                                   |                                                                                     |                                                                |                                       |             |
| Dofo                                                                                       | Project Specific Requirements and/or<br>Beference following Alpha Job Number on final report/deliverables: 1,2260165 | Project Specific I                                                           | Requireme                                                         | Project Specific Requirements and/or Report Requirements                            | Requirements<br>Report to include Method Blank 1 CS/I CSD:     | I Blank T CS/I CSD:                   | 2           |
| Additional Comment                                                                         | Additional Comments: Send all results/reports to subreports@alphalab.com                                             | subreports@alphalab                                                          | com                                                               |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
| Lab ID                                                                                     | Client ID                                                                                                            | Collection<br>Date/Time                                                      | Sample<br>Matrix                                                  | 1                                                                                   | Analysis                                                       |                                       | Batch<br>QC |
|                                                                                            | LOT-1-221027                                                                                                         | 10-27-22 11:10                                                               | DW                                                                | Gross Alpha/Beta; Radiu                                                             | Gross Alpha/Beta; Radium 226; Radium 228; Uranium by EPA 200.8 | 200.8                                 |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            | •                                                                                                                    |                                                                              |                                                                   |                                                                                     | ·                                                              |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       | <u>.</u>    |
|                                                                                            | Relinquished By                                                                                                      | 1. 11 A                                                                      |                                                                   | Date/Time:                                                                          | Received By:                                                   | Date/Time:                            |             |
|                                                                                            | ind and                                                                                                              | () Jam                                                                       |                                                                   | 10/21/27                                                                            | 14-1-                                                          | 11/10/12                              | <i>M</i> 6  |
|                                                                                            |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |
| Form No: AL_subcoc                                                                         |                                                                                                                      |                                                                              |                                                                   |                                                                                     |                                                                |                                       |             |

Page \$0 of 120 SDG: L2260165

| Clie        | ent: ALPL                                                                |     |         | SD  | SAMPLE RECEIPT & REVIEW FORM<br>G/AR/COC/Work Order: 598977                                                                                                                                                                                                        |
|-------------|--------------------------------------------------------------------------|-----|---------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rec         | elved By: StacyBoone                                                     | ;_  |         |     | te Received: NOV 1, 2022                                                                                                                                                                                                                                           |
|             | Carrier and Tracking Number                                              |     | -       |     | Circle Applicable:<br>FedEx Express FedEx Ground UPS Field Services Courier Other                                                                                                                                                                                  |
| Sus         | pected Hazard Information                                                | Yes | 9N<br>N | *If | IZ E30 654 01 9438 0710           Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation                                                                                                            |
| A)S         | hipped as a DOT Hazardous?                                               |     |         | Haz | ard Cless Shipped: UN#:<br>If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No                                                                                                                                                                         |
|             | Did the client designate the samples are to be ived as radioactive?      |     | /       | co  | C notation or radioactive stickers on containers equal client designation.                                                                                                                                                                                         |
|             | Did the RSO classify the samples as pactive?                             |     | /       | Ma  | ximum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/FIr<br>Classified as: Rad I Rad 2 Rad 3                                                                                                                                             |
| D) [        | Did the client designate samples are høzardous?                          |     | /       |     | C notation or hazard labels on containers equal client designation.                                                                                                                                                                                                |
| <b>E)</b> [ | Did the RSO identify possible hazards?                                   |     |         |     | PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:                                                                                                                                                                                                        |
|             | Sample Receipt Criteria                                                  | Yes | NA      | No  | Comments/Qualifiers (Required for Non-Conforming Items)                                                                                                                                                                                                            |
| 1           | Shipping containers received intact and sealed?                          | /   |         |     | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                               |
| 2           | Chain of custody documents included with shipment?                       | /   |         | ļ   | Circle Applicable: Client contacted and provided COC COC created upon receipt                                                                                                                                                                                      |
| 3           | Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$ ?* |     | /       |     | Preservation Method: Wet Ice Ice Packs Dry ice None Other:<br>*all temperatures are recorded in Cetsius TEMP: 19 c                                                                                                                                                 |
| 4           | Daily check performed and passed on IR temperature gun?                  | /   |         |     | Temperature Device Serial #: <u>IR4-22</u><br>Secondary Temperature Device Serial # (If Applicable):                                                                                                                                                               |
| 5           | Sample containers intact and sealed?                                     | /   |         |     | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                                                                                                               |
| 6           | Samples requiring chemical preservation at proper pH?                    |     | •       |     | Sample ID's and Containers Affected:<br>If Preservation added, Lot#:                                                                                                                                                                                               |
| 7           | Do any samples require Volatile<br>Analysis?                             |     |         | /   | If Yes, are Encores or Soll Kits present for solids? Yes No NA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes No NA(If unknown, select No) Are liquid VOA vials free of headspace? Yes No NA Sample ID's and containers affected: |
| 8           | Samples received within holding time?                                    |     |         |     | ID's and tests affected:                                                                                                                                                                                                                                           |
| 9           | Sample ID's on COC match ID's on bottles?                                |     |         |     | ID's and containers affected:                                                                                                                                                                                                                                      |
| 10          | Date & time on COC match date & time<br>on bottles?                      |     |         |     | Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)                                                                                                                                                                 |
| 11          | Number of containers received match number indicated on COC?             | /   |         |     | Circle Applicable: No container count on COC Other (describe)                                                                                                                                                                                                      |
| 12          | Are sample containers identifiable as GEL provided by use of GEL labels? |     |         | /   |                                                                                                                                                                                                                                                                    |
| 13<br>Сол   | COC form is properly signed in<br>relinquished/received sections?        |     |         |     | Circle Applicuble: Not relinquished Other (describe)                                                                                                                                                                                                               |
|             |                                                                          |     |         |     |                                                                                                                                                                                                                                                                    |

| <b>a</b>                        |                              |
|---------------------------------|------------------------------|
| <u>State</u><br>Alabama         | Certification<br>42200       |
|                                 |                              |
| Alaska<br>Alaska Drinking Water | 17-018<br>SC00012            |
| Arkansas                        |                              |
|                                 | 88-0651                      |
| CLIA                            | 42D0904046                   |
| California                      | 2940                         |
| Colorado                        | SC00012                      |
| Connecticut                     | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA         | 2567.01                      |
| Florida NELAP                   | E87156                       |
| Foreign Soils Permit            | P330-15-00283, P330-15-00253 |
| Georgia                         | SC00012                      |
| Georgia SDWA                    | 967                          |
| Hawaii                          | SC00012                      |
| Idaho                           | SC00012                      |
| Illinois NELAP                  | 200029                       |
| Indiana                         | C-SC-01                      |
| Kansas NELAP                    | E-10332                      |
| Kentucky SDWA                   | 90129                        |
| Kentucky Wastewater             | 90129                        |
| Louisiana Drinking Water        | LA024                        |
| Louisiana NELAP                 | 03046 (AI33904)              |
| Maine                           | 2019020                      |
| Maryland                        | 270                          |
| Massachusetts                   | M–SC012                      |
| Massachusetts PFAS Approv       | Letter                       |
| Michigan                        | 9976                         |
| Mississippi                     | SC00012                      |
| Nebraska                        | NE-OS-26-13                  |
| Nevada                          | SC000122023-3                |
| New Hampshire NELAP             | 2054                         |
| New Jersey NELAP                | SC002                        |
| New Mexico                      | SC00012                      |
| New York NELAP                  | 11501                        |
| North Carolina                  | 233                          |
| North Carolina SDWA             | 45709                        |
| North Dakota                    | R-158                        |
| Oklahoma                        | 2022–160                     |
| Pennsylvania NELAP              | 68–00485                     |
| Puerto Rico                     | SC00012                      |
| S. Carolina Radiochem           | 10120002                     |
| Sanitation Districts of L       | 9255651                      |
| South Carolina Chemistry        | 10120001                     |
| Tennessee                       | TN 02934                     |
| Texas NELAP                     | T104704235-22-20             |
| Utah NELAP                      | SC000122022-37               |
| Vermont                         | VT87156                      |
| Virginia NELAP                  | 460202                       |
| Washington                      | C780                         |

#### List of current GEL Certifications as of 15 November 2022

Technical Case Narrative Alpha Analytical Inc SDG #: L2260165 Work Order #: 598977

#### **Metals**

**Product: Determination of Metals by ICP-MS Analytical Method:** EPA 200.8 **Analytical Procedure:** GL-MA-E-014 REV# 35 **Analytical Batch:** 2336824

**Preparation Method:** EPA 200.2 **Preparation Procedure:** GL-MA-E-016 REV# 18 **Preparation Batch:** 2336822

The following samples were analyzed using the above methods and analytical procedure(s).

| <u>GEL Sample ID#</u> | Client Sample Identification                    |
|-----------------------|-------------------------------------------------|
| 598977001             | LOT-1-221027                                    |
| 1205233499            | Method Blank (MB)ICP-MS                         |
| 1205233500            | Laboratory Control Sample (LCS)                 |
| 1205233501            | Laboratory Control Sample Duplicate (LCSD)      |
| 1205233504            | 598977001(LOT-1-221027L) Serial Dilution (SD)   |
| 1205233502            | 598977001(LOT-1-221027D) Sample Duplicate (DUP) |
| 1205233503            | 598977001(LOT-1-221027S) Matrix Spike (MS)      |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Calibration Information**

#### **ICSA/ICSAB Statement**

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

#### **Radiochemistry**

<u>Product:</u> Gross Alpha/Beta in Drinking Water EPA 900.0 <u>Analytical Method:</u> EPA 900.0 <u>Analytical Procedure:</u> GL-RAD-A-001D REV# 4 <u>Analytical Batch:</u> 2337958 The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                   |
|----------------|------------------------------------------------|
| 598977001      | LOT-1-221027                                   |
| 1205235593     | Method Blank (MB)                              |
| 1205235594     | 598923001(NonSDG) Sample Duplicate (DUP)       |
| 1205235595     | 598923001(NonSDG) Matrix Spike (MS)            |
| 1205235596     | 598923001(NonSDG) Matrix Spike Duplicate (MSD) |
| 1205235597     | Laboratory Control Sample (LCS)                |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Quality Control (QC) Information**

#### Matrix Spike (MS) Recovery

Matrix Spike did not meet the recovery requirement; however the Matrix Spike Duplicate did meet the recovery requirement. The Matrix Spike and Matrix Spike Duplicate also meet the relative error requirement.

| Sample                           | Analyte | Value          |
|----------------------------------|---------|----------------|
| 1205235595 (Non SDG 598923001MS) | Alpha   | 60* (70%-130%) |

#### **Duplication Criteria between MS and MSD**

The Matrix Spike and Matrix Spike Duplicate, (See Below), did not meet the relative percent difference requirement; however, they do meet the relative error ratio requirement with the value listed below.

| Sample                                             | Analyte | Value                                 |
|----------------------------------------------------|---------|---------------------------------------|
| 1205235595MS and 1205235596MSD (Non SDG 598923001) | Alpha   | RPD 32.5* (0%-20%) RER 0.716<br>(0-2) |

#### **Technical Information**

#### **Gross Alpha/Beta Preparation Information**

None of the samples have been flamed.

#### Recounts

Sample 1205235595 (Non SDG 598923001MS) was recounted due to high recovery. The recount is reported.

**Product: EPA 904.0 Radium-228, DW Analytical Method:** EPA 904.0/ EPA 9320 **Analytical Procedure:** GL-RAD-A-030 REV# 21 **Analytical Batch:** 2338442 The following samples were analyzed using the above methods and analytical procedure(s).

| <u>GEL Sample ID#</u> | Client Sample Identification             |
|-----------------------|------------------------------------------|
| 598977001             | LOT-1-221027                             |
| 1205236674            | Method Blank (MB)                        |
| 1205236675            | 599610001(NonSDG) Sample Duplicate (DUP) |
| 1205236676            | 599610001(NonSDG) Matrix Spike (MS)      |
| 1205236677            | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Technical Information**

#### Recounts

Samples were re-eluted and recounted to verify sample results. The recounts are reported.

#### **Product: EPA 903.1 Ra226 Drinking Water Analytical Method:** EPA 903.1 **Analytical Procedure:** GL-RAD-A-028 REV# 20 **Analytical Batch:** 2338441

The following samples were analyzed using the above methods and analytical procedure(s).

| <u>GEL Sample ID#</u> | Client Sample Identification             |
|-----------------------|------------------------------------------|
| 598977001             | LOT-1-221027                             |
| 1205236668            | Method Blank (MB)                        |
| 1205236669            | 599608001(NonSDG) Sample Duplicate (DUP) |
| 1205236670            | 599608001(NonSDG) Matrix Spike (MS)      |
| 1205236671            | Laboratory Control Sample (LCS)          |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the

requirements of the NELAC standard unless otherwise noted in the analytical case narrative.





301 Fulling Mill Road | Middletown, PA 17057 | Phone: 717-944-5541 | Fax: 717-944-1430 | www.alsglobal.com

NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618 State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343

| Analytical Results Report For | Alpha Analytical               |
|-------------------------------|--------------------------------|
|                               | Project <u>L2260165</u>        |
|                               | Workorder <u>3271127</u>       |
|                               | Report ID 208431 on 11/21/2022 |

#### **Certificate of Analysis**

Enclosed are the analytical results for samples received by the laboratory on Oct 28, 2022.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at

www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Global. ALS Middletown: 301 Fulling Mill Road, Middletown, PA 17057 : 717-944-5541.

Recipient(s):

Ms Kane - Alpha Analytical Ben Rao - Alpha Analytical Candace Fox - Alpha Analytical Cindy Romero - Alpha Analytical Melissa Deyo - Alpha Analytical Nadine Yakes - Alpha Analytical Results - Alpha Analytical

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

George Methlie Project Coordinator (ALS Digital Signature)

George Methlie



# Lab ID Sample ID Matrix Date Collected Date Received Collector Collection Company 3271127001 LOT-1-221027 NY Potable Water 10/27/2022 11:10 10/28/2022 10:06 CBC Collected By Client



#### Reference

#### Notes

- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- Except as qualified, Clean Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 136.
- Except as qualified, Safe Drinking Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 141.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.

#### Standard Acronyms/Flags

| J      | Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| U      | Indicates that the analyte was Not Detected (ND) above the MDL                                                                       |
| Ν      | Indicates presumptive evidence of the presence of a compound                                                                         |
| MDL    | Method Detection Limit                                                                                                               |
| PQL    | Practical Quantitation Limit                                                                                                         |
| RDL    | Practical Quantitation Limit for this Project                                                                                        |
| ND     | Not Detected - indicates that the analyte was Not Detected                                                                           |
| Cntr   | Analysis was performed using this container                                                                                          |
| RegLmt | Regulatory Limit                                                                                                                     |
| LCS    | Laboratory Control Sample                                                                                                            |
| MS     | Matrix Spike                                                                                                                         |
| MSD    | Matrix Spike Duplicate                                                                                                               |
| DUP    | Sample Duplicate                                                                                                                     |
| %Rec   | Percent Recovery                                                                                                                     |
| RPD    | Relative Percent Difference                                                                                                          |
| LOD    | DoD Limit of Detection                                                                                                               |
| LOQ    | DoD Limit of Quantitation                                                                                                            |
| DL     | DoD Detection Limit                                                                                                                  |
| I      | Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL) |
| (S)    | Surrogate Compound                                                                                                                   |
| NC     | Not Calculated                                                                                                                       |
| *      | Result outside of QC limits                                                                                                          |
| #      | Please reference the result in the Results Section for analyte-level flags.                                                          |
|        |                                                                                                                                      |
|        |                                                                                                                                      |

| <u>Project</u><br>Workorder | L2260165<br>3271127                                                                                                                  |                   | s |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------|---|
|                             |                                                                                                                                      | Project Notations |   |
| Lab ID                      | Sample ID                                                                                                                            | Sample Notations  |   |
|                             |                                                                                                                                      | Result Notations  |   |
| Notation R                  | ef.<br>Due to sample matrix interferences, this analyte was analyzed at a dilution and the<br>detection levels adjusted accordingly. |                   |   |
| 2                           | See attached subcontract 515.3 results from Eurofins Eaton. SLW 11/21/2022                                                           |                   |   |

#### **Detected Results Summary**

| Client Sample ID<br>Lab Sample ID | LOT-1-221027<br>3271127001 |              |      | Collected<br>Lab Receipt | 10/27/2022 11:10<br>10/28/2022 10:06 |
|-----------------------------------|----------------------------|--------------|------|--------------------------|--------------------------------------|
| <u>Compound</u>                   |                            | Result Units | RDL  | Method                   | Flag                                 |
| SEMIVOLATILES                     |                            |              |      |                          |                                      |
| bis(2-Ethylhexyl)phthalate        |                            | 1.0 ug/L     | 0.96 | EPA 525.2                | #                                    |
| SUBCONTRACTE                      | D ANALYSIS                 |              |      |                          |                                      |
| Subcontracted Analysis            |                            | See attached |      | Subcontra                | :t #                                 |
|                                   |                            |              |      |                          |                                      |





#### Results

| Client Sample ID | LOT-1-221027 | Collected   | 10/27/2022 11:10 |
|------------------|--------------|-------------|------------------|
| Lab Sample ID    | 3271127001   | Lab Receipt | 10/28/2022 10:06 |
|                  |              |             |                  |

#### CARBAMATES

L2260165

3271127

Project

Workorder

| Compound            | <u>Result</u> | Flag | <u>Units</u> | <u>RDL</u> | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|---------------------|---------------|------|--------------|------------|-----------|-----------------|--------------------|-----------|-------------|
| 3-Hydroxycarbofuran | ND            | ND   | ug/L         | 1.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Aldicarb            | ND            | ND   | ug/L         | 2.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Aldicarb Sulfone    | ND            | ND   | ug/L         | 2.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Aldicarb Sulfoxide  | ND            | ND   | ug/L         | 2.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Carbaryl            | ND            | ND   | ug/L         | 1.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Carbofuran          | ND            | ND   | ug/L         | 1.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Methomyl            | ND            | ND   | ug/L         | 1.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |
| Oxamyl              | ND            | ND   | ug/L         | 1.0        | EPA 531.1 | 1               | 11/09/2022 04:36   | CGS       | G           |

#### HALOACETIC ACID

| Compound                  | <u>Result</u> | Flag | <u>Units</u> | RDL             | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u>       | <u>Cntr</u> |
|---------------------------|---------------|------|--------------|-----------------|-----------|-----------------|--------------------|-----------------|-------------|
| Dibromoacetic Acid        | ND            | ND   | ug/L         | 1.0             | EPA 552.2 | 1               | 11/01/2022 23:54   | DXL             | 0           |
| Dichloroacetic Acid       | ND            | ND   | ug/L         | 1.0             | EPA 552.2 | 1               | 11/01/2022 23:54   | DXL             | 0           |
| Monobromoacetic Acid      | ND            | ND   | ug/L         | 1.0             | EPA 552.2 | 1               | 11/01/2022 23:54   | DXL             | 0           |
| Monochloroacetic Acid     | ND            | ND   | ug/L         | 2.0             | EPA 552.2 | 1               | 11/01/2022 23:54   | DXL             | 0           |
| Trichloroacetic Acid      | ND            | ND   | ug/L         | 1.0             | EPA 552.2 | 1               | 11/01/2022 23:54   | DXL             | 0           |
| SURROGATES                |               |      |              |                 |           |                 |                    |                 |             |
| Compound                  | CAS No        |      |              | <u>Recovery</u> | Limits(%) | <u>Analysis</u> | Date/Time          | <u>Qualifie</u> | <u>rs</u>   |
| 2,3-Dibromopropionic Acid | 600-05-5      |      | 101%         |                 | 70 - 130  | 11/01/2022      | 23:54              |                 |             |

#### HERBICIDES

| <u>Compound</u> | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL  | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|-----------------|---------------|-------------|--------------|------|-----------|-----------------|--------------------|-----------|-------------|
| Diquat          | ND            | ND          | ug/L         | 2.0  | EPA 549.2 | 1               | 11/03/2022 13:37   | CGS       | 11          |
| Endothall       | ND            | ND          | ug/L         | 20.0 | EPA 548.1 | 1               | 11/01/2022 12:27   | GEC       | J           |
| Glyphosate      | ND            | ND          | ug/L         | 25.0 | EPA 547   | 1               | 11/02/2022 22:17   | CGS       | L           |

#### PESTICIDES

| Compound                  | <u>Result</u> | Flag | <u>Units</u> | <u>RDL</u> | <u>Method</u> | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|---------------------------|---------------|------|--------------|------------|---------------|-----------------|--------------------|-----------|-------------|
| Aroclor-1016              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1221              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1232              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1242              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1248              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1254              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Aroclor-1260              | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Chlordane                 | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Polychlorinated Biphenyls | ND            | ND   | ug/L         | 0.48       | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |
| Toxaphene                 | ND            | ND   | ug/L         | 1.9        | EPA 505       | 1               | 11/04/2022 06:47   | DXL       | А           |

| Project   | L2260165 |
|-----------|----------|
| Workorder | 3271127  |

|                                   |                            |            | Resul    | ts        |                          |                                      |
|-----------------------------------|----------------------------|------------|----------|-----------|--------------------------|--------------------------------------|
| Client Sample ID<br>Lab Sample ID | LOT-1-221027<br>3271127001 |            |          |           | Collected<br>Lab Receipt | 10/27/2022 11:10<br>10/28/2022 10:06 |
| PESTICIDES (con                   | t.)                        |            |          |           |                          |                                      |
| Compound                          | <u>Result</u>              | Flag Units | RDL      | Method    | Dilution Analysis Dat    | e/Time <u>By Cntr</u>                |
| SURROGATES                        |                            |            |          |           |                          |                                      |
| Compound                          | CAS No                     |            | Recovery | Limits(%) | Analysis Date/Time       | Qualifiers                           |
| Tetrachloro-m-xylene              | 877-09-8                   |            | 101%     | 70 - 130  | 11/04/2022 06:47         |                                      |

#### **SEMIVOLATILES**

| Compound                   | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL   | <u>Method</u> | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|----------------------------|---------------|-------------|--------------|-------|---------------|-----------------|--------------------|-----------|-------------|
| Alachlor                   | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Aldrin                     | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Atrazine                   | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Benzo(a)pyrene             | ND            | ND          | ug/L         | 0.096 | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| bis(2-Ethylhexyl)phthalate | 1.0           |             | ug/L         | 0.96  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Butachlor                  | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Di(2-Ethylhexyl)adipate    | ND            | ND          | ug/L         | 0.96  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Dieldrin                   | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Endrin                     | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| gamma-BHC                  | ND            | ND          | ug/L         | 0.096 | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Heptachlor                 | ND            | ND          | ug/L         | 0.096 | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Heptachlor Epoxide         | ND            | ND          | ug/L         | 0.096 | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Hexachlorobenzene          | ND            | ND          | ug/L         | 0.096 | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Hexachlorocyclopentadiene  | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Methoxychlor               | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Metolachlor                | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Metribuzin                 | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Propachlor                 | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |
| Simazine                   | ND            | ND          | ug/L         | 0.19  | EPA 525.2     | 1               | 11/04/2022 13:48   | CGS       | E1          |

#### SURROGATES

| Compound                    | CAS No    | Recovery | Limits(%) | Analysis Date/Time | <u>Qualifiers</u> |
|-----------------------------|-----------|----------|-----------|--------------------|-------------------|
| 1,3-Dimethyl-2-Nitrobenzene | 81-20-9   | 101%     | 70 - 130  | 11/04/2022 13:48   |                   |
| IS_Perylene-d12             | 1520-96-3 | 110 %    | 70 - 130  | 11/04/2022 13:48   |                   |
| Pyrene-d10                  | 1718-52-1 | 103 %    | 70 - 130  | 11/04/2022 13:48   |                   |
| Triphenylphosphate          | 115-86-6  | 115 %    | 70 - 130  | 11/04/2022 13:48   |                   |

#### SUBCONTRACTED ANALYSIS

| Compound               | <u>Result</u>   | Flag | <u>Units</u> | RDL | <u>Method</u> | <b>Dilution</b> | Analysis Date/Time | By  | <u>Cntr</u> |
|------------------------|-----------------|------|--------------|-----|---------------|-----------------|--------------------|-----|-------------|
| Subcontracted Analysis | See<br>attached | 2    |              |     | Subcontract   | 1               | 11/21/2022 16:54   | SUB |             |

#### WET CHEMISTRY

| Compound | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL  | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|----------|---------------|-------------|--------------|------|-----------|-----------------|--------------------|-----------|-------------|
| Bromate  | ND            | ND,1        | ug/L         | 50.0 | EPA 300.1 | 10              | 11/02/2022 11:20   | DMG       | Ν           |

ALS is one of the world's largest and most diversified analytical testing service providers. To learn more visit us at: www.alsglobal.com 71/21/2022 5:23 PM

ALS


| Project   | L2260165 |
|-----------|----------|
| Workorder | 3271127  |

|                                   |                            |             |              | Results    |           |                         |                    |                                    |             |
|-----------------------------------|----------------------------|-------------|--------------|------------|-----------|-------------------------|--------------------|------------------------------------|-------------|
| Client Sample ID<br>Lab Sample ID | LOT-1-221027<br>3271127001 |             |              |            |           | Collected<br>Lab Receip |                    | 7/2022 1 <sup>2</sup><br>3/2022 10 |             |
| WET CHEMISTRY                     | ′ (cont.)                  |             |              |            |           |                         |                    |                                    |             |
| Compound                          | <u>Result</u>              | <u>Flag</u> | <u>Units</u> | <u>RDL</u> | Method    | Dilution                | Analysis Date/Time | <u>By</u>                          | <u>Cntr</u> |
| Chlorite                          | ND                         | ND,1        | ug/L         | 200        | EPA 300.1 | 10                      | 11/02/2022 11:20   | DMG                                | Ν           |
| SURROGATES                        |                            |             |              |            |           |                         |                    |                                    |             |
| <u>Compound</u>                   | CAS No                     |             |              | Recovery   | Limits(%) | <u>Analysis E</u>       | Date/Time          | Qualifier                          | s           |
| Dichloroacetate                   | DCA                        |             |              | 102%       | 90 - 115  | 11/02/2022 11           | :20                |                                    |             |
| Dichloroacetate                   | DCA                        |             |              | 102%       | 90 - 115  | 11/02/2022 11           | :20                |                                    |             |





|            |              | Sample - Method C | ross Reference Table |                 |
|------------|--------------|-------------------|----------------------|-----------------|
| Lab ID     | Sample ID    | Analysis Method   | Preparation Method   | Leachate Method |
| 3271127001 | LOT-1-221027 | EPA 531.1         | N/A                  |                 |
|            |              | EPA 547           | N/A                  |                 |
|            |              | EPA 549.2         | EPA 549.2            |                 |
|            |              | Subcontract       | N/A                  |                 |
|            |              | EPA 505           | EPA 505              |                 |
|            |              | EPA 552.2         | EPA 552.2            |                 |
|            |              | EPA 525.2         | EPA 525.2            |                 |
|            |              | EPA 548.1         | EPA 548.1            |                 |
|            |              | EPA 300.1         | N/A                  |                 |



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Lab ID     | Sample ID    | Preparation Method | Prep Batch | Prep Date/Time   | Ву  | Analysis Method | Anly Batch |
|------------|--------------|--------------------|------------|------------------|-----|-----------------|------------|
| 3271127001 | LOT-1-221027 | N/A                | N/A        | N/A              |     | EPA 531.1       | 903920     |
|            |              | N/A                | N/A        | N/A              |     | EPA 547         | 899633     |
|            |              | EPA 549.2          | 899982     | 11/03/2022 02:30 | KMR | EPA 549.2       | 900194     |
|            |              | N/A                | N/A        | N/A              |     | Subcontract     |            |
|            |              | EPA 505            | 900310     | 11/03/2022 18:50 | DXL | EPA 505         | 900782     |
|            |              | EPA 552.2          | 899084     | 11/01/2022 08:20 | S7M | EPA 552.2       | 899369     |
|            |              | EPA 525.2          | 900798     | 11/04/2022 01:45 | KMR | EPA 525.2       | 901390     |
|            |              | EPA 548.1          | 898930     | 10/31/2022 11:05 | JEK | EPA 548.1       | 899235     |
|            |              | N/A                | N/A        | N/A              |     | EPA 300.1       | 898969     |

Page 104 of 120 11/21/2022 5:23 PM

(

Serial\_No:11212218:55

## Environment Testing

## **ANALYTICAL REPORT**

## **PREPARED FOR**

Attn: Sarah Leung ALS Environmental 301 Fulling Mill Road Middletown Pennsylvania 17057 Generated 11/21/2022 12:00:40 PM

## JOB DESCRIPTION

3271127

## **JOB NUMBER**

810-43559-1

Eurofins Eaton South Bend 110 S Hill Street South Bend IN 46617





## **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 9  |
| Lab Chronicle          | 10 |
| Certification Summary  | 11 |
| Method Summary         | 12 |
| Sample Summary         | 13 |
| Chain of Custody       | 14 |
| Receipt Checklists     | 16 |
| Appendix               | 17 |

#### **Definitions/Glossary**

Client: ALS Environmental Project/Site: 3271127

Job ID: 810-43559-1

#### Qualifiers

| GC Semi VOA         Juilate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Qualifiers     |                                                                                                                | 3  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------|----|
| J       Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.         Glossary       Abbreviation       These commonly used abbreviations may or may not be present in this report.         a       Listed under the TD' column to designate that the result is reported on a dry weight basis         %R       Percent Recovery       Image: Column to designate that the result is reported on a dry weight basis         CH       Contains Free Liquid       Image: Column to designate that the result is reported on a dry weight basis         DL       Contains No Free Liquid       Image: Column to designate that the result is reported on a dry weight basis         DL       Contains No Free Liquid       Image: Column to designate dasolute difference)         DL       Duplicate Error Ratio (normalized absolute difference)       Image: Column to (DoDODE)         DL       Detection Limit (DoDODE)       Image: Column to (DoDODE)         DL       Detection Limit (DoDODE)       Image: Column to (DoDODE)         DL       Estimated Detection Limit (DoDODE)       Image: Column to designate that Level*         MDA       Minimum Detectable Activity (Radochemistry)       Image: Column to dasolute difference)         MDL       Minimum Detectable Activity (Radochemistry)       Image: Column to dasolute difference)         MDL       Minimum Detectable Activity (Radochemistry)       Image: Column                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GC Semi VOA    |                                                                                                                |    |
| Clossary     Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qualifier      | · · · · ·                                                                                                      | 4  |
| Abbreviation         These commonly used abbreviations may or may not be present in this report.           I         Listed under the "D" column to designate that the result is reported on a dry weight basis           %R         Percent Recovery           CFL         Contains Free Liquid           CFU         Colorny forming Unit           CFW         Contains Free Liquid           DER         Duplicate Error Ratio (normalized absolute difference)           DII Fac         Diution Factor           DL         Detection Linit (DoD/DCE)           DL         Detection Linit (DoD/DCE)           DL         Detection Linit (DoD/DCE)           LOQ         Linit of Quantitation (ColorDCE)           LOQ         Linit of Quantitation ColorD/DCE)           MDA         Minimum Detectable Activity (Radiochemistry)           MDC         Minimum Detectable Concentration (Radiochemistry)           MDL         Method Detection Limit (Mato Chemistry)           MDL         Method Quantitation Limit           ML         Minimum Detectable Activity (Radiochemistry)           MDL         Method Quantitation Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | J              | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | -  |
| a         Listed under the "D" column to designate that the result is reported on a dry weight basis           %R         Percent Recovery         Contains Free Liquid         Recovery           CFL         Contains No Free Liquid         Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glossary       |                                                                                                                | 5  |
| ****     Percent Recovery     Image: Contrains Free Liquid     Image:                                                                                                                                                                                                                                                                                                                                                                                                                                          | Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                    | 6  |
| CPL     Contains Free Liquid     Image: CPL of Control Cont  | ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                     |    |
| CFU     Colony Forming Unit     Colony Forming Unit <td< td=""><td>%R</td><td>Percent Recovery</td><td>7</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %R             | Percent Recovery                                                                                               | 7  |
| CNFContain No Free LiquidContain No Free LiquidCon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CFL            | Contains Free Liquid                                                                                           |    |
| DERDuplicate Error Ratio (normalized absolute difference)Image: Construct of Construct o | CFU            | Colony Forming Unit                                                                                            | 0  |
| Di FaceDu d'actesDu d'actes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CNF            | Contains No Free Liquid                                                                                        | 0  |
| DL     Detection Limit (DD/DDE)       DL, RA, RE, IN     Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample     1       DLC     Decision Level Concentration (Radiochemistry)     1       DLD     Estimated Detection Limit (Dioxin)     1       LOD     Limit of Detection (DD/DDE)     1       LOD     Limit of Detection Contraminant Level®     1       MCL     EA recommended "Maximum Contaminant Level"     1       MDA     Minimum Detectable Activity (Radiochemistry)     1       MDA     Monimum Detectable Activity (Radiochemistry)     1       NDA     No Tocalube Aumber     1       NDA     No Tocalube Aumber     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DER            | Duplicate Error Ratio (normalized absolute difference)                                                         |    |
| DL, RA, RE, INIndicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sampleIDLCDecision Level Concentration (Radiochemistry)IEDLEstimated Detection Limit (Dixoln)ILODLimit of Dection (DoD/DOE)ILOQLimit of Quantilation (ObD/DOE)IMDAMinimum Detectable Activity (Radiochemistry)IMDAMinimum Detectable Activity (Radiochemistry)IMDCMinimum Detectable Activity (Radiochemistry)IMDLMethod Detection LimitIMLMinimum Detectable Concentration (Radiochemistry)IMDLMethod Detection LimitIMLMinimum Detectable Activity (Radiochemistry)IMDLMethod Detection LimitIMLMinimum Detectable Activity (Radiochemistry)IMDLMethod Quantitation LimitIMLMinimum Detectable Activity (Radiochemistry)IMDLMethod Quantitation LimitIMCNot CalculatedINCNot CalculatedINCNot CalculatedINCNot CalculatedINEGNegative / AbsentIPOLPosticia / PresentIPOLPosticia / Cadiochemistry)IRERRelative Error Ratio (Radiochemistry)RLRelative Crore Ratio (Radiochemistry)RLRelative Percent Difference, a measure of the relative difference between two pointsREFTalcive/Eqcuvalent F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dil Fac        | Dilution Factor                                                                                                | 9  |
| DLCDecision Level Concentration (Radiochemistry)EDLEstimated Detection Limit (Dioxin)LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)LOQEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Activity (Radiochemistry)MDLMethod Detection LimitMDLMethod Detection LimitMDLMethod Detection LimitMDLMothod Quantitation LimitMQLMethod Quantitation LimitMQLMethod Quantitation LimitNoNot CalculatedNoNot CalculatedNDLNot CalculatedPOSPositive / PresentPOLPractical Quantitation LimitPOSPositive / PresentPOLPractical Quantitation LimitPOLPractical Quantitation LimitPOLRelative PresentPOLRelative Present Difference, a measure of the relative difference between two pointsRPDRelative Present Oliference, a measure of the relative difference between two pointsTEFToxicity Equivalent Teator (Dioxin)TEQToxicity Equivalent Guotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DL             | Detection Limit (DoD/DOE)                                                                                      |    |
| EDL       Estimated Detection Limit (Dioxin)       I         LOD       Limit of Detection (DoD/DOE)       I         LOQ       Limit of Quantitation (DoD/DOE)       I         MCL       EPA recommended "Maximum Contaminant Level"       I         MDA       Minimum Detectable Activity (Radiochemistry)       I         MDC       Minimum Detectable Activity (Radiochemistry)       I         MDL       Method Detection Limit       I         ML       Minimum Level (Dioxin)       I         MDL       Minimum Level (Dioxin)       I         ML       Most Probable Number       I         MQL       Motod Quantitation Limit       I         NC       Not Calculated       I         ND       Not Detected at the reporting limit (or MDL or EDL if shown)       I         NEG       Negative / Absent       I         POS       Positive / Present       I         POL       Practical Quantitation Limit       I         PRES       Pesumptive       I         QC       Quality Control       I         RER       Relative Error Ratio (Radiochemistry)       I         RL       Reporting Limit or Requested Limit (Radiochemistry)       I         RPD       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample    |    |
| LODLimit of Detection (DoD/DOE)LOQLimit of Quantitation (DoD/DOE)1MCLEPA recommended "Maximum Contaminant Level"1MDAMinimum Detectable Activity (Radiochemistry)1MDCMinimum Detectable Concentration (Radiochemistry)1MDLMethod Detection Limit1MLMinimum Level (Dioxin)1MPNMost Probable Number1MQLMethod Quantitation Limit1NCNot Calculated1NCNot Calculated1NDLNot Detection Limit (or MDL or EDL if shown)1NGNot Detection Limit (or MDL or EDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DLC            | Decision Level Concentration (Radiochemistry)                                                                  |    |
| LOQLimit of Quantitation (DoD/DOE)1MCLEPA recommended "Maximum Contaminant Level"1MDAMinimum Detectable Activity (Radiochemistry)1MDCMinimum Detectable Concentration (Radiochemistry)1MDLMethod Detection Limit1MLMinimum Level (Dioxin)1MDLMethod Duantitation Limit1MQLMethod Quantitation Limit1NCNot Calculated1NCNot Detected at the reporting limit (or MDL or EDL if shown)1NCNot Detected at the reporting limit (or MDL or EDL if shown)1NEGNegative / Absent1POSPositive / Present1PQLPractical Quantitation Limit1PRESPresumptive1QCQuality Control1RERRelative Error Ratio (Radiochemistry)1RPDRelative Error Ratio (Radiochemistry)1TEFToxicity Equivalent Factor (Dioxin)1TEQToxicity Equivalent Actor (Dioxin)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EDL            | Estimated Detection Limit (Dioxin)                                                                             |    |
| MCLEPA recommended "Maximum Contaminant Level"MDAMinimum Detectable Activity (Radiochemistry)MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RPDRelative Error Ratio (Radiochemistry)RPDRelative Prenet Difference, a measure of the relative difference between two pointsTEQToxicity Equivalent Actor (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LOD            | Limit of Detection (DoD/DOE)                                                                                   |    |
| MDAMinimu Detectable Activity (Radiochemistry)1MDCMinimu Detectable Concentration (Radiochemistry)1MDLMethod Detection Limit1MLMinimu Level (Dioxin)1MDNMost Probable Number1MQLMethod Quantitation Limit1NCNot Calculated1NDNot Detected at the reporting limit (or MDL or EDL if shown)1NEGNegative / Absent1PQLPositive / Present1PQLPractical Quantitation Limit1PRESPresumptive1QCQuality Control1RERRelative Error Ratio (Radiochemistry)1RERRelative Error Ratio (Radiochemistry)1RLGality Present Ofference, a measure of the relative difference between two points1TEQToxicity Equivalent Quotient (Dioxin)1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LOQ            | Limit of Quantitation (DoD/DOE)                                                                                |    |
| MDCMinimum Detectable Concentration (Radiochemistry)MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MCL            | EPA recommended "Maximum Contaminant Level"                                                                    |    |
| MDLMethod Detection LimitImage: Constraint of the second se | MDA            | Minimum Detectable Activity (Radiochemistry)                                                                   | 13 |
| MLMinimu Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MDC            | Minimum Detectable Concentration (Radiochemistry)                                                              |    |
| MPN       Most Probable Number       1         MQL       Method Quantitation Limit       1         NC       Not Calculated       1         ND       Not Detected at the reporting limit (or MDL or EDL if shown)       1         NEG       Negative / Absent       1         POS       Positive / Present       1         PQL       Practical Quantitation Limit       1         PRES       Presumptive       1         QC       Quality Control       1         RER       Relative Error Ratio (Radiochemistry)       1         RL       Reporting Limit or Requested Limit (Radiochemistry)       1         RPD       Relative Percent Difference, a measure of the relative difference between two points       1         TEF       Toxicity Equivalent Factor (Dioxin)       1         TEQ       Toxicity Equivalent Quotient (Dioxin)       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MDL            | Method Detection Limit                                                                                         |    |
| MQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)NEGNegative / AbsentPOSIPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Precent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ML             | Minimum Level (Dioxin)                                                                                         |    |
| NCNot Calculated1NDNot Detected at the reporting limit (or MDL or EDL if shown)1NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MPN            | Most Probable Number                                                                                           |    |
| NDNot Detected at the reporting limit (or MDL or EDL if shown)INEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MQL            | Method Quantitation Limit                                                                                      |    |
| NEGNegative / AbsentPOSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NC             | Not Calculated                                                                                                 |    |
| POSPositive / PresentPQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                   | 10 |
| PQLPractical Quantitation LimitPRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NEG            | Negative / Absent                                                                                              |    |
| PRESPresumptiveQCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POS            | Positive / Present                                                                                             |    |
| QCQuality ControlRERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PQL            | Practical Quantitation Limit                                                                                   |    |
| RERRelative Error Ratio (Radiochemistry)RLReporting Limit or Requested Limit (Radiochemistry)RPDRelative Percent Difference, a measure of the relative difference between two pointsTEFToxicity Equivalent Factor (Dioxin)TEQToxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRES           | Presumptive                                                                                                    |    |
| RL     Reporting Limit or Requested Limit (Radiochemistry)       RPD     Relative Percent Difference, a measure of the relative difference between two points       TEF     Toxicity Equivalent Factor (Dioxin)       TEQ     Toxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | QC             | Quality Control                                                                                                |    |
| RPD       Relative Percent Difference, a measure of the relative difference between two points         TEF       Toxicity Equivalent Factor (Dioxin)         TEQ       Toxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RER            | Relative Error Ratio (Radiochemistry)                                                                          |    |
| TEF     Toxicity Equivalent Factor (Dioxin)       TEQ     Toxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                            |    |
| TEQ Toxicity Equivalent Quotient (Dioxin)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD            | Relative Percent Difference, a measure of the relative difference between two points                           |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEF            | Toxicity Equivalent Factor (Dioxin)                                                                            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                          |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TNTC           | Too Numerous To Count                                                                                          |    |

#### Case Narrative

Job ID: 810-43559-1

#### Job ID: 810-43559-1

#### Laboratory: Eurofins Eaton South Bend

#### Narrative

Job Narrative 810-43559-1

#### Receipt

The sample was received on 11/4/2022 1:15 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C

#### GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

| Detection | Summary |
|-----------|---------|
|-----------|---------|

Client: ALS Environmental Project/Site: 3271127

#### Client Sample ID: 3271127-001

No Detections.

Job ID: 810-43559-1

Lab Sample ID: 810-43559-1

This Detection Summary does not include radiochemical test results.

#### **Client Sample Results**

Client: ALS Environmental Project/Site: 3271127

#### Client Sample ID: 3271127-001 Date Collected: 10/27/22 11:10

Date Received: 11/04/22 13:15

| Method: EPA 515.3 - Herbicide | es (GC)     |          |          |      |   |                |                |         |
|-------------------------------|-------------|----------|----------|------|---|----------------|----------------|---------|
| Analyte                       | Result Q    | ualifier | RL       | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 2,4,5-TP (Silvex)             | <0.10       |          | 0.10     | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Dalapon                       | <1.0        |          | 1.0      | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Dicamba                       | <0.10       |          | 0.10     | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Dinoseb                       | <0.10       |          | 0.10     | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Pentachlorophenol             | <0.040      |          | 0.040    | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Picloram                      | <0.10       |          | 0.10     | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| 2,4-D                         | <0.10       |          | 0.10     | ug/L |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |
| Surrogate                     | %Recovery Q | ualifier | Limits   |      |   | Prepared       | Analyzed       | Dil Fac |
| 2,4-Dichlorophenylacetic acid | 92          |          | 70 - 130 |      |   | 11/10/22 09:43 | 11/18/22 05:24 | 1       |

Job ID: 810-43559-1

#### Lab Sample ID: 810-43559-1 Matrix: Drinking Water

Job ID: 810-43559-1

#### Surrogate Summary

Client: ALS Environmental Project/Site: 3271127

#### Method: 515.3 - Herbicides (GC) Matrix: Drinking Water

| Matrix: Drinking Water | r                  |          | Prep Type: Total/NA                            |
|------------------------|--------------------|----------|------------------------------------------------|
| Γ                      |                    |          | Percent Surrogate Recovery (Acceptance Limits) |
|                        |                    | DCPAA1   |                                                |
| Lab Sample ID          | Client Sample ID   | (70-130) |                                                |
| 810-43559-1            | 3271127-001        | 92       |                                                |
| 810-43559-1 MS         | 3271127-001        | 88       |                                                |
| LLCS 810-38023/2-B     | Lab Control Sample | 81       |                                                |
| MB 810-38023/1-B       | Method Blank       | 102      |                                                |
| Surrogate Legend       |                    |          |                                                |

DCPAA = 2,4-Dichlorophenylacetic acid

Eurofins Eaton South Bend

#### **QC Sample Results**

#### Method: 515.3 - Herbicides (GC)

| Lab Sample | ID: MB | 810-38023/1-B |
|------------|--------|---------------|
|            |        |               |

Matrix: Drinking Water Analysis Batch: 38815

| Analysis Batch: 38815         |           |           |          |      |   |                | Prep Batci     | 1: 38023 |
|-------------------------------|-----------|-----------|----------|------|---|----------------|----------------|----------|
|                               | MB        | МВ        |          |      |   |                |                |          |
| Analyte                       | Result    | Qualifier | RL       | Unit | D | Prepared       | Analyzed       | Dil Fac  |
| 2,4,5-TP (Silvex)             | <0.10     |           | 0.10     | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| Dalapon                       | <1.0      |           | 1.0      | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| Dicamba                       | <0.10     |           | 0.10     | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| Dinoseb                       | <0.10     |           | 0.10     | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| Pentachlorophenol             | <0.040    |           | 0.040    | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| Picloram                      | <0.10     |           | 0.10     | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
| 2,4-D                         | <0.10     |           | 0.10     | ug/L |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |
|                               | МВ        | МВ        |          |      |   |                |                |          |
| Surrogate                     | %Recovery | Qualifier | Limits   |      |   | Prepared       | Analyzed       | Dil Fac  |
| 2,4-Dichlorophenylacetic acid | 102       |           | 70 - 130 |      |   | 11/10/22 09:43 | 11/17/22 22:59 | 1        |

#### Lab Sample ID: LLCS 810-38023/2-B Matrix: Drinking Water Analysis Batch: 38815

| Analysis Batch: 30010 |        |        |           |      |   |      | Prep     | Batch: 36023 |
|-----------------------|--------|--------|-----------|------|---|------|----------|--------------|
|                       | Spike  | LLCS   | LLCS      |      |   |      | %Rec     |              |
| Analyte               | Added  | Result | Qualifier | Unit | D | %Rec | Limits   |              |
| 2,4,5-TP (Silvex)     | 0.100  | <0.080 |           | ug/L |   | 74   | 48 - 148 |              |
| Dicamba               | 0.200  | 0.203  |           | ug/L |   | 102  |          |              |
| Dinoseb               | 0.200  | 0.193  |           | ug/L |   | 97   | 39 - 141 |              |
| Pentachlorophenol     | 0.0400 | 0.0396 | J         | ug/L |   | 99   | 30 - 171 |              |
| Picloram              | 0.100  | 0.148  |           | ug/L |   | 148  | 24 - 150 |              |
| 2,4-D                 | 0.200  | 0.146  |           | ug/L |   | 73   | 24 - 138 |              |
|                       |        |        |           |      |   |      |          |              |

|                               | LLCS LLCS           |          |
|-------------------------------|---------------------|----------|
| Surrogate                     | %Recovery Qualifier | Limits   |
| 2,4-Dichlorophenylacetic acid | 81                  | 70 - 130 |

#### Lab Sample ID: 810-43559-1 MS Matrix: Drinking Water

| Analysis Batch: 38815 |        |           |       |        |           |      |   |      | Prep E   | Batch: 38023 |
|-----------------------|--------|-----------|-------|--------|-----------|------|---|------|----------|--------------|
|                       | Sample | Sample    | Spike | MS     | MS        |      |   |      | %Rec     |              |
| Analyte               | Result | Qualifier | Added | Result | Qualifier | Unit | D | %Rec | Limits   |              |
| 2,4,5-TP (Silvex)     | <0.10  |           | 1.50  | 1.47   |           | ug/L |   | 98   | 70 - 130 |              |
| Dalapon               | <1.0   |           | 3.00  | 2.49   |           | ug/L |   | 83   | 70 - 130 |              |
| Dicamba               | <0.10  |           | 3.00  | 2.97   |           | ug/L |   | 99   | 70 - 130 |              |
| Dinoseb               | <0.10  |           | 3.00  | 2.96   |           | ug/L |   | 99   | 70 - 130 |              |
| Pentachlorophenol     | <0.040 |           | 0.600 | 0.525  |           | ug/L |   | 87   | 70 - 130 |              |
| Picloram              | <0.10  |           | 1.50  | 1.34   |           | ug/L |   | 89   | 70 - 130 |              |
| 2,4-D                 | <0.10  |           | 3.00  | 2.76   |           | ug/L |   | 92   | 70 - 130 |              |
|                       | MS     | MS        |       |        |           |      |   |      |          |              |

|                               | W3        | 1013      |          |  |
|-------------------------------|-----------|-----------|----------|--|
| Surrogate                     | %Recovery | Qualifier | Limits   |  |
| 2,4-Dichlorophenylacetic acid | 88        |           | 70 - 130 |  |

#### Client Sample ID: 3271127-001

## Prep Type: Total/NA

Eurofins Eaton South Bend

Job ID: 810-43559-1 **Client Sample ID: Method Blank** Prep Type: Total/NA Pren Batch: 38023 5 8

**Client Sample ID: Lab Control Sample** Prep Type: Total/NA Prep Batch: 38023

#### Serial\_No:11212218:55

#### **QC** Association Summary

Client: ALS Environmental Project/Site: 3271127

Job ID: 810-43559-1

#### GC Semi VOA Prep Batch: 38023

| GC Semi VOA                |                    |           |                |         |            |
|----------------------------|--------------------|-----------|----------------|---------|------------|
| rep Batch: 38023           |                    |           |                |         |            |
| Lab Sample ID              | Client Sample ID   | Ргер Туре | Matrix         | Method  | Prep Batch |
| 810-43559-1                | 3271127-001        | Total/NA  | Drinking Water | 515.3   |            |
| MB 810-38023/1-B           | Method Blank       | Total/NA  | Drinking Water | 515.3   |            |
| LLCS 810-38023/2-B         | Lab Control Sample | Total/NA  | Drinking Water | 515.3   |            |
| 810-43559-1 MS             | 3271127-001        | Total/NA  | Drinking Water | 515.3   |            |
| Lab Sample ID              | Client Sample ID   | Ргер Туре | Matrix         | Method  | Prep Batch |
| 810-43559-1                | 3271127-001        | Total/NA  | Drinking Water | Aliquot | 38023      |
| MB 810-38023/1-B           | Method Blank       | Total/NA  | Drinking Water | Aliquot | 38023      |
| LLCS 810-38023/2-B         | Lab Control Sample | Total/NA  | Drinking Water | Aliquot | 38023      |
| 810-43559-1 MS             | 3271127-001        | Total/NA  | Drinking Water | Aliquot | 38023      |
| -<br>Analysis Batch: 38815 | 1                  |           |                |         |            |
| -                          |                    |           |                |         |            |

| Lab Sample ID      | Client Sample ID   | Prep Type | Matrix         | Method | Prep Batch |
|--------------------|--------------------|-----------|----------------|--------|------------|
| 810-43559-1        | 3271127-001        | Total/NA  | Drinking Water | 515.3  | 38082      |
| MB 810-38023/1-B   | Method Blank       | Total/NA  | Drinking Water | 515.3  | 38082      |
| LLCS 810-38023/2-B | Lab Control Sample | Total/NA  | Drinking Water | 515.3  | 38082      |
| 810-43559-1 MS     | 3271127-001        | Total/NA  | Drinking Water | 515.3  | 38082      |

## Lab Chronicle

Client: ALS Environmental Project/Site: 3271127 Job ID: 810-43559-1

Matrix: Drinking Water

Lab Sample ID: 810-43559-1

#### Client Sample ID: 3271127-001 Date Collected: 10/27/22 11:10 Date Received: 11/04/22 13:15

|           | Batch    | Batch   |     | Dilution | Batch  |         |       | Prepared       |
|-----------|----------|---------|-----|----------|--------|---------|-------|----------------|
| Prep Туре | Туре     | Method  | Run | Factor   | Number | Analyst | Lab   | or Analyzed    |
| Total/NA  | Prep     | 515.3   |     |          | 38023  | ER      | EA SB | 11/10/22 09:43 |
| Total/NA  | Cleanup  | Aliquot |     |          | 38082  | ER      | EA SB | 11/10/22 14:36 |
| Total/NA  | Analysis | 515.3   |     | 1        | 38815  | TL      | EA SB | 11/18/22 05:24 |

#### Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

## **Accreditation/Certification Summary**

Client: ALS Environmental Project/Site: 3271127 Job ID: 810-43559-1

#### Laboratory: Eurofins Eaton South Bend The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DatePennsylvaniaNELAP68-0046604-30-23

Eurofins Eaton South Bend

Serial\_No:11212218:55

## Method Summary

#### Client: ALS Environmental Project/Site: 3271127

Job ID: 810-43559-1

| Method  | Method Description              | Protocol | Laboratory |
|---------|---------------------------------|----------|------------|
| 515.3   | Herbicides (GC)                 | EPA      | EA SB      |
| 515.3   | Extraction of Chlorinated Acids | EPA-DW   | EA SB      |
| Aliquot | Preparation, Extract aliquot    | None     | EA SB      |

#### Protocol References:

EPA = US Environmental Protection Agency

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements. None = None

#### Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

## Sample Summary

Client: ALS Environmental Project/Site: 3271127 Job ID: 810-43559-1

| Lab Sample ID | Client Sample ID | Matrix         | Collected      | Received       |
|---------------|------------------|----------------|----------------|----------------|
| 810-43559-1   | 3271127-001      | Drinking Water | 10/27/22 11:10 | 11/04/22 13:15 |

Serial\_No:11212218:55

|          | Δ                   | 301 Fu<br>Middle               | lling Mi<br>town, l | ill Rd, Suite<br>PA 17057 | A             |                  |         |                              |                      |             |             | OF CU                         |             |                     |                      |           |                                          | COC #:                                                                                         | of       |
|----------|---------------------|--------------------------------|---------------------|---------------------------|---------------|------------------|---------|------------------------------|----------------------|-------------|-------------|-------------------------------|-------------|---------------------|----------------------|-----------|------------------------------------------|------------------------------------------------------------------------------------------------|----------|
|          | ALS                 |                                | 944-55              |                           |               |                  |         | AL                           |                      | DED AF      | REAS MI     | UST BE C                      | OMPLE       | TED BY              |                      | IENT /    | 1                                        | ALS Quote #: 40-3271127                                                                        |          |
| Clinet   |                     | Aldalassum                     | Jun 183             | and the second            |               |                  |         | Turks                        | 1.1                  | SAWPL       | ER. IN      | STRUCTI                       | UNS UN      | I HE D              | ACK.                 | 1.1       |                                          | Receipt Information (completed by Receiving Lab)                                               |          |
|          | Name: ALS N         | vilddietown                    |                     |                           |               | 0                | ontaine | riype                        | AG                   |             |             |                               |             |                     |                      |           |                                          | Temp Taken By: Therm ID: WO Temp (°C)                                                          |          |
| Addres   | s:<br>301 Fulling   | g Mill Road                    |                     |                           |               | Co               | ntaine  | r Size                       | 250mL                | 32          |             |                               |             |                     |                      |           |                                          |                                                                                                | N NA     |
|          | Middletow           | m, PA 17057                    |                     |                           |               |                  | resen   | rative                       | ST                   | ar standard |             | 810-4355                      | 9 Chain     |                     |                      |           |                                          | Cooler Custody Seals Intact Y N NA Deviations?<br>Sample Custody Seal Intact Y N NA If YES, II |          |
|          | INIGOIC COM.        |                                |                     |                           |               |                  | Cacin   | MUNC                         |                      |             | -           |                               | o Chair     | or Cust             | lody                 |           |                                          | Received on Ice Y N NA                                                                         |          |
|          |                     |                                |                     |                           |               |                  |         | Unl                          | ess other            | wise Indic  | ated, presi | ervation indi                 | cates field | filtration or       | n applicable         | methods   | Section 2                                | Coolers & Samples Intact Y N                                                                   |          |
| Contac   | t: Mr. Georg        | e Methlie                      |                     |                           |               | 1                | 1       |                              | 1                    |             | ANALYS      | ES/METHO                      | DD REQU     | ESTED               |                      | 1999      |                                          | Correct Containers Provided Y N                                                                |          |
| Phone    | <b>#:</b> 717-944-5 | 5541                           | če pre-             |                           | 1             |                  | 1       | 2                            |                      | 1-1         | 3.55        |                               |             |                     | 1                    |           | 11-1                                     | Sample Label/COC Agree Y N                                                                     |          |
| Project  | Name/#:             |                                |                     |                           |               |                  | -       |                              |                      |             |             |                               |             |                     | 100.68               |           | 11.17                                    | Adequate Sample Volumes Y N                                                                    |          |
| Bill To: |                     | -31-4 Mar 199                  | -                   | 1.5%                      |               | - 5              |         | 0                            |                      |             |             |                               | 1           |                     | 2020                 |           | 1                                        | VOA only: Headspace Present Y N NA                                                             |          |
| Purcha   |                     | 40-3271127                     | - 40 40             | husiness day              | _             | se key           |         | CO                           |                      | 315         | 135         | 1.00                          |             | 1.10                | mnle                 | ontain    | er                                       | VOA only: Trip Blank Y N NA Client co                                                          | ontact:  |
| TA       |                     | al-Standard TAT                |                     |                           |               | e (si            |         | o mo                         |                      | 301         | 100         | Clien                         | Provi       | الي الماني و<br>الإ | 600                  | LA        | 9                                        | NJ ≤ 4 days?         Y         N         Date/Tech:           Courier/Tracking #:              |          |
| Date Re  |                     | Murrel Constant and the second | Approv              |                           | 14.112        | Sample Type (see |         | **Matrix (See bottom of COC) |                      |             |             | -                             | 14          |                     | mple (<br>SON<br>Nac | 6.20      | 3                                        | Sample(s) for Radiation testing? Y N Rad Screen (uCi)                                          |          |
| Email?   | X-Y N               | AMDT.Subcontra                 | act@als             | global.com                | _             | Idua             |         | See                          |                      |             |             | E IE                          | 1.          |                     | Nuo                  | 100       | 1000                                     | Reportable SDWA Sample(s)? Y N New Source?                                                     | Y N      |
|          | Sample Des          | scription/Location             | 1                   | T Date Collected          | Time          | A Si             | U L     | Itrix                        | 515.3                |             |             |                               | 1           |                     |                      |           | in the second                            | SDWA State of Origin? New Source Contact                                                       | ot:      |
|          |                     | pear on the lab report)        |                     | mm/dd/yy                  | hh:mm         | SDWA             | *G or ( | **Ma                         |                      | Enter N     | umber of    | f Containe                    | rs Per Sa   | ample or            | Field Res            | ults Belo | W.                                       | PWSID #                                                                                        |          |
| 1        | 3271127-0           | 001                            |                     | 10/27/22                  | 11:10         |                  | G       | DW                           | 2                    |             |             |                               |             |                     |                      |           | -                                        | PWS Contact: PWS Phone #:                                                                      |          |
| 2        |                     |                                |                     |                           |               |                  |         |                              | Andrigat<br>An Astro |             |             |                               |             |                     |                      |           |                                          | SDWA Sample Type Key: D=Distribution E=Entry Point                                             |          |
| 3        |                     |                                |                     |                           |               |                  |         |                              |                      |             |             |                               |             |                     |                      |           |                                          | R=Raw P=Plant C=Check S=Special A=Annual Startu                                                | р        |
| 4        |                     |                                |                     |                           |               |                  |         |                              |                      |             |             |                               |             |                     |                      | 0         |                                          | Sample/COC Remarks                                                                             |          |
| 5        |                     | 1.1.1.1.1.1                    |                     |                           |               | T                |         |                              |                      | 12 80       |             |                               | 10          | tial Te             | emp:                 | 50        | -                                        | Not Reportable                                                                                 |          |
| 6        | e *** /**           |                                | 1.11                |                           |               |                  |         |                              |                      |             |             | -                             | C           | meck                | H TOT                | 21        | -                                        | Client ID: L2260165                                                                            |          |
| 7        | a hasan             |                                |                     |                           |               |                  |         |                              |                      |             |             | 1.1                           | 1           |                     |                      |           | wet                                      |                                                                                                |          |
| 8        |                     |                                | and the             |                           |               |                  |         |                              |                      |             |             |                               |             |                     |                      |           | f                                        | 1                                                                                              |          |
| 9        |                     |                                |                     |                           |               | +                | +       |                              |                      |             |             |                               |             |                     | -                    |           |                                          | Contains Short Hold Testing YES                                                                | NO       |
| 10       |                     |                                |                     |                           |               |                  |         |                              |                      |             | -           |                               |             |                     |                      |           | -                                        | Internal Use: If less than 48 hours - notify lab upon receipt                                  |          |
|          | ample Collecto      | or: ALS Tech                   | / Clie              | lent                      | Comments:     |                  |         | L                            | I                    | I           | 1           |                               | •           | -                   | 1                    |           |                                          | Standard Ltd 1 CLP-like HSCA Courts                                                            | Samples  |
|          |                     |                                | ID:                 |                           |               |                  |         |                              |                      |             |             |                               |             | 7_7-                |                      |           | a<br>ables                               |                                                                                                | ected In |
| Date:    | Ťi                  | ime                            | -                   | Relinquished              | By / Comr     | anv              | Nam     | e                            |                      |             | <u></u>     | Received                      | By / Con    | npany Na            | me                   |           | Deliverabl                               | Standard Lvi 3 NJ RED NJ GW                                                                    | X NY     |
| 11       | 27                  | (60- 1                         | 2                   |                           |               |                  |         | -                            |                      | 2           |             | Ser                           | 2           | an                  |                      | EA        | å                                        | Standard Lvl 4 NJ Full                                                                         | NJ       |
|          |                     | 3                              | 6                   |                           |               |                  |         |                              |                      | 4           |             | 0                             | ) (         | 21-4                |                      | 315       |                                          | Excel Summary Sample Disposal                                                                  | PA       |
|          |                     | 5                              |                     |                           |               |                  |         |                              |                      | 6           |             |                               |             |                     |                      |           | EDO                                      | Equis Lab                                                                                      | W        |
|          |                     | 7                              |                     |                           |               |                  |         |                              |                      | 8           |             |                               |             |                     |                      |           |                                          | Custom Special                                                                                 | FL       |
|          |                     | 9                              |                     |                           |               |                  |         |                              |                      | 10          |             |                               |             |                     |                      |           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                                                                                                | MD oth   |
|          |                     |                                |                     | * G=Gi                    | rab; C=Compos | site             | **M     |                              |                      |             |             | undwater; O=<br>ulling Mill R |             |                     |                      |           | Surface Wal                              | ter; WP=Wipe; WW=Wastewater                                                                    | Rev 7.19 |

Page 14 of 17

1.100

14

### Login Sample Receipt Checklist

#### Client: ALS Environmental

#### Login Number: 43559 List Number: 1 Creator: Spurgeon, Sheri

| Question                                                                         | Answer | Comment                    |
|----------------------------------------------------------------------------------|--------|----------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                            |
| Sample custody seals, if present, are intact.                                    | True   |                            |
| Samples were received on ice.                                                    | True   |                            |
| Cooler Temperature is acceptable.                                                | True   |                            |
| Cooler Temperature is recorded.                                                  | True   |                            |
| COC is present.                                                                  | True   |                            |
| COC is filled out in ink and legible.                                            | True   |                            |
| COC is filled out with all pertinent information.                                | True   |                            |
| There are no discrepancies between the containers received and the COC.          | True   |                            |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                            |
| Sample containers have legible labels.                                           | True   |                            |
| Containers are not broken or leaking.                                            | True   |                            |
| Sample collection date/times are provided.                                       | True   |                            |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                            |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | True   |                            |
| Samples do not require splitting or compositing.                                 | True   |                            |
| Container provided by EEA                                                        | False  | Client provided containers |

List Source: Eurofins Eaton South Bend

## **Eurofins Eaton South Bend**

## **Job Notes**

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Eaton Analytical, LLC Project Manager.

## Authorization

Generated 11/21/2022 12:00:40 PM

Authorized for release by Caleb Hunsberger, Project Manager Anthony.Hunsberger@et.eurofinsus.com (574)233-4777



### ANALYTICAL REPORT

| Lab Number:     | L2258610                                                          |
|-----------------|-------------------------------------------------------------------|
| Client:         | C.T. Male Associates<br>50 Century Hill Drive<br>Latham, NY 12110 |
| ATTN:<br>Phone: | Jonathan Dippert<br>(518) 786-7400                                |
| Project Name:   | TERRAMOR                                                          |
| Project Number: | Not Specified                                                     |
| Report Date:    | 11/11/22                                                          |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:11112220:01

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

 Lab Number:
 L2258610

 Report Date:
 11/11/22

| Alpha<br>Sample ID | Client ID     | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|---------------|--------|--------------------|-------------------------|--------------|
| L2258610-01        | LOT-17-221020 | WATER  | SAUGERTIES, NY     | 10/20/22 10:00          | 10/20/22     |
| L2258610-02        | FIELD BLANK   | DW     | SAUGERTIES, NY     | 10/20/22 10:40          | 10/20/22     |
| L2258610-03        | TRIP BLANK    | WATER  | SAUGERTIES, NY     | 10/20/22 00:00          | 10/20/22     |
| L2258610-04        | LOT-17-221021 | DW     | SAUGERTIES, NY     | 10/21/22 13:00          | 10/21/22     |



Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: TERRAMOR Project Number: Not Specified Lab Number: L2258610 Report Date: 11/11/22

#### **Case Narrative (continued)**

#### **Report Submission**

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

The analyses of HALOACETIC ACID, Uranium, Gross Alpha, Gross Beta, Radium-226, Radium-228, Asbestos, EPA 531.1, EPA 549.2, 548.1, EPA 547, EPA 505, EPA 525.2, EPA 504.1, Bromate, Chlorite, and EPA 515.3 were subcontracted. A copy of the laboratory report is included as an addendum. Please note: This data is only available in PDF format and is not available on Data Merger.

#### Sample Receipt

The analyses performed were specified by the client.

L2258610-03: A sample identified as "TRIP BLANK" was received, but not listed on the Chain of Custody. At the client's request, this sample was analyzed.

#### Volatile Organics by Method 524.2

The WG1703420-3 LCS recovery, associated with L2258610-01, is above the acceptance criteria for dichlorodifluoromethane (150%); however, the associated sample is non-detect to the RL for this target analyte. The results of the original analysis are reported.

The WG1706698-3 LCS recoveries, associated with L2258610-03, are above the acceptance criteria for dichlorodifluoromethane (195%) and chloromethane (132%); however, the associated sample is non-detect to the RL for these target analytes. The results of the original analysis are reported.

#### Color, Apparent

L2258610-01: The sample has an elevated detection limit due to the dilution required by the sample matrix.

#### Cyanide, Total

WG1705195: A Laboratory Duplicate was prepared with the sample batch, however, the native sample required



Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

**Case Narrative (continued)** 

re-analysis; therefore, the result could not be reported.

Anions by Ion Chromatography

The WG1709241-3 MS recovery for chloride (74%), performed on L2258610-01, does not apply because the sample concentration is greater than four times the spike amount added.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Achelle M. Monig Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 11/11/22



# ORGANICS



## VOLATILES



|                    |                |                | Serial_No         | p:11112220:01  |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2258610       |
| Project Number:    | Not Specified  |                | Report Date:      | 11/11/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2258610-01    |                | Date Collected:   | 10/20/22 10:00 |
| Client ID:         | LOT-17-221020  |                | Date Received:    | 10/20/22       |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | d: EPA 504.1   |
| Analytical Method: | 14,504.1       |                | Extraction Date:  | 10/26/22 13:40 |
| Analytical Date:   | 10/26/22 15:05 |                |                   |                |
| Analyst:           | AMM            |                |                   |                |
| -                  |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                             | Result | Qualifier | Units | RL    | MDL   | Dilution Factor | Column |
|---------------------------------------|--------|-----------|-------|-------|-------|-----------------|--------|
| Microextractables by GC - Westborough | Lab    |           |       |       |       |                 |        |
| 1,2-Dibromoethane                     | ND     |           | ug/l  | 0.010 | 0.005 | 1               | A      |
| 1,2-Dibromo-3-chloropropane           | ND     |           | ug/l  | 0.010 | 0.003 | 1               | А      |
| 1,2,3-Trichloropropane                | ND     |           | ug/l  | 0.030 | 0.020 | 1               | А      |



|                    |                |                | Serial_N        | p:11112220:01  |
|--------------------|----------------|----------------|-----------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:     | L2258610       |
| Project Number:    | Not Specified  |                | Report Date:    | 11/11/22       |
|                    |                | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2258610-01    |                | Date Collected: | 10/20/22 10:00 |
| Client ID:         | LOT-17-221020  |                | Date Received:  | 10/20/22       |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                |                |                 |                |
| Matrix:            | Dw             |                |                 |                |
| Analytical Method: | 16,524.2       |                |                 |                |
| Analytical Date:   | 10/21/22 17:24 |                |                 |                |
| Analyst:           | GMT            |                |                 |                |
|                    |                |                |                 |                |
|                    |                |                |                 |                |

| Parameter                                    | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |  |  |
|----------------------------------------------|--------|-----------|-------|------|------|-----------------|--|--|--|
| Volatile Organics by GC/MS - Westborough Lab |        |           |       |      |      |                 |  |  |  |
| Dichlorodifluoromethane                      | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |  |
| Chloromethane                                | ND     |           | ug/l  | 0.50 | 0.26 | 1               |  |  |  |
| Vinyl chloride                               | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| Bromomethane                                 | ND     |           | ug/l  | 0.50 | 0.22 | 1               |  |  |  |
| Chloroethane                                 | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |  |
| Trichlorofluoromethane                       | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |  |
| 1,1-Dichloroethene                           | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |  |
| Methylene chloride                           | ND     |           | ug/l  | 0.50 | 0.26 | 1               |  |  |  |
| Methyl tert butyl ether                      | ND     |           | ug/l  | 0.50 | 0.13 | 1               |  |  |  |
| trans-1,2-Dichloroethene                     | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| 1,1-Dichloroethane                           | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |  |
| 2,2-Dichloropropane                          | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |  |
| cis-1,2-Dichloroethene                       | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |  |
| Chloroform                                   | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |  |
| Bromochloromethane                           | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |  |
| 1,1,1-Trichloroethane                        | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |  |
| 1,1-Dichloropropene                          | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| Carbon tetrachloride                         | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |  |
| 1,2-Dichloroethane                           | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |  |
| Benzene                                      | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| Trichloroethene                              | ND     |           | ug/l  | 0.50 | 0.22 | 1               |  |  |  |
| 1,2-Dichloropropane                          | ND     |           | ug/l  | 0.50 | 0.18 | 1               |  |  |  |
| Bromodichloromethane                         | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| Dibromomethane                               | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |  |
| cis-1,3-Dichloropropene                      | ND     |           | ug/l  | 0.50 | 0.20 | 1               |  |  |  |
| Toluene                                      | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |  |
| trans-1,3-Dichloropropene                    | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |  |
| 1,1,2-Trichloroethane                        | ND     |           | ug/l  | 0.50 | 0.24 | 1               |  |  |  |

| Project Number:Not SpecifiedReport Date:11/11/22Lab ID:L2258610-01Date Collected:10/20/22 10:00Client ID:LOT-17-221020Date Received:10/20/22Sample Location:SAUGERTIES, NYField Prep:Not Specified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                        | Serial_No:11112220:01 |            |       |           |         | :11112220:01    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------|-----------------------|------------|-------|-----------|---------|-----------------|
| Lab Dr. L258010-01<br>Client ID: L258010-01<br>SAUGERTIES, NY  Sample Location: SAUGERTIES, NY  Sample | Project Name:               | TERRAMOR               |                       |            |       | Lab Nu    | mber:   | L2258610        |
| Lab Dr. L258010-01<br>Client ID: L258010-01<br>SAUGERTIES, NY  Sample Location: SAUGERTIES, NY  Sample | Project Number:             | Not Specified          |                       |            |       | Report    | Date:   | 11/11/22        |
| Client ID:<br>Sample Location:LOT-17-22102<br>SAUGERTIES, NYDate Receive:<br>Field Prov:10/20/22<br>Kot SpecifiedSample Deptit:nametricNoNoNoNoNoNoParametricNoQuille0.000.000.00100I-DichicopopaneNoUgil0.500.201TetrachkroecheneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.201I-DichicopopaneNoUgil0.500.301I-DichicopopaneNoUgil0.500.301I-DichicopopaneNoUgil0.500.401I-DichicopopaneNoUgil0.500.401I-DichicopopaneNoUgil0.500.411I-DichicopopaneNoUgil0.500.411I-DichicopopaneNoUgil0.500.411I-DichicopopaneNoUgil0.500.411I-DichicopopaneNoUgil0.500.411I-DichicopopaneNoUgil0.500.41<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                           |                        | SAMP                  | LE RESULTS | 6     |           |         |                 |
| Sample Location:SAUGERTIES, NYField Prep:Not SpecifiedParameterResultQualifiedNatR.MDNatNation2Catalite Organices by Correct SubscriptionNotupp0.000.0211Catalite Organices by Correct SubscriptionNotupp0.000.0111Catalite Organices by Correct SubscriptionNotupp0.020.0111Catalite Organices by Correct SubscriptionNotupp0.020.011 <td>Lab ID:</td> <td>L2258610-01</td> <td></td> <td></td> <td></td> <td>Date Col</td> <td>lected:</td> <td>10/20/22 10:00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lab ID:                     | L2258610-01            |                       |            |       | Date Col  | lected: | 10/20/22 10:00  |
| Name         Result         Qualifie         Units         RL         MDL         Diution Factor           Valatile Organics by GC/MS - Westborough Lab         ug1         0.50         0.22         1           1.4-Dichlorogropane         ND         ug1         0.50         0.22         1           Tetrachlorogethane         ND         ug1         0.50         0.22         1           1.2-Dichorocethane         ND         ug1         0.50         0.12         1           1.1.2-Tetrachlorogethane         ND         ug1         0.50         0.13         1           1.1.1.2-Tetrachlorogethane         ND         ug1         0.50         0.13         1           1.1.1.2-Tetrachlorogethane         ND         ug1         0.50         0.16         1           1.1.2-Tetrachlorogethane         ND         ug1         0.50         0.13         1           1.1.2-Tetrachlorogethane         ND         ug1         0.50         0.14         1           Entyderzane         ND         ug1         0.50         0.14         1           Systeme         ND         ug1         0.50         0.14         1           Systeme         ND         ug1 <t< td=""><td>Client ID:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Client ID:                  |                        |                       |            |       |           |         |                 |
| ParameterReadeQualifierUnitsR.LMDLDitolor PactorValatile Organics by GC/MS - Westborough Lab1.3. DichloropopaneNDugl0.500.221TetrachorophaneNDugl0.500.241DibromochloromethaneNDugl0.500.121ChloroberseneNDugl0.500.121ChloroberseneNDugl0.500.131ChloroberseneNDugl0.500.131ChloroberseneNDugl0.500.131ChloroberseneNDugl0.500.131ChloroberseneNDugl0.500.131ChloroberseneNDugl0.500.131SystemeNDugl0.500.131SystemeNDugl0.500.141SystemeNDugl0.500.1411.1.2.2.TetrachorophaneNDugl0.500.1411.2.3.TetrachorophaneNDugl0.500.1411.3.5.TetrachorophaneNDugl0.500.1411.3.5.TetrachorophaneNDugl0.500.1411.3.5.TetrachorophaneNDugl0.500.1411.3.5.TetrachorophaneNDugl0.500.1511.3.5.TetrachorophaneNDugl0.500.151<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Location:            | SAUGERTIES, NY         |                       |            |       | Field Pre | ep:     | Not Specified   |
| Volatile Organics by GC/MS - Westborough Lab           1.3-Dickloropropane         ND         ug/l         0.50         0.22         1           Tetrachloropropane         ND         ug/l         0.50         0.24         1           Dibromochloromethane         ND         ug/l         0.50         0.12         1           1,1.2-Dickloropropane         ND         ug/l         0.50         0.24         1           Chlorobenzone         ND         ug/l         0.50         0.12         1           1,1.1.2-Tetrackloroethane         ND         ug/l         0.50         0.19         1           Ethylbenzene         ND         ug/l         0.50         0.13         1           p/m-Xylene         ND         ug/l         0.50         0.13         1           Syrene         ND         ug/l         0.50         0.16         1           Isopropylenzene         ND         ug/l         0.50         0.13         1           I.1.2.2-Tetrachloropthane         ND         ug/l         0.50         0.14         1           I.1.2.2-Tetrachloropthane         ND         ug/l         0.50         0.14         1           I.2.2-Tridirkforoptane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Depth:               |                        |                       |            |       |           |         |                 |
| 1.3.Dickloropane         ND         ug/l         0.50         0.22         1           Titrachloropane         ND         ug/l         0.50         0.24         1           Dibromochloromethane         ND         ug/l         0.50         0.24         1           1.2.Dickloromethane         ND         ug/l         0.50         0.12         1           1.1.2.Ditrachloroethane         ND         ug/l         0.50         0.16         1           1.1.1.2.Tottachloroethane         ND         ug/l         0.50         0.19         1           Ethylbenzene         ND         ug/l         0.50         0.19         1           Systene         ND         ug/l         0.50         0.19         1           Systene         ND         ug/l         0.50         0.19         1           Systene         ND         ug/l         0.50         0.16         1           Systene         ND         ug/l         0.50         0.13         1           1.1.2.2-Tottachorophane         ND         ug/l         0.50         0.14         1           1.2.2-Tottachorophane         ND         ug/l         0.50         0.14         1 </td <td>Parameter</td> <td></td> <td>Result</td> <td>Qualifier</td> <td>Units</td> <td>RL</td> <td>MDL</td> <td>Dilution Factor</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Parameter                   |                        | Result                | Qualifier  | Units | RL        | MDL     | Dilution Factor |
| ND         ug1         0.50         0.24         1           Dibromochloromethane         ND         ug1         0.50         0.12         1           1,2-Dibromochlane         ND         ug1         0.50         0.24         1           Chlorobenzane         ND         ug1         0.50         0.14         1           Chlorobenzane         ND         ug1         0.50         0.19         1           Ethylbenzene         ND         ug1         0.50         0.19         1           Ethylbenzene         ND         ug1         0.50         0.19         1           o/kjene         ND         ug1         0.50         0.16         1           Styrene         ND         ug1         0.50         0.16         1           Styrene         ND         ug1         0.50         0.14         1           1,2,2-Teirachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Volatile Organics b         | oy GC/MS - Westborough | n Lab                 |            |       |           |         |                 |
| Ditromochloromethane         ND         ug1         0.50         0.12         1           1.2-Ditromoethane         ND         ug1         0.50         0.24         1           1.1-Ditromoethane         ND         ug1         0.50         0.16         1           1.1,1,2-Tetrachloroethane         ND         ug1         0.50         0.13         1           1.1,1,2-Tetrachloroethane         ND         ug1         0.50         0.30         1           c/Marce         ND         ug1         0.50         0.30         1           c/Marce         ND         ug1         0.50         0.30         1           c/Marce         ND         ug1         0.50         0.13         1           Syrene         ND         ug1         0.50         0.16         1           Syrene         ND         ug1         0.50         0.13         1           1,2,2-Tetrachloroethane         ND         ug1         0.50         0.14         1           1,2,2-Tetrachloroethane         ND         ug1         0.50         0.14         1           1,2,2-Tetrachloroethane         ND         ug1         0.50         0.13         1      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,3-Dichloropropane         |                        | ND                    |            | ug/l  | 0.50      | 0.22    | 1               |
| 1.2.Dibromoethane         ND         ug1         0.50         0.24         1           Chlorobenzene         ND         ug1         0.50         0.16         1           1.1.1.2-Tetrachloroethane         ND         ug1         0.50         0.19         1           Ethylbenzene         ND         ug1         0.50         0.13         1           p/m-Xylene         ND         ug1         0.50         0.13         1           oxXylene         ND         ug1         0.50         0.16         1           Styrane         ND         ug1         0.50         0.16         1           Styrane         ND         ug1         0.50         0.18         1           Styrane         ND         ug1         0.50         0.14         1           1.2.2-Tetrachloroethane         ND         ug1         0.50         0.24         1           1.2.3-Trichloroptopane         ND         ug1         0.50         0.14         1           Xylenes, Total         ND         ug1         0.50         0.15         1           N-Propybenzene         ND         ug1         0.50         0.15         1           1.3.5-Trime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetrachloroethene           |                        | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| ND         ug1         0.50         0.16         1           1,1,1,2-Tetrachloroethane         ND         ug1         0.50         0.19         1           Ethylbenzene         ND         ug1         0.50         0.13         1           p/m.Xylene         ND         ug1         0.50         0.30         1           o.Xylene         ND         ug1         0.50         0.19         1           Styrene         ND         ug1         0.50         0.16         1           Isopropybenzene         ND         ug1         0.50         0.16         1           Bromoform         ND         ug1         0.50         0.13         1           1,1,2-Tetrachloroethane         ND         ug1         0.50         0.25         1           1,1,2-Tetrachloroethane         ND         ug1         0.50         0.24         1           1,2-Tetrachloroethane         ND         ug1         0.50         0.14         1           1,2-Tetrachloroethane         ND         ug1         0.50         0.15         1           1,2-Tetrachloroethane         ND         ug1         0.50         0.14         1           1,3-Trimetryl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dibromochloromethane        |                        | ND                    |            | ug/l  | 0.50      | 0.12    | 1               |
| ND         ug1         0.50         0.19         1           Ethylbenzene         ND         ug1         0.50         0.13         1           pm-Xylene         ND         ug1         0.50         0.30         1           o-Xylene         ND         ug1         0.50         0.30         1           Styrene         ND         ug1         0.50         0.19         1           Styrene         ND         ug1         0.50         0.16         1           Isopropylbenzene         ND         ug1         0.50         0.13         1           Bromotorm         ND         ug1         0.50         0.25         1           1,1,2.2-Tetrachloroethane         ND         ug1         0.50         0.24         1           1,2.3-Trichloropropane         ND         ug1         0.50         0.14         1           Xylenes, Total         ND         ug1         0.50         0.13         1           1,3.5-Trimethylbenzene         ND         ug1         0.50         0.14         1           1,3.5-Trimethylbenzene         ND         ug1         0.50         0.15         1           o-Chiorotoluene         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dibromoethane           |                        | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| Introduction         ND         ug/l         0.50         0.13         1           p/m-Xylene         ND         ug/l         0.50         0.30         1           o-Xylene         ND         ug/l         0.50         0.19         1           Styrene         ND         ug/l         0.50         0.16         1           Isopropylbenzene         ND         ug/l         0.50         0.13         1           Bromoform         ND         ug/l         0.50         0.13         1           1.1.2.2-Tetrachloroothane         ND         ug/l         0.50         0.24         1           1.2.3-Trichloroophane         ND         ug/l         0.50         0.14         1           1.3.5-Trimethylbenzene         ND         ug/l         0.50         0.14         1           1.3.5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorobluene         ND         ug/l         0.50         0.15         1           p-Chlorobluene         ND         ug/l         0.50         0.11         1           1.2-A-Trimethylbenzene         ND         ug/l         0.50         0.12         1 </td <td>Chlorobenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.16</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Chlorobenzene               |                        | ND                    |            | ug/l  | 0.50      | 0.16    | 1               |
| Jm. Xylene         ND         ug/l         0.50         0.30         1           o-Xylene         ND         ug/l         0.50         0.19         1           Styrene         ND         ug/l         0.50         0.16         1           Isopropylbenzene         ND         ug/l         0.50         0.13         1           Bromoform         ND         ug/l         0.50         0.25         1           1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloroppane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloroppane         ND         ug/l         0.50         0.14         1           1,3,5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorobluene         ND         ug/l         0.50         0.15         1           o-Chlorobluene         ND         ug/l         0.50         0.15         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,1,2-Tetrachloroethane   | 9                      | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| c.Xylene         ND         ug/l         0.50         0.19         1           Styrene         ND         ug/l         0.50         0.16         1           Isopropylbenzene         ND         ug/l         0.50         0.13         1           Bromotorm         ND         ug/l         0.50         0.25         1           1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.24         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.14         1           1,3-Trineltrylbenzene         ND         ug/l         0.50         0.14         1           1,3-Trineltrylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2-A-Trimethylbenzene         ND         ug/l         0.50         0.13         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ethylbenzene                |                        | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| Styrene         ND         ug/l         0.50         0.16         1           Isopropylbenzene         ND         ug/l         0.50         0.13         1           Bromoform         ND         ug/l         0.50         0.25         1           1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.24         1           1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.24         1           1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.24         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.14         1           1,3-S-Trimethylbenzene         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.13         1           1,3-S-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2-A-Trimethylbenzene         ND         ug/l         0.50         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | p/m-Xylene                  |                        | ND                    |            | ug/l  | 0.50      | 0.30    | 1               |
| Isopropylbenzene         ND         ug/l         0.50         0.13         1           Bromoform         ND         ug/l         0.50         0.25         1           1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.14         1           1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.24         1           1,2,2-Trichloropropane         ND         ug/l         0.50         0.14         1           1,2,2-Trichloropropane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.14         1           Stromobenzene         ND         ug/l         0.50         0.15         1           1,3-5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           1,3-5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           1,2-4-Trimethylbenzene         ND         ug/l         0.50         0.17         1           1,2-4-Trimethylbenzene         ND         ug/l         0.50         0.11         1           1,2-4-Trimethylbenzene         ND         ug/l         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | o-Xylene                    |                        | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| Bromoform         ND         ug/l         0.50         0.25         1           1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.14         1           1,2,2-Trichloropropane         ND         ug/l         0.50         0.24         1           1,2,2-Trichloropropane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.14         1           Xylenes, Total'         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.15         1           1,3.5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.11         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.17         1           1,3Dichlorobenzene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Styrene                     |                        | ND                    |            | ug/l  | 0.50      | 0.16    | 1               |
| 1,1,2,2-Tetrachloroethane         ND         ug/l         0.50         0.14         1           1,2,3-Trichloropropane         ND         ug/l         0.50         0.24         1           Xylenes, Total'         ND         ug/l         0.50         0.19         1           n-Propylbenzene         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.13         1           1,3.5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.17         1           p-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.11         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Isopropylbenzene            |                        | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| I.2.3-Trichloropropane         ND         ug/l         0.50         0.24         1           Xylenes, Total'         ND         ug/l         0.50         0.19         1           n-Propylbenzene         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.13         1           1,3.5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.17         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.16 </td <td>Bromoform</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.25</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bromoform                   |                        | ND                    |            | ug/l  | 0.50      | 0.25    | 1               |
| Xylenes, Total'         ND         ug/l         0.50         0.19         1           n-Propylbenzene         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.13         1           1,3,5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-Isopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.16 <td< td=""><td>1,1,2,2-Tetrachloroethane</td><td>9</td><td>ND</td><td></td><td>ug/l</td><td>0.50</td><td>0.14</td><td>1</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,1,2,2-Tetrachloroethane   | 9                      | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| In-Propylenzene         ND         ug/l         0.50         0.14         1           Bromobenzene         ND         ug/l         0.50         0.13         1           1,3,5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.11         1           p-lsoropyltoluene         ND         ug/l         0.50         0.11         1           p-lsoropyltoluene         ND         ug/l         0.50         0.11         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.12         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2,3-Trichloropropane      |                        | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| Introduction         ND         ug/l         0.50         0.13         1           Introduction         ND         ug/l         0.50         0.15         1           Introduction         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.17         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.13         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.11         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.12         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.12         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Xylenes, Total <sup>1</sup> |                        | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| 1,3,5-Trimethylbenzene         ND         ug/l         0.50         0.15         1           o-Chlorotoluene         ND         ug/l         0.50         0.17         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2.4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-Isopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           n-Butylbenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.29         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.12 <td>n-Propylbenzene</td> <td></td> <td>ND</td> <td></td> <td>ug/l</td> <td>0.50</td> <td>0.14</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n-Propylbenzene             |                        | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| o-Chlorotoluene         ND         ug/l         0.50         0.17         1           p-Chlorotoluene         ND         ug/l         0.50         0.15         1           p-Chlorotoluene         ND         ug/l         0.50         0.14         1           tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-Isopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.18         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.12<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromobenzene                |                        | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| p-Chlorotoluene         ND         ug/l         0.50         0.15         1           tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-lsopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.12         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.29         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.29         1           1,2-A-Trichlorobenzene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,3,5-Trimethylbenzene      |                        | ND                    |            | ug/l  | 0.50      | 0.15    | 1               |
| tert-Butylbenzene         ND         ug/l         0.50         0.14         1           1,2,4-Trimethylbenzene         ND         ug/l         0.50         0.13         1           sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-Isopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.29         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.29         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.12         1           1,2-Dichlorobenzene         ND         ug/l         0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o-Chlorotoluene             |                        | ND                    |            | ug/l  | 0.50      | 0.17    | 1               |
| 1,2,4-Trimethylbenzene       ND       ug/l       0.50       0.13       1         sec-Butylbenzene       ND       ug/l       0.50       0.11       1         p-lsopropyltoluene       ND       ug/l       0.50       0.12       1         1,3-Dichlorobenzene       ND       ug/l       0.50       0.17       1         1,4-Dichlorobenzene       ND       ug/l       0.50       0.18       1         1,4-Dichlorobenzene       ND       ug/l       0.50       0.18       1         1,4-Dichlorobenzene       ND       ug/l       0.50       0.18       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dibromo-3-chloropropane       ND       ug/l       0.50       0.12       1         1,2,4-Trichlorobenzene       ND       ug/l       0.50       0.15       1         Hexachlorobutadiene       ND       ug/l       0.50       0.15       1         Naphthalene       ND       ug/l       0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | p-Chlorotoluene             |                        |                       |            |       |           |         | 1               |
| sec-Butylbenzene         ND         ug/l         0.50         0.11         1           p-Isopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           n-Butylbenzene         ND         ug/l         0.50         0.18         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dibromo-3-chloropropane         ND         ug/l         0.50         0.12         1           1,2,4-Trichlorobenzene         ND         ug/l         0.50         0.12         1           Hexachlorobutadiene         ND         ug/l         0.50         0.15         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                        |                       |            | ug/l  |           | 0.14    |                 |
| p-lsopropyltoluene         ND         ug/l         0.50         0.12         1           1,3-Dichlorobenzene         ND         ug/l         0.50         0.17         1           1,4-Dichlorobenzene         ND         ug/l         0.50         0.18         1           n-Butylbenzene         ND         ug/l         0.50         0.18         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.12         1           1,2-Lichlorobenzene         ND         ug/l         0.50         0.12         1           1,2,4-Trichlorobenzene         ND         ug/l         0.50         0.15         1           Hexachlorobutadiene         ND         ug/l         0.50         0.14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-Trimethylbenzene      |                        |                       |            |       |           |         |                 |
| 1,3-Dichlorobenzene       ND       ug/l       0.50       0.17       1         1,4-Dichlorobenzene       ND       ug/l       0.50       0.18       1         n-Butylbenzene       ND       ug/l       0.50       0.25       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.25       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.12       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.12       1         1,2-4-Trichlorobenzene       ND       ug/l       0.50       0.15       1         Hexachlorobutadiene       ND       ug/l       0.50       0.15       1         Naphthalene       ND       ug/l       0.50       0.14       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sec-Butylbenzene            |                        | ND                    |            | ug/l  |           |         | 1               |
| 1,4-Dichlorobenzene       ND       ug/l       0.50       0.18       1         n-Butylbenzene       ND       ug/l       0.50       0.25       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.16       1         1,2-Dibromo-3-chloropropane       ND       ug/l       0.50       0.29       1         1,2,4-Trichlorobenzene       ND       ug/l       0.50       0.12       1         Hexachlorobutadiene       ND       ug/l       0.50       0.15       1         Naphthalene       ND       ug/l       0.50       0.14       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                        |                       |            | •     | 0.50      | 0.12    | 1               |
| n-Butylbenzene         ND         ug/l         0.50         0.25         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dichlorobenzene         ND         ug/l         0.50         0.16         1           1,2-Dibromo-3-chloropropane         ND         ug/l         0.50         0.29         1           1,2,4-Trichlorobenzene         ND         ug/l         0.50         0.12         1           Hexachlorobutadiene         ND         ug/l         0.50         0.15         1           Naphthalene         ND         ug/l         0.50         0.14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,3-Dichlorobenzene         |                        |                       |            | ug/l  | 0.50      | 0.17    |                 |
| ND       ug/l       0.50       0.16       1         1,2-Dichlorobenzene       ND       ug/l       0.50       0.29       1         1,2-Dibromo-3-chloropropane       ND       ug/l       0.50       0.12       1         1,2,4-Trichlorobenzene       ND       ug/l       0.50       0.12       1         Hexachlorobutadiene       ND       ug/l       0.50       0.15       1         Naphthalene       ND       ug/l       0.50       0.14       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                        |                       |            |       |           | 0.18    |                 |
| ND         ug/l         0.50         0.29         1           1,2-Dibromo-3-chloropropane         ND         ug/l         0.50         0.12         1           1,2,4-Trichlorobenzene         ND         ug/l         0.50         0.12         1           Hexachlorobutadiene         ND         ug/l         0.50         0.15         1           Naphthalene         ND         ug/l         0.50         0.14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n-Butylbenzene              |                        |                       |            | ug/l  |           |         |                 |
| 1,2,4-Trichlorobenzene         ND         ug/l         0.50         0.12         1           Hexachlorobutadiene         ND         ug/l         0.50         0.15         1           Naphthalene         ND         ug/l         0.50         0.14         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-Dichlorobenzene         |                        |                       |            | ug/l  | 0.50      | 0.16    | 1               |
| HexachlorobutadieneNDug/l0.500.151NaphthaleneNDug/l0.500.141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dibromo-3-chloroprop    | bane                   |                       |            | ug/l  | 0.50      | 0.29    | 1               |
| Naphthalene ND ug/I 0.50 0.14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,4-Trichlorobenzene      |                        |                       |            | ug/l  |           |         | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                        |                       |            |       |           |         |                 |
| 1,2,3-Trichlorobenzene ND ug/l 0.50 0.17 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                        |                       |            |       |           |         | 1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,2,3-Trichlorobenzene      |                        | ND                    |            | ug/l  | 0.50      | 0.17    | 1               |



|                     |                       |        |           |            | Se         | erial_No | p:11112220:01        |
|---------------------|-----------------------|--------|-----------|------------|------------|----------|----------------------|
| Project Name:       | TERRAMOR              |        |           |            | Lab Num    | ber:     | L2258610             |
| Project Number:     | Not Specified         |        |           |            | Report D   | ate:     | 11/11/22             |
|                     |                       | SAMP   | LE RESULT | S          |            |          |                      |
| Lab ID:             | L2258610-01           |        |           |            | Date Colle | cted:    | 10/20/22 10:00       |
| Client ID:          | LOT-17-221020         |        |           |            | Date Rece  | ived:    | 10/20/22             |
| Sample Location:    | SAUGERTIES, NY        |        |           |            | Field Prep | :        | Not Specified        |
| Sample Depth:       |                       |        |           |            |            |          |                      |
| Parameter           |                       | Result | Qualifier | Units      | RL         | MDL      | Dilution Factor      |
| Volatile Organics b | y GC/MS - Westborough | Lab    |           |            |            |          |                      |
|                     |                       |        |           |            |            |          |                      |
| Surrogate           |                       |        |           | % Recovery | Qualifier  |          | ceptance<br>Criteria |
| 1,2-Dichlorobenze   | ne-d4                 |        |           | 110        |            |          | 80-120               |

99



80-120

4-Bromofluorobenzene

|                    |                |                | Serial_No       | p:11112220:01  |
|--------------------|----------------|----------------|-----------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:     | L2258610       |
| Project Number:    | Not Specified  |                | Report Date:    | 11/11/22       |
|                    |                | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2258610-03    |                | Date Collected: | 10/20/22 00:00 |
| Client ID:         | TRIP BLANK     |                | Date Received:  | 10/20/22       |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                |                |                 |                |
| Matrix:            | Water          |                |                 |                |
| Analytical Method: | 16,524.2       |                |                 |                |
| Analytical Date:   | 10/28/22 11:30 |                |                 |                |
| Analyst:           | MKS            |                |                 |                |
|                    |                |                |                 |                |
|                    |                |                |                 |                |

| Parameter                       | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | estborough Lab |           |       |      |      |                 |
| Dichlorodifluoromethane         | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| Chloromethane                   | ND             |           | ug/l  | 0.50 | 0.26 | 1               |
| Vinyl chloride                  | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| Bromomethane                    | ND             |           | ug/l  | 0.50 | 0.22 | 1               |
| Chloroethane                    | ND             |           | ug/l  | 0.50 | 0.18 | 1               |
| Trichlorofluoromethane          | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloroethene              | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| Methylene chloride              | ND             |           | ug/l  | 0.50 | 0.26 | 1               |
| Methyl tert butyl ether         | ND             |           | ug/l  | 0.50 | 0.13 | 1               |
| trans-1,2-Dichloroethene        | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| 1,1-Dichloroethane              | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| 2,2-Dichloropropane             | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| cis-1,2-Dichloroethene          | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| Chloroform                      | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| Bromochloromethane              | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1,1-Trichloroethane           | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| 1,1-Dichloropropene             | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| Carbon tetrachloride            | ND             |           | ug/l  | 0.50 | 0.18 | 1               |
| 1,2-Dichloroethane              | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| Benzene                         | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| Trichloroethene                 | ND             |           | ug/l  | 0.50 | 0.22 | 1               |
| 1,2-Dichloropropane             | ND             |           | ug/l  | 0.50 | 0.18 | 1               |
| Bromodichloromethane            | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| Dibromomethane                  | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| cis-1,3-Dichloropropene         | ND             |           | ug/l  | 0.50 | 0.20 | 1               |
| Toluene                         | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND             |           | ug/l  | 0.50 | 0.24 | 1               |



|                             |                       | Serial_No:11112220:01 |            |       |           |         | :11112220:01    |
|-----------------------------|-----------------------|-----------------------|------------|-------|-----------|---------|-----------------|
| Project Name:               | TERRAMOR              |                       |            |       | Lab Nu    | mber:   | L2258610        |
| Project Number:             | Not Specified         |                       |            |       | Report    | Date:   | 11/11/22        |
| - ,                         |                       | SAMP                  | LE RESULTS | 6     |           |         | 1 1/ 1 1/22     |
| Lab ID:                     | L2258610-03           |                       |            |       | Date Col  | lected: | 10/20/22 00:00  |
| Client ID:                  | TRIP BLANK            |                       |            |       | Date Red  |         | 10/20/22        |
| Sample Location:            | SAUGERTIES, NY        |                       |            |       | Field Pre |         | Not Specified   |
|                             |                       |                       |            |       |           |         | ·               |
| Sample Depth:               |                       |                       |            |       |           |         |                 |
| Parameter                   |                       | Result                | Qualifier  | Units | RL        | MDL     | Dilution Factor |
| Volatile Organics b         | y GC/MS - Westborough | n Lab                 |            |       |           |         |                 |
| 1,3-Dichloropropane         |                       | ND                    |            | ug/l  | 0.50      | 0.22    | 1               |
| Tetrachloroethene           |                       | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| Dibromochloromethane        |                       | ND                    |            | ug/l  | 0.50      | 0.12    | 1               |
| 1,2-Dibromoethane           |                       | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| Chlorobenzene               |                       | ND                    |            | ug/l  | 0.50      | 0.16    | 1               |
| 1,1,1,2-Tetrachloroethane   | 9                     | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| Ethylbenzene                |                       | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| p/m-Xylene                  |                       | ND                    |            | ug/l  | 0.50      | 0.30    | 1               |
| o-Xylene                    |                       | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| Styrene                     |                       | ND                    |            | ug/l  | 0.50      | 0.16    | 1               |
| Isopropylbenzene            |                       | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| Bromoform                   |                       | ND                    |            | ug/l  | 0.50      | 0.25    | 1               |
| 1,1,2,2-Tetrachloroethane   | 9                     | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| 1,2,3-Trichloropropane      |                       | ND                    |            | ug/l  | 0.50      | 0.24    | 1               |
| Xylenes, Total <sup>1</sup> |                       | ND                    |            | ug/l  | 0.50      | 0.19    | 1               |
| n-Propylbenzene             |                       | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| Bromobenzene                |                       | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| 1,3,5-Trimethylbenzene      |                       | ND                    |            | ug/l  | 0.50      | 0.15    | 1               |
| o-Chlorotoluene             |                       | ND                    |            | ug/l  | 0.50      | 0.17    | 1               |
| p-Chlorotoluene             |                       | ND                    |            | ug/l  | 0.50      | 0.15    | 1               |
| tert-Butylbenzene           |                       | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| 1,2,4-Trimethylbenzene      |                       | ND                    |            | ug/l  | 0.50      | 0.13    | 1               |
| sec-Butylbenzene            |                       | ND                    |            | ug/l  | 0.50      | 0.11    | 1               |
| p-lsopropyltoluene          |                       | ND                    |            | ug/l  | 0.50      | 0.12    | 1               |
| 1,3-Dichlorobenzene         |                       | ND                    |            | ug/l  | 0.50      | 0.17    | 1               |
| 1,4-Dichlorobenzene         |                       | ND                    |            | ug/l  | 0.50      | 0.18    | 1               |
| n-Butylbenzene              |                       | ND                    |            | ug/l  | 0.50      | 0.25    | 1               |
| 1,2-Dichlorobenzene         |                       | ND                    |            | ug/l  | 0.50      | 0.16    | 1               |
| 1,2-Dibromo-3-chloroprop    | bane                  | ND                    |            | ug/l  | 0.50      | 0.29    | 1               |
| 1,2,4-Trichlorobenzene      |                       | ND                    |            | ug/l  | 0.50      | 0.12    | 1               |
| Hexachlorobutadiene         |                       | ND                    |            | ug/l  | 0.50      | 0.15    | 1               |
| Naphthalene                 |                       | ND                    |            | ug/l  | 0.50      | 0.14    | 1               |
| 1,2,3-Trichlorobenzene      |                       | ND                    |            | ug/l  | 0.50      | 0.17    | 1               |



|                     |                       |        |           |            | Se          | rial_No | p:11112220:01        |
|---------------------|-----------------------|--------|-----------|------------|-------------|---------|----------------------|
| Project Name:       | TERRAMOR              |        |           |            | Lab Num     | ber:    | L2258610             |
| Project Number:     | Not Specified         |        |           |            | Report D    | ate:    | 11/11/22             |
|                     | -                     | SAMP   | LE RESULT | S          |             |         |                      |
| Lab ID:             | L2258610-03           |        |           |            | Date Colle  | cted:   | 10/20/22 00:00       |
| Client ID:          | TRIP BLANK            |        |           |            | Date Rece   | ived:   | 10/20/22             |
| Sample Location:    | SAUGERTIES, NY        |        |           |            | Field Prep: |         | Not Specified        |
| Sample Depth:       |                       |        |           |            |             |         |                      |
| Parameter           |                       | Result | Qualifier | Units      | RL          | MDL     | Dilution Factor      |
| Volatile Organics b | y GC/MS - Westborough | Lab    |           |            |             |         |                      |
|                     |                       |        |           |            |             |         |                      |
| Surrogate           |                       |        |           | % Recovery | Qualifier   |         | ceptance<br>Criteria |
| 1,2-Dichlorobenze   | ne-d4                 |        |           | 101        |             |         | 80-120               |

97

4-Bromofluorobenzene



80-120

 Lab Number:
 L2258610

 Report Date:
 11/11/22

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/21/22 10:43Analyst:GMT

| arameter                  | Result            | Qualifier Units   | RL     | MDL         |
|---------------------------|-------------------|-------------------|--------|-------------|
| platile Organics by GC/MS | - Westborough Lab | for sample(s): 01 | Batch: | WG1703420-4 |
| Dichlorodifluoromethane   | ND                | ug/l              | 0.50   | 0.16        |
| Chloromethane             | ND                | ug/l              | 0.50   | 0.26        |
| Vinyl chloride            | ND                | ug/l              | 0.50   | 0.19        |
| Bromomethane              | ND                | ug/l              | 0.50   | 0.22        |
| Chloroethane              | ND                | ug/l              | 0.50   | 0.18        |
| Trichlorofluoromethane    | ND                | ug/l              | 0.50   | 0.14        |
| 1,1-Dichloroethene        | ND                | ug/l              | 0.50   | 0.15        |
| Methylene chloride        | ND                | ug/l              | 0.50   | 0.26        |
| Methyl tert butyl ether   | ND                | ug/l              | 0.50   | 0.13        |
| trans-1,2-Dichloroethene  | ND                | ug/l              | 0.50   | 0.19        |
| 1,1-Dichloroethane        | ND                | ug/l              | 0.50   | 0.16        |
| 2,2-Dichloropropane       | ND                | ug/l              | 0.50   | 0.17        |
| cis-1,2-Dichloroethene    | ND                | ug/l              | 0.50   | 0.17        |
| Chloroform                | ND                | ug/l              | 0.50   | 0.15        |
| Bromochloromethane        | ND                | ug/l              | 0.50   | 0.14        |
| 1,1,1-Trichloroethane     | ND                | ug/l              | 0.50   | 0.16        |
| 1,1-Dichloropropene       | ND                | ug/l              | 0.50   | 0.19        |
| Carbon tetrachloride      | ND                | ug/l              | 0.50   | 0.18        |
| 1,2-Dichloroethane        | ND                | ug/l              | 0.50   | 0.15        |
| Benzene                   | ND                | ug/l              | 0.50   | 0.19        |
| Trichloroethene           | ND                | ug/l              | 0.50   | 0.22        |
| 1,2-Dichloropropane       | ND                | ug/l              | 0.50   | 0.18        |
| Bromodichloromethane      | ND                | ug/l              | 0.50   | 0.19        |
| Dibromomethane            | ND                | ug/l              | 0.50   | 0.17        |
| cis-1,3-Dichloropropene   | ND                | ug/l              | 0.50   | 0.20        |
| Toluene                   | ND                | ug/l              | 0.50   | 0.19        |
| trans-1,3-Dichloropropene | ND                | ug/l              | 0.50   | 0.15        |
| 1,1,2-Trichloroethane     | ND                | ug/l              | 0.50   | 0.24        |
| 1,3-Dichloropropane       | ND                | ug/l              | 0.50   | 0.22        |



 Lab Number:
 L2258610

 Report Date:
 11/11/22

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/21/22 10:43Analyst:GMT

| arameter                    | Result          | Qualifier Units   | RL       | MDL         |
|-----------------------------|-----------------|-------------------|----------|-------------|
| olatile Organics by GC/MS - | Westborough Lab | for sample(s): 07 | 1 Batch: | WG1703420-4 |
| Tetrachloroethene           | ND              | ug/l              | 0.50     | 0.24        |
| Dibromochloromethane        | ND              | ug/l              | 0.50     | 0.12        |
| 1,2-Dibromoethane           | ND              | ug/l              | 0.50     | 0.24        |
| Chlorobenzene               | ND              | ug/l              | 0.50     | 0.16        |
| 1,1,1,2-Tetrachloroethane   | ND              | ug/l              | 0.50     | 0.19        |
| Ethylbenzene                | ND              | ug/l              | 0.50     | 0.13        |
| p/m-Xylene                  | ND              | ug/l              | 0.50     | 0.30        |
| o-Xylene                    | ND              | ug/l              | 0.50     | 0.19        |
| Styrene                     | ND              | ug/l              | 0.50     | 0.16        |
| Isopropylbenzene            | ND              | ug/l              | 0.50     | 0.13        |
| Bromoform                   | ND              | ug/l              | 0.50     | 0.25        |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/l              | 0.50     | 0.14        |
| 1,2,3-Trichloropropane      | ND              | ug/l              | 0.50     | 0.24        |
| Xylenes, Total <sup>1</sup> | ND              | ug/l              | 0.50     | 0.19        |
| n-Propylbenzene             | ND              | ug/l              | 0.50     | 0.14        |
| Bromobenzene                | ND              | ug/l              | 0.50     | 0.13        |
| 1,3,5-Trimethylbenzene      | ND              | ug/l              | 0.50     | 0.15        |
| o-Chlorotoluene             | ND              | ug/l              | 0.50     | 0.17        |
| p-Chlorotoluene             | ND              | ug/l              | 0.50     | 0.15        |
| tert-Butylbenzene           | ND              | ug/l              | 0.50     | 0.14        |
| 1,2,4-Trimethylbenzene      | ND              | ug/l              | 0.50     | 0.13        |
| sec-Butylbenzene            | ND              | ug/l              | 0.50     | 0.11        |
| p-Isopropyltoluene          | ND              | ug/l              | 0.50     | 0.12        |
| 1,3-Dichlorobenzene         | ND              | ug/l              | 0.50     | 0.17        |
| 1,4-Dichlorobenzene         | ND              | ug/l              | 0.50     | 0.18        |
| n-Butylbenzene              | ND              | ug/l              | 0.50     | 0.25        |
| 1,2-Dichlorobenzene         | ND              | ug/l              | 0.50     | 0.16        |
| 1,2-Dibromo-3-chloropropane | ND              | ug/l              | 0.50     | 0.29        |
| 1,2,4-Trichlorobenzene      | ND              | ug/l              | 0.50     | 0.12        |



| Lab Number:  | L2258610 |
|--------------|----------|
| Report Date: | 11/11/22 |

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/21/22 10:43Analyst:GMT

| Parameter                   | Result          | Qualifier    | Units    | RL     | MDL         |  |
|-----------------------------|-----------------|--------------|----------|--------|-------------|--|
| olatile Organics by GC/MS - | Westborough Lat | o for sample | e(s): 01 | Batch: | WG1703420-4 |  |
| Hexachlorobutadiene         | ND              |              | ug/l     | 0.50   | 0.15        |  |
| Naphthalene                 | ND              |              | ug/l     | 0.50   | 0.14        |  |
| 1,2,3-Trichlorobenzene      | ND              |              | ug/l     | 0.50   | 0.17        |  |

| Surrogate              | %Recovery | Acceptance<br>Criteria |
|------------------------|-----------|------------------------|
| 1,2-Dichlorobenzene-d4 | 108       | 80-120                 |
| 4-Bromofluorobenzene   | 99        | 80-120                 |



Serial\_No:11112220:01

| Project Name:   | TERRAMOR      |                       | Lab Number:  | L2258610 |
|-----------------|---------------|-----------------------|--------------|----------|
| Project Number: | Not Specified |                       | Report Date: | 11/11/22 |
|                 |               | Method Blank Analysis |              |          |

## **Batch Quality Control**

| Analytical Method: | 14,504.1       | Extraction Method: | EPA 504.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 10/26/22 14:33 | Extraction Date:   | 10/26/22 13:40 |
| Analyst:           | AMM            |                    |                |

| Parameter                        | Result        | Qualifier    | Units | RL           | MDL    |   |
|----------------------------------|---------------|--------------|-------|--------------|--------|---|
| Microextractables by GC - Westbo | orough Lab fo | or sample(s) | ): 01 | Batch: WG170 | 4409-1 |   |
| 1,2-Dibromoethane                | ND            |              | ug/l  | 0.010        | 0.005  | А |
| 1,2-Dibromo-3-chloropropane      | ND            |              | ug/l  | 0.010        | 0.003  | А |
| 1,2,3-Trichloropropane           | ND            |              | ug/l  | 0.030        | 0.020  | А |



 Lab Number:
 L2258610

 Report Date:
 11/11/22

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| arameter                  | Result            | Qualifier Units  | s RL      | MDL         |
|---------------------------|-------------------|------------------|-----------|-------------|
| olatile Organics by GC/MS | - Westborough Lab | o for sample(s): | 03 Batch: | WG1706698-4 |
| Dichlorodifluoromethane   | ND                | ug/l             | 0.50      | 0.16        |
| Chloromethane             | ND                | ug/l             | 0.50      | 0.26        |
| Vinyl chloride            | ND                | ug/l             | 0.50      | 0.19        |
| Bromomethane              | ND                | ug/l             | 0.50      | 0.22        |
| Chloroethane              | ND                | ug/l             | 0.50      | 0.18        |
| Trichlorofluoromethane    | ND                | ug/l             | 0.50      | 0.14        |
| 1,1-Dichloroethene        | ND                | ug/l             | 0.50      | 0.15        |
| Methylene chloride        | ND                | ug/l             | 0.50      | 0.26        |
| Methyl tert butyl ether   | ND                | ug/l             | 0.50      | 0.13        |
| trans-1,2-Dichloroethene  | ND                | ug/l             | 0.50      | 0.19        |
| 1,1-Dichloroethane        | ND                | ug/l             | 0.50      | 0.16        |
| 2,2-Dichloropropane       | ND                | ug/l             | 0.50      | 0.17        |
| cis-1,2-Dichloroethene    | ND                | ug/l             | 0.50      | 0.17        |
| Chloroform                | ND                | ug/l             | 0.50      | 0.15        |
| Bromochloromethane        | ND                | ug/l             | 0.50      | 0.14        |
| 1,1,1-Trichloroethane     | ND                | ug/l             | 0.50      | 0.16        |
| 1,1-Dichloropropene       | ND                | ug/l             | 0.50      | 0.19        |
| Carbon tetrachloride      | ND                | ug/l             | 0.50      | 0.18        |
| 1,2-Dichloroethane        | ND                | ug/l             | 0.50      | 0.15        |
| Benzene                   | ND                | ug/l             | 0.50      | 0.19        |
| Trichloroethene           | ND                | ug/l             | 0.50      | 0.22        |
| 1,2-Dichloropropane       | ND                | ug/l             | 0.50      | 0.18        |
| Bromodichloromethane      | ND                | ug/l             | 0.50      | 0.19        |
| Dibromomethane            | ND                | ug/l             | 0.50      | 0.17        |
| cis-1,3-Dichloropropene   | ND                | ug/l             | 0.50      | 0.20        |
| Toluene                   | ND                | ug/l             | 0.50      | 0.19        |
| trans-1,3-Dichloropropene | ND                | ug/l             | 0.50      | 0.15        |
| 1,1,2-Trichloroethane     | ND                | ug/l             | 0.50      | 0.24        |
| 1,3-Dichloropropane       | ND                | ug/l             | 0.50      | 0.22        |



 Lab Number:
 L2258610

 Report Date:
 11/11/22

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| arameter                    | Result            | Qualifier Units  | s RL      | MDL         |
|-----------------------------|-------------------|------------------|-----------|-------------|
| olatile Organics by GC/MS   | - Westborough Lat | o for sample(s): | 03 Batch: | WG1706698-4 |
| Tetrachloroethene           | ND                | ug/              | 0.50      | 0.24        |
| Dibromochloromethane        | ND                | ug/              | 0.50      | 0.12        |
| 1,2-Dibromoethane           | ND                | ug/              | 0.50      | 0.24        |
| Chlorobenzene               | ND                | ug/              | 0.50      | 0.16        |
| 1,1,1,2-Tetrachloroethane   | ND                | ug/              | 0.50      | 0.19        |
| Ethylbenzene                | ND                | ug/              | 0.50      | 0.13        |
| p/m-Xylene                  | ND                | ug/              | 0.50      | 0.30        |
| o-Xylene                    | ND                | ug/              | 0.50      | 0.19        |
| Styrene                     | ND                | ug/              | 0.50      | 0.16        |
| Isopropylbenzene            | ND                | ug/              | 0.50      | 0.13        |
| Bromoform                   | ND                | ug/              | 0.50      | 0.25        |
| 1,1,2,2-Tetrachloroethane   | ND                | ug/              | 0.50      | 0.14        |
| Xylenes, Total <sup>1</sup> | ND                | ug/              | 0.50      | 0.19        |
| 1,2,3-Trichloropropane      | ND                | ug/              | 0.50      | 0.24        |
| n-Propylbenzene             | ND                | ug/              | 0.50      | 0.14        |
| Bromobenzene                | ND                | ug/              | 0.50      | 0.13        |
| 1,3,5-Trimethylbenzene      | ND                | ug/              | 0.50      | 0.15        |
| o-Chlorotoluene             | ND                | ug/              | 0.50      | 0.17        |
| p-Chlorotoluene             | ND                | ug/              | 0.50      | 0.15        |
| tert-Butylbenzene           | ND                | ug/              | 0.50      | 0.14        |
| 1,2,4-Trimethylbenzene      | ND                | ug/              | 0.50      | 0.13        |
| sec-Butylbenzene            | ND                | ug/              | 0.50      | 0.11        |
| p-Isopropyltoluene          | ND                | ug/              | 0.50      | 0.12        |
| 1,3-Dichlorobenzene         | ND                | ug/              | 0.50      | 0.17        |
| 1,4-Dichlorobenzene         | ND                | ug/              | 0.50      | 0.18        |
| n-Butylbenzene              | ND                | ug/              | 0.50      | 0.25        |
| 1,2-Dichlorobenzene         | ND                | ug/              | 0.50      | 0.16        |
| 1,2-Dibromo-3-chloropropane | ND                | ug/              | 0.50      | 0.29        |
| 1,2,4-Trichlorobenzene      | ND                | ug/              | 0.50      | 0.12        |



| Lab Number:  | L2258610 |
|--------------|----------|
| Report Date: | 11/11/22 |

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

Analytical Method:16,524.2Analytical Date:10/28/22 11:01Analyst:MKS

| Parameter                     | Result          | Qualifier U | Jnits  | RL     | MDL         |  |
|-------------------------------|-----------------|-------------|--------|--------|-------------|--|
| olatile Organics by GC/MS - V | Westborough Lab | for sample( | s): 03 | Batch: | WG1706698-4 |  |
| Hexachlorobutadiene           | ND              |             | ug/l   | 0.50   | 0.15        |  |
| Naphthalene                   | ND              |             | ug/l   | 0.50   | 0.14        |  |
| 1,2,3-Trichlorobenzene        | ND              |             | ug/l   | 0.50   | 0.17        |  |

| Surrogate              | %Recovery | Acceptance<br>Criteria |
|------------------------|-----------|------------------------|
| 1,2-Dichlorobenzene-d4 | 102       | 80-120                 |
| 4-Bromofluorobenzene   | 87        | 80-120                 |



Lab Number: L2258610 11/11/22

Report Date:

| arameter                                  | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|-------------------------------------------|------------------|------------|-------------------|----------|---------------------|-----|------|---------------|--|
| olatile Organics by GC/MS - Westborough I | _ab Associated   | sample(s): | 01 Batch: WG1     | 703420-3 |                     |     |      |               |  |
| Dichlorodifluoromethane                   | 150              | Q          | -                 |          | 70-130              | -   |      | 20            |  |
| Chloromethane                             | 125              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Vinyl chloride                            | 110              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromomethane                              | 85               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Chloroethane                              | 120              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Trichlorofluoromethane                    | 110              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloroethene                        | 118              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Methylene chloride                        | 118              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Methyl tert butyl ether                   | 115              |            | -                 |          | 70-130              | -   |      | 20            |  |
| trans-1,2-Dichloroethene                  | 115              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloroethane                        | 112              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 2,2-Dichloropropane                       | 130              |            | -                 |          | 70-130              | -   |      | 20            |  |
| cis-1,2-Dichloroethene                    | 108              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Chloroform                                | 118              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromochloromethane                        | 122              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1,1-Trichloroethane                     | 118              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloropropene                       | 110              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Carbon tetrachloride                      | 120              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,2-Dichloroethane                        | 110              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Benzene                                   | 128              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Trichloroethene                           | 112              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,2-Dichloropropane                       | 122              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromodichloromethane                      | 118              |            | -                 |          | 70-130              | -   |      | 20            |  |



## Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2258610 Report Date: 11/11/22

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 01 Batch: WG1703420-3 Dibromomethane 118 70-130 20 \_ -120 cis-1,3-Dichloropropene 70-130 20 --Toluene 115 70-130 20 -trans-1,3-Dichloropropene 120 70-130 20 --118 70-130 20 1,1,2-Trichloroethane --1,3-Dichloropropane 122 70-130 20 --Tetrachloroethene 115 70-130 20 --Dibromochloromethane 125 70-130 20 --1,2-Dibromoethane 112 70-130 20 \_ -20 Chlorobenzene 102 70-130 --20 1,1,1,2-Tetrachloroethane 98 70-130 --20 Ethylbenzene 95 70-130 -p/m-Xylene 102 70-130 20 --70-130 20 o-Xylene 100 --Styrene 100 70-130 20 --Isopropylbenzene 98 70-130 20 --Bromoform 108 70-130 20 --1,1,2,2-Tetrachloroethane 70-130 20 98 --70-130 20 1,2,3-Trichloropropane 98 -n-Propylbenzene 100 70-130 20 --Bromobenzene 102 70-130 20 \_ -70-130 20 1,3,5-Trimethylbenzene 98 --20 o-Chlorotoluene 108 70-130 --



Lab Number: L2258610 Report Date: 11/11/22

| arameter                                   | LCS<br>%Recovery | LCSD<br>Qual %Recove | %Recovery Qual Limits | • | RPD<br>Qual Limits |  |
|--------------------------------------------|------------------|----------------------|-----------------------|---|--------------------|--|
| /olatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): 01 Batch: | WG1703420-3           |   |                    |  |
| p-Chlorotoluene                            | 105              | -                    | 70-130                | - | 20                 |  |
| tert-Butylbenzene                          | 100              | -                    | 70-130                | - | 20                 |  |
| 1,2,4-Trimethylbenzene                     | 100              | -                    | 70-130                | - | 20                 |  |
| sec-Butylbenzene                           | 100              | -                    | 70-130                | - | 20                 |  |
| p-Isopropyltoluene                         | 95               | -                    | 70-130                | - | 20                 |  |
| 1,3-Dichlorobenzene                        | 108              | -                    | 70-130                | - | 20                 |  |
| 1,4-Dichlorobenzene                        | 95               | -                    | 70-130                | - | 20                 |  |
| n-Butylbenzene                             | 88               | -                    | 70-130                | - | 20                 |  |
| 1,2-Dichlorobenzene                        | 95               | -                    | 70-130                | - | 20                 |  |
| 1,2-Dibromo-3-chloropropane                | 85               | -                    | 70-130                | - | 20                 |  |
| 1,2,4-Trichlorobenzene                     | 85               | -                    | 70-130                | - | 20                 |  |
| Hexachlorobutadiene                        | 85               | -                    | 70-130                | - | 20                 |  |
| Naphthalene                                | 80               | -                    | 70-130                | - | 20                 |  |
| 1,2,3-Trichlorobenzene                     | 88               | -                    | 70-130                | - | 20                 |  |

| Surrogate                                      | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|------------------------------------------------|------------------|------|-------------------|------|------------------------|
| 1,2-Dichlorobenzene-d4<br>4-Bromofluorobenzene | 105<br>107       |      |                   |      | 80-120<br>80-120       |



Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

|                                           | LCS              |             | LCSD          |        | %Recovery |     |      | RPD    |        |
|-------------------------------------------|------------------|-------------|---------------|--------|-----------|-----|------|--------|--------|
| Parameter                                 | %Recovery        | Qual        | %Recovery     | Qual   | Limits    | RPD | Qual | Limits | Column |
| Microextractables by GC - Westborough Lat | o Associated sam | nple(s): 01 | Batch: WG1704 | 1409-2 |           |     |      |        |        |
| 1,2-Dibromoethane                         | 101              |             | -             |        | 80-120    | -   |      |        | А      |
| 1,2-Dibromo-3-chloropropane               | 100              |             | -             |        | 80-120    | -   |      |        | А      |
| 1,2,3-Trichloropropane                    | 110              |             | -             |        | 80-120    | -   |      |        | А      |



**Project Name:** TERRAMOR Project Number: Not Specified Lab Number: L2258610 11/11/22

Report Date:

| Parameter                                  | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual     | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|------------|-------------------|----------|---------------------|-----|------|---------------|--|
| Volatile Organics by GC/MS - Westborough I | Lab Associated   | sample(s): | 03 Batch: WG1     | 706698-3 |                     |     |      |               |  |
| Dichlorodifluoromethane                    | 195              | Q          | -                 |          | 70-130              | -   |      | 20            |  |
| Chloromethane                              | 132              | Q          | -                 |          | 70-130              | -   |      | 20            |  |
| Vinyl chloride                             | 100              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromomethane                               | 92               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Chloroethane                               | 95               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Trichlorofluoromethane                     | 90               |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloroethene                         | 95               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Methylene chloride                         | 85               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Methyl tert butyl ether                    | 78               |            | -                 |          | 70-130              | -   |      | 20            |  |
| trans-1,2-Dichloroethene                   | 90               |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloroethane                         | 85               |            | -                 |          | 70-130              | -   |      | 20            |  |
| 2,2-Dichloropropane                        | 95               |            | -                 |          | 70-130              | -   |      | 20            |  |
| cis-1,2-Dichloroethene                     | 85               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Chloroform                                 | 85               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromochloromethane                         | 112              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1,1-Trichloroethane                      | 98               |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,1-Dichloropropene                        | 92               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Carbon tetrachloride                       | 102              |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,2-Dichloroethane                         | 98               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Benzene                                    | 98               |            | -                 |          | 70-130              | -   |      | 20            |  |
| Trichloroethene                            | 92               |            | -                 |          | 70-130              | -   |      | 20            |  |
| 1,2-Dichloropropane                        | 105              |            | -                 |          | 70-130              | -   |      | 20            |  |
| Bromodichloromethane                       | 100              |            | -                 |          | 70-130              | -   |      | 20            |  |
|                                            |                  |            |                   |          |                     |     |      |               |  |



## Lab Control Sample Analysis

Batch Quality Control

Lab Number: L2258610 Report Date: 11/11/22

LCSD LCS %Recovery RPD %Recovery RPD %Recovery Limits Limits Parameter Qual Qual Qual Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG1706698-3 Dibromomethane 88 70-130 20 \_ cis-1,3-Dichloropropene 88 70-130 20 --Toluene 90 70-130 20 -trans-1,3-Dichloropropene 88 70-130 20 --85 70-130 20 1,1,2-Trichloroethane --1,3-Dichloropropane 90 70-130 20 --Tetrachloroethene 98 70-130 20 --Dibromochloromethane 88 70-130 20 --1,2-Dibromoethane 82 70-130 20 \_ -20 Chlorobenzene 105 70-130 --20 1,1,1,2-Tetrachloroethane 95 70-130 --20 Ethylbenzene 100 70-130 -p/m-Xylene 104 70-130 20 --70-130 20 o-Xylene 102 --Styrene 102 70-130 20 --Isopropylbenzene 100 70-130 20 --Bromoform 85 70-130 20 --1,1,2,2-Tetrachloroethane 70-130 20 85 --70-130 20 1,2,3-Trichloropropane 88 -n-Propylbenzene 102 70-130 20 --Bromobenzene 108 70-130 20 \_ -70-130 20 1,3,5-Trimethylbenzene 100 --20 o-Chlorotoluene 108 70-130 --



Lab Number: L2258610 Report Date: 11/11/22

| arameter                                  | LCS<br>%Recovery | Qual       | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-------------------------------------------|------------------|------------|-------------------|-----------|---------------------|-----|------|---------------|
| olatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): | 03 Batch: WG      | 1706698-3 |                     |     |      |               |
| p-Chlorotoluene                           | 105              |            | -                 |           | 70-130              | -   |      | 20            |
| tert-Butylbenzene                         | 100              |            | -                 |           | 70-130              | -   |      | 20            |
| 1,2,4-Trimethylbenzene                    | 102              |            | -                 |           | 70-130              | -   |      | 20            |
| sec-Butylbenzene                          | 100              |            | -                 |           | 70-130              | -   |      | 20            |
| p-Isopropyltoluene                        | 102              |            | -                 |           | 70-130              | -   |      | 20            |
| 1,3-Dichlorobenzene                       | 105              |            | -                 |           | 70-130              | -   |      | 20            |
| 1,4-Dichlorobenzene                       | 108              |            | -                 |           | 70-130              | -   |      | 20            |
| n-Butylbenzene                            | 98               |            | -                 |           | 70-130              | -   |      | 20            |
| 1,2-Dichlorobenzene                       | 100              |            | -                 |           | 70-130              | -   |      | 20            |
| 1,2-Dibromo-3-chloropropane               | 85               |            | -                 |           | 70-130              | -   |      | 20            |
| 1,2,4-Trichlorobenzene                    | 100              |            | -                 |           | 70-130              | -   |      | 20            |
| Hexachlorobutadiene                       | 88               |            | -                 |           | 70-130              | -   |      | 20            |
| Naphthalene                               | 78               |            | -                 |           | 70-130              | -   |      | 20            |
| 1,2,3-Trichlorobenzene                    | 92               |            | -                 |           | 70-130              | -   |      | 20            |

| Surrogate                                           | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|-----------------------------------------------------|------------------|------|-------------------|------|------------------------|
| -<br>1,2-Dichlorobenzene-d4<br>4-Bromofluorobenzene | 95<br>102        |      |                   |      | 80-120<br>80-120       |



## Matrix Spike Analysis Batch Quality Control

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

 Lab Number:
 L2258610

 Report Date:
 11/11/22

| Parameter                  | Native<br>Sample A | MS<br>Added | MS<br>Found     | MS<br>%Recovery | Qual      | MSD<br>Found | MSD<br>%Recovery | Recover<br>Qual Limits | y<br>RPD | RPD<br>Qual Limits |
|----------------------------|--------------------|-------------|-----------------|-----------------|-----------|--------------|------------------|------------------------|----------|--------------------|
| Volatile Organics by GC/MS | - Westborough La   | b Asso      | ciated sample(s | s): 01 QC Ba    | tch ID: W | G1703420-6   | 6 QC Samp        | ole: L2258040-01       | Client I | D: MS Sample       |
| Dichlorodifluoromethane    | ND                 | 4           | 6.8             | 170             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Chloromethane              | ND                 | 4           | 5.4             | 135             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Vinyl chloride             | ND                 | 4           | 4.9             | 123             |           | -            | -                | 70-130                 | -        | 20                 |
| Bromomethane               | ND                 | 4           | 2.2             | 55              | Q         | -            | -                | 70-130                 | -        | 20                 |
| Chloroethane               | ND                 | 4           | 5.4             | 135             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Trichlorofluoromethane     | ND                 | 4           | 5.0             | 125             |           | -            | -                | 70-130                 | -        | 20                 |
| 1,1-Dichloroethene         | ND                 | 4           | 5.4             | 135             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Methylene chloride         | ND                 | 4           | 4.8             | 120             |           | -            | -                | 70-130                 | -        | 20                 |
| Methyl tert butyl ether    | ND                 | 4           | 4.4             | 110             |           | -            | -                | 70-130                 | -        | 20                 |
| trans-1,2-Dichloroethene   | ND                 | 4           | 5.0             | 125             |           | -            | -                | 70-130                 | -        | 20                 |
| 1,1-Dichloroethane         | ND                 | 4           | 4.8             | 120             |           | -            | -                | 70-130                 | -        | 20                 |
| 2,2-Dichloropropane        | ND                 | 4           | 3.9             | 98              |           | -            | -                | 70-130                 | -        | 20                 |
| cis-1,2-Dichloroethene     | ND                 | 4           | 4.8             | 120             |           | -            | -                | 70-130                 | -        | 20                 |
| Chloroform                 | 15                 | 4           | 20              | 125             |           | -            | -                | 70-130                 | -        | 20                 |
| Bromochloromethane         | ND                 | 4           | 5.3             | 133             | Q         | -            | -                | 70-130                 | -        | 20                 |
| 1,1,1-Trichloroethane      | ND                 | 4           | 5.2             | 130             |           | -            | -                | 70-130                 | -        | 20                 |
| 1,1-Dichloropropene        | ND                 | 4           | 5.0             | 125             |           | -            | -                | 70-130                 | -        | 20                 |
| Carbon tetrachloride       | ND                 | 4           | 5.5             | 138             | Q         | -            | -                | 70-130                 | -        | 20                 |
| 1,2-Dichloroethane         | ND                 | 4           | 4.8             | 120             |           | -            | -                | 70-130                 | -        | 20                 |
| Benzene                    | ND                 | 4           | 5.6             | 140             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Trichloroethene            | ND                 | 4           | 5.0             | 125             |           | -            | -                | 70-130                 | -        | 20                 |
| 1,2-Dichloropropane        | ND                 | 4           | 5.2             | 130             |           | -            | -                | 70-130                 | -        | 20                 |
| Bromodichloromethane       | 0.39J              | 4           | 5.6             | 140             | Q         | -            | -                | 70-130                 | -        | 20                 |
| Dibromomethane             | ND                 | 4           | 5.0             | 125             |           | -            | -                | 70-130                 | -        | 20                 |



\_

## Matrix Spike Analysis Batch Quality Control

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

| Parameter                  | Native<br>Sample | MS<br>Added | MS<br>Found    | MS<br>%Recovery | MSD<br>Qual Found  | MSD<br>%Recovery | Recovery<br>Qual Limits | y<br>RPD  | RPD<br>Qual Limits |
|----------------------------|------------------|-------------|----------------|-----------------|--------------------|------------------|-------------------------|-----------|--------------------|
| Volatile Organics by GC/MS | - Westborough La | ab Assoc    | ciated sample( | s): 01 QC Ba    | tch ID: WG1703420- | 6 QC Samp        | ole: L2258040-01        | Client ID | : MS Sample        |
| cis-1,3-Dichloropropene    | ND               | 4           | 4.7            | 118             | -                  | -                | 70-130                  | -         | 20                 |
| Toluene                    | ND               | 4           | 5.0            | 125             | -                  | -                | 70-130                  | -         | 20                 |
| rans-1,3-Dichloropropene   | ND               | 4           | 4.7            | 118             | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,2-Trichloroethane      | ND               | 4           | 5.0            | 125             | -                  | -                | 70-130                  | -         | 20                 |
| 1,3-Dichloropropane        | ND               | 4           | 5.1            | 128             | -                  | -                | 70-130                  | -         | 20                 |
| Tetrachloroethene          | ND               | 4           | 5.1            | 128             | -                  | -                | 70-130                  | -         | 20                 |
| Dibromochloromethane       | ND               | 4           | 5.2            | 130             | -                  | -                | 70-130                  | -         | 20                 |
| 1,2-Dibromoethane          | ND               | 4           | 4.6            | 115             | -                  | -                | 70-130                  | -         | 20                 |
| Chlorobenzene              | ND               | 4           | 4.5            | 113             | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,1,2-Tetrachloroethane  | ND               | 4           | 4.3            | 108             | -                  | -                | 70-130                  | -         | 20                 |
| Ethylbenzene               | ND               | 4           | 4.2            | 105             | -                  | -                | 70-130                  | -         | 20                 |
| o/m-Xylene                 | ND               | 8           | 9.0            | 113             | -                  | -                | 70-130                  | -         | 20                 |
| o-Xylene                   | ND               | 4           | 4.3            | 108             | -                  | -                | 70-130                  | -         | 20                 |
| Styrene                    | ND               | 4           | 4.2            | 105             | -                  | -                | 70-130                  | -         | 20                 |
| sopropylbenzene            | ND               | 4           | 4.3            | 108             | -                  | -                | 70-130                  | -         | 20                 |
| Bromoform                  | ND               | 4           | 4.4            | 110             | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,2,2-Tetrachloroethane  | ND               | 4           | 4.1            | 103             | -                  | -                | 70-130                  | -         | 20                 |
| 1,2,3-Trichloropropane     | ND               | 4           | 4.2            | 105             | -                  | -                | 70-130                  | -         | 20                 |
| n-Propylbenzene            | ND               | 4           | 4.4            | 110             | -                  | -                | 70-130                  | -         | 20                 |
| Bromobenzene               | ND               | 4           | 4.4            | 110             | -                  | -                | 70-130                  | -         | 20                 |
| 1,3,5-Trimethylbenzene     | ND               | 4           | 4.2            | 105             | -                  | -                | 70-130                  | -         | 20                 |
| o-Chlorotoluene            | ND               | 4           | 4.7            | 118             | -                  | -                | 70-130                  | -         | 20                 |
| o-Chlorotoluene            | ND               | 4           | 4.6            | 115             | -                  | -                | 70-130                  | -         | 20                 |
| ert-Butylbenzene           | ND               | 4           | 4.4            | 110             | -                  | -                | 70-130                  | -         | 20                 |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR      | Batch Quality Control |
|-----------------|---------------|-----------------------|
| Project Number: | Not Specified |                       |

| Parameter                   | Native<br>Sample | MS<br>Added | MS<br>Found     | MS<br>%Recovery | Qual      | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | /<br>RPD  | RPD<br>Qual Limits |
|-----------------------------|------------------|-------------|-----------------|-----------------|-----------|--------------|------------------|-------------------------|-----------|--------------------|
| Volatile Organics by GC/M   | S - Westborough  | Lab Ass     | ociated sample( | s): 01 QC Ba    | tch ID: W | G1703420-    | 6 QC Samp        | le: L2258040-01         | Client ID | : MS Sample        |
| 1,2,4-Trimethylbenzene      | ND               | 4           | 4.4             | 110             |           | -            | -                | 70-130                  | -         | 20                 |
| sec-Butylbenzene            | ND               | 4           | 4.4             | 110             |           | -            | -                | 70-130                  | -         | 20                 |
| p-Isopropyltoluene          | ND               | 4           | 4.2             | 105             |           | -            | -                | 70-130                  | -         | 20                 |
| 1,3-Dichlorobenzene         | ND               | 4           | 4.6             | 115             |           | -            | -                | 70-130                  | -         | 20                 |
| 1,4-Dichlorobenzene         | ND               | 4           | 4.0             | 100             |           | -            | -                | 70-130                  | -         | 20                 |
| n-Butylbenzene              | ND               | 4           | 3.7             | 92              |           | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dichlorobenzene         | ND               | 4           | 4.0             | 100             |           | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dibromo-3-chloropropane | ND               | 4           | 3.3             | 82              |           | -            | -                | 70-130                  | -         | 20                 |
| 1,2,4-Trichlorobenzene      | ND               | 4           | 3.5             | 88              |           | -            | -                | 70-130                  | -         | 20                 |
| Hexachlorobutadiene         | ND               | 4           | 3.7             | 92              |           | -            | -                | 70-130                  | -         | 20                 |
| Naphthalene                 | ND               | 4           | 3.2             | 80              |           | -            | -                | 70-130                  | -         | 20                 |
| 1,2,3-Trichlorobenzene      | ND               | 4           | 3.7             | 92              |           | -            | -                | 70-130                  | -         | 20                 |

|                        | MS                   | MSD                  | Acceptance |
|------------------------|----------------------|----------------------|------------|
| Surrogate              | % Recovery Qualifier | % Recovery Qualifier | Criteria   |
| 1,2-Dichlorobenzene-d4 | 104                  |                      | 80-120     |
| 4-Bromofluorobenzene   | 106                  |                      | 80-120     |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR      | Batch Quality Control | Lab Number:  | L2258610 |
|-----------------|---------------|-----------------------|--------------|----------|
| Project Number: | Not Specified |                       | Report Date: | 11/11/22 |

| Parameter                   | Native<br>Sample | MS<br>Added | MS<br>Found %    | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery |           | covery<br>imits | /<br>RPD | Qual    | RPD<br>Limits | <u>Colum</u> n |
|-----------------------------|------------------|-------------|------------------|-----------------|----------|--------------|------------------|-----------|-----------------|----------|---------|---------------|----------------|
| Microextractables by GC -   | Westborough Lab  | Associate   | ed sample(s): 01 | QC Batch        | ID: WG17 | 04409-3      | QC Sample: I     | _2259605- | 01 Cli          | ient ID: | MS Samp | ole           |                |
| 1,2-Dibromoethane           | ND               | 0.25        | 0.280            | 112             |          | -            | -                | ٤         | 0-120           | -        |         | 20            | А              |
| 1,2-Dibromo-3-chloropropane | ND               | 0.25        | 0.266            | 106             |          | -            | -                | ٤         | 0-120           | -        |         | 20            | А              |
| 1,2,3-Trichloropropane      | ND               | 0.25        | 0.292            | 117             |          | -            | -                | 8         | 0-120           | -        |         | 20            | А              |



## Matrix Spike Analysis Batch Quality Control

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

| Parameter                  | Native<br>Sample | MS<br>Added | MS<br>Found    | MS<br>%Recovery | Qual     | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | /<br>RPD  | RPD<br>Qual Limits |
|----------------------------|------------------|-------------|----------------|-----------------|----------|--------------|------------------|-------------------------|-----------|--------------------|
| Volatile Organics by GC/MS | S - Westborough  | Lab Assoc   | ciated sample( | s): 03 QC Bat   | ch ID: W | G1706698-6   | 6 QC Samp        | le: L2260318-01         | Client ID | : MS Sample        |
| Dichlorodifluoromethane    | ND               | 4           | 6.8            | 170             | Q        | -            | -                | 70-130                  | -         | 20                 |
| Chloromethane              | ND               | 4           | 5.0            | 125             |          | -            | -                | 70-130                  | -         | 20                 |
| Vinyl chloride             | ND               | 4           | 3.7            | 92              |          | -            | -                | 70-130                  | -         | 20                 |
| Bromomethane               | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| Chloroethane               | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| Trichlorofluoromethane     | ND               | 4           | 3.7            | 92              |          | -            | -                | 70-130                  | -         | 20                 |
| 1,1-Dichloroethene         | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| Methylene chloride         | ND               | 4           | 3.2            | 80              |          | -            | -                | 70-130                  | -         | 20                 |
| Methyl tert butyl ether    | ND               | 4           | 2.7            | 68              | Q        | -            | -                | 70-130                  | -         | 20                 |
| trans-1,2-Dichloroethene   | ND               | 4           | 3.4            | 85              |          | -            | -                | 70-130                  | -         | 20                 |
| 1,1-Dichloroethane         | ND               | 4           | 3.3            | 82              |          | -            | -                | 70-130                  | -         | 20                 |
| 2,2-Dichloropropane        | ND               | 4           | 3.2            | 80              |          | -            | -                | 70-130                  | -         | 20                 |
| cis-1,2-Dichloroethene     | ND               | 4           | 3.0            | 75              |          | -            | -                | 70-130                  | -         | 20                 |
| Chloroform                 | 0.21J            | 4           | 3.4            | 85              |          | -            | -                | 70-130                  | -         | 20                 |
| Bromochloromethane         | ND               | 4           | 4.0            | 100             |          | -            | -                | 70-130                  | -         | 20                 |
| 1,1,1-Trichloroethane      | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| 1,1-Dichloropropene        | ND               | 4           | 3.2            | 80              |          | -            | -                | 70-130                  | -         | 20                 |
| Carbon tetrachloride       | ND               | 4           | 3.6            | 90              |          | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dichloroethane         | ND               | 4           | 3.4            | 85              |          | -            | -                | 70-130                  | -         | 20                 |
| Benzene                    | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| Trichloroethene            | ND               | 4           | 3.1            | 78              |          | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dichloropropane        | ND               | 4           | 3.5            | 88              |          | -            | -                | 70-130                  | -         | 20                 |
| Bromodichloromethane       | ND               | 4           | 3.4            | 85              |          | -            | -                | 70-130                  | -         | 20                 |
| Dibromomethane             | ND               | 4           | 3.3            | 82              |          | -            | -                | 70-130                  | -         | 20                 |



## Matrix Spike Analysis Batch Quality Control

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

| Parameter                  |                  | MS<br>Added | MS<br>Found     | MS<br>%Recovery | MSD<br>Qual Found  | MSD<br>%Recovery | Recovery<br>Qual Limits | '<br>RPD  | RPD<br>Qual Limits |
|----------------------------|------------------|-------------|-----------------|-----------------|--------------------|------------------|-------------------------|-----------|--------------------|
| Volatile Organics by GC/MS | - Westborough La | b Asso      | ciated sample(s | s): 03 QC Ba    | tch ID: WG1706698- | 6 QC Sampl       | le: L2260318-01         | Client IE | D: MS Sample       |
| cis-1,3-Dichloropropene    | ND               | 4           | 3.1             | 78              | -                  | -                | 70-130                  | -         | 20                 |
| Toluene                    | ND               | 4           | 3.0             | 75              | -                  | -                | 70-130                  | -         | 20                 |
| trans-1,3-Dichloropropene  | ND               | 4           | 3.1             | 78              | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,2-Trichloroethane      | ND               | 4           | 3.1             | 78              | -                  | -                | 70-130                  | -         | 20                 |
| 1,3-Dichloropropane        | ND               | 4           | 3.2             | 80              | -                  | -                | 70-130                  | -         | 20                 |
| Tetrachloroethene          | ND               | 4           | 3.6             | 90              | -                  | -                | 70-130                  | -         | 20                 |
| Dibromochloromethane       | ND               | 4           | 3.0             | 75              | -                  | -                | 70-130                  | -         | 20                 |
| 1,2-Dibromoethane          | ND               | 4           | 3.0             | 75              | -                  | -                | 70-130                  | -         | 20                 |
| Chlorobenzene              | ND               | 4           | 3.5             | 88              | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,1,2-Tetrachloroethane  | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| Ethylbenzene               | ND               | 4           | 3.2             | 80              | -                  | -                | 70-130                  | -         | 20                 |
| p/m-Xylene                 | ND               | 8           | 6.8             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| o-Xylene                   | ND               | 4           | 3.3             | 82              | -                  | -                | 70-130                  | -         | 20                 |
| Styrene                    | ND               | 4           | 3.3             | 82              | -                  | -                | 70-130                  | -         | 20                 |
| Isopropylbenzene           | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| Bromoform                  | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| 1,1,2,2-Tetrachloroethane  | ND               | 4           | 5.0             | 125             | -                  | -                | 70-130                  | -         | 20                 |
| 1,2,3-Trichloropropane     | ND               | 4           | 3.2             | 80              | -                  | -                | 70-130                  | -         | 20                 |
| n-Propylbenzene            | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| Bromobenzene               | ND               | 4           | 3.5             | 88              | -                  | -                | 70-130                  | -         | 20                 |
| 1,3,5-Trimethylbenzene     | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| o-Chlorotoluene            | ND               | 4           | 3.4             | 85              | -                  | -                | 70-130                  | -         | 20                 |
| p-Chlorotoluene            | ND               | 4           | 3.5             | 88              | -                  | -                | 70-130                  | -         | 20                 |
| tert-Butylbenzene          | ND               | 4           | 3.2             | 80              | -                  | -                | 70-130                  | -         | 20                 |



## Matrix Spike Analysis

| Project Name:   | TERRAMOR      | Batch Quality Control |
|-----------------|---------------|-----------------------|
| Project Number: | Not Specified |                       |

| Parameter                   | Native<br>Sample | MS<br>Adde | MS<br>d Found     | MS<br>%Recove | ery Qual    | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Qual Limits | /<br>RPD  | RPD<br>Qual Limits |
|-----------------------------|------------------|------------|-------------------|---------------|-------------|--------------|------------------|-------------------------|-----------|--------------------|
| Volatile Organics by GC/M   | S - Westborough  | Lab As     | ssociated sample( | s): 03 QC     | Batch ID: V | VG1706698    | -6 QC Samp       | le: L2260318-01         | Client ID | : MS Sample        |
| 1,2,4-Trimethylbenzene      | ND               | 4          | 3.5               | 88            |             | -            | -                | 70-130                  | -         | 20                 |
| sec-Butylbenzene            | ND               | 4          | 3.3               | 82            |             | -            | -                | 70-130                  | -         | 20                 |
| p-Isopropyltoluene          | ND               | 4          | 3.3               | 82            |             | -            | -                | 70-130                  | -         | 20                 |
| 1,3-Dichlorobenzene         | ND               | 4          | 3.5               | 88            |             | -            | -                | 70-130                  | -         | 20                 |
| 1,4-Dichlorobenzene         | ND               | 4          | 3.6               | 90            |             | -            | -                | 70-130                  | -         | 20                 |
| n-Butylbenzene              | ND               | 4          | 3.3               | 82            |             | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dichlorobenzene         | ND               | 4          | 3.4               | 85            |             | -            | -                | 70-130                  | -         | 20                 |
| 1,2-Dibromo-3-chloropropane | ND               | 4          | 3.6               | 90            |             | -            | -                | 70-130                  | -         | 20                 |
| 1,2,4-Trichlorobenzene      | ND               | 4          | 3.1               | 78            |             | -            | -                | 70-130                  | -         | 20                 |
| Hexachlorobutadiene         | ND               | 4          | 3.3               | 82            |             | -            | -                | 70-130                  | -         | 20                 |
| Naphthalene                 | ND               | 4          | 2.5               | 62            | Q           | -            | -                | 70-130                  | -         | 20                 |
| 1,2,3-Trichlorobenzene      | ND               | 4          | 3.1               | 78            |             | -            | -                | 70-130                  | -         | 20                 |

|                        | MS MSD               |                      | Acceptance |
|------------------------|----------------------|----------------------|------------|
| Surrogate              | % Recovery Qualifier | % Recovery Qualifier | Criteria   |
| 1,2-Dichlorobenzene-d4 | 100                  |                      | 80-120     |
| 4-Bromofluorobenzene   | 100                  |                      | 80-120     |



Project Name: TERRAMOR

Project Number: Not Specified

Lab Number:

| arameter                                    | Native Sample            | Duplicate Sample    | Units    | RPD          | RPD<br>Qual Limits            |
|---------------------------------------------|--------------------------|---------------------|----------|--------------|-------------------------------|
| olatile Organics by GC/MS - Westborough Lab | Associated sample(s): 01 | QC Batch ID: WG1703 | 420-5 QC | Sample: L225 | 8039-01 Client ID: DUP Sample |
| Dichlorodifluoromethane                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| Chloromethane                               | ND                       | ND                  | ug/l     | NC           | 20                            |
| Vinyl chloride                              | ND                       | ND                  | ug/l     | NC           | 20                            |
| Bromomethane                                | ND                       | ND                  | ug/l     | NC           | 20                            |
| Chloroethane                                | ND                       | ND                  | ug/l     | NC           | 20                            |
| Trichlorofluoromethane                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1-Dichloroethene                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| Methylene chloride                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| Methyl tert butyl ether                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| trans-1,2-Dichloroethene                    | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1-Dichloroethane                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| 2,2-Dichloropropane                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| cis-1,2-Dichloroethene                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| Chloroform                                  | ND                       | ND                  | ug/l     | NC           | 20                            |
| Bromochloromethane                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1,1-Trichloroethane                       | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1-Dichloropropene                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| Carbon tetrachloride                        | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2-Dichloroethane                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| Benzene                                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| Trichloroethene                             | ND                       | ND                  | ug/l     | NC           | 20                            |



Project Name: TERRAMOR

Project Number: Not Specified

| arameter                                    | Native Sample            | Duplicate Sample    | Units    | RPD          | RPD<br>Qual Limits            |
|---------------------------------------------|--------------------------|---------------------|----------|--------------|-------------------------------|
| olatile Organics by GC/MS - Westborough Lab | Associated sample(s): 01 | QC Batch ID: WG1703 | 420-5 QC | Sample: L225 | 8039-01 Client ID: DUP Sample |
| 1,2-Dichloropropane                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| Bromodichloromethane                        | ND                       | ND                  | ug/l     | NC           | 20                            |
| Dibromomethane                              | ND                       | ND                  | ug/l     | NC           | 20                            |
| cis-1,3-Dichloropropene                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| Toluene                                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| trans-1,3-Dichloropropene                   | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1,2-Trichloroethane                       | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,3-Dichloropropane                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| Tetrachloroethene                           | ND                       | ND                  | ug/l     | NC           | 20                            |
| Dibromochloromethane                        | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2-Dibromoethane                           | ND                       | ND                  | ug/l     | NC           | 20                            |
| Chlorobenzene                               | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1,1,2-Tetrachloroethane                   | ND                       | ND                  | ug/l     | NC           | 20                            |
| Ethylbenzene                                | ND                       | ND                  | ug/l     | NC           | 20                            |
| p/m-Xylene                                  | ND                       | ND                  | ug/l     | NC           | 20                            |
| o-Xylene                                    | ND                       | ND                  | ug/l     | NC           | 20                            |
| Styrene                                     | ND                       | ND                  | ug/l     | NC           | 20                            |
| Isopropylbenzene                            | ND                       | ND                  | ug/l     | NC           | 20                            |
| Bromoform                                   | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,1,2,2-Tetrachloroethane                   | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2,3-Trichloropropane                      | ND                       | ND                  | ug/l     | NC           | 20                            |



Project Name: TERRAMOR

Project Number: Not Specified

| arameter                                    | Native Sample            | Duplicate Sample    | Units    | RPD          | RPD<br>Qual Limits            |
|---------------------------------------------|--------------------------|---------------------|----------|--------------|-------------------------------|
| olatile Organics by GC/MS - Westborough Lab | Associated sample(s): 01 | QC Batch ID: WG1703 | 420-5 QC | Sample: L225 | 8039-01 Client ID: DUP Sample |
| Xylene (Total) <sup>1</sup>                 | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,3-Dichloropropene, Total                  | ND                       | ND                  | ug/l     | NC           | 20                            |
| n-Propylbenzene                             | ND                       | ND                  | ug/l     | NC           | 20                            |
| Bromobenzene                                | ND                       | ND                  | ug/l     | NC           | 20                            |
| Trihalomethanes, Total                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,3,5-Trimethylbenzene                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| o-Chlorotoluene                             | ND                       | ND                  | ug/l     | NC           | 20                            |
| p-Chlorotoluene                             | ND                       | ND                  | ug/l     | NC           | 20                            |
| tert-Butylbenzene                           | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2,4-Trimethylbenzene                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| sec-Butylbenzene                            | ND                       | ND                  | ug/l     | NC           | 20                            |
| p-Isopropyltoluene                          | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,3-Dichlorobenzene                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,4-Dichlorobenzene                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| n-Butylbenzene                              | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2-Dichlorobenzene                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2-Dibromo-3-chloropropane                 | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2,4-Trichlorobenzene                      | ND                       | ND                  | ug/l     | NC           | 20                            |
| Hexachlorobutadiene                         | ND                       | ND                  | ug/l     | NC           | 20                            |
| Naphthalene                                 | ND                       | ND                  | ug/l     | NC           | 20                            |
| 1,2,3-Trichlorobenzene                      | ND                       | ND                  | ug/l     | NC           | 20                            |



| Project Name:<br>Project Number: | TERRAMOR<br>Not Specified | Lab Duplic<br>Batch Qu   |              | Lab Number:<br>Report Date: |            | L2258610<br>11/11/22 |                      |               |            |
|----------------------------------|---------------------------|--------------------------|--------------|-----------------------------|------------|----------------------|----------------------|---------------|------------|
| Parameter                        |                           | Native Sample            | Duplicate S  | ample                       | Units      | RPD                  | Qual                 | RPD<br>Limits |            |
| Volatile Organics by GC          | MS - Westborough Lab      | Associated sample(s): 01 | QC Batch ID: | WG17034                     | 420-5 QC S | ample: L22           | 58039-01             | Client ID:    | DUP Sample |
| Surrogate                        |                           |                          | %Recovery    | Qualifier                   | %Recovery  |                      | Acceptan<br>Criteria |               |            |
| 1,2-Dichlorobenzer               | pe-d4                     |                          | 108          |                             | 109        |                      | 80-120               |               |            |



Project Name: TERRAMOR

Project Number: Not Specified

Lab Number:

| arameter                                | Native Sample                  | Duplicate Sample    | Units        | RPD         | RPD<br>Qual Limits            |
|-----------------------------------------|--------------------------------|---------------------|--------------|-------------|-------------------------------|
| olatile Organics by GC/MS - Westborough | h Lab Associated sample(s): 03 | QC Batch ID: WG1706 | 6698-5 QC Sa | ample: L225 | 9667-01 Client ID: DUP Sample |
| Dichlorodifluoromethane                 | ND                             | ND                  | ug/l         | NC          | 20                            |
| Chloromethane                           | ND                             | ND                  | ug/l         | NC          | 20                            |
| Vinyl chloride                          | ND                             | ND                  | ug/l         | NC          | 20                            |
| Bromomethane                            | ND                             | ND                  | ug/l         | NC          | 20                            |
| Chloroethane                            | ND                             | ND                  | ug/l         | NC          | 20                            |
| Trichlorofluoromethane                  | ND                             | ND                  | ug/l         | NC          | 20                            |
| 1,1-Dichloroethene                      | ND                             | ND                  | ug/l         | NC          | 20                            |
| Methylene chloride                      | ND                             | ND                  | ug/l         | NC          | 20                            |
| Methyl tert butyl ether                 | ND                             | ND                  | ug/l         | NC          | 20                            |
| trans-1,2-Dichloroethene                | ND                             | ND                  | ug/l         | NC          | 20                            |
| 1,1-Dichloroethane                      | ND                             | ND                  | ug/l         | NC          | 20                            |
| 2,2-Dichloropropane                     | ND                             | ND                  | ug/l         | NC          | 20                            |
| cis-1,2-Dichloroethene                  | ND                             | ND                  | ug/l         | NC          | 20                            |
| Chloroform                              | ND                             | ND                  | ug/l         | NC          | 20                            |
| Bromochloromethane                      | ND                             | ND                  | ug/l         | NC          | 20                            |
| 1,1,1-Trichloroethane                   | ND                             | ND                  | ug/l         | NC          | 20                            |
| 1,1-Dichloropropene                     | ND                             | ND                  | ug/l         | NC          | 20                            |
| Carbon tetrachloride                    | ND                             | ND                  | ug/l         | NC          | 20                            |
| 1,2-Dichloroethane                      | ND                             | ND                  | ug/l         | NC          | 20                            |
| Benzene                                 | ND                             | ND                  | ug/l         | NC          | 20                            |
| Trichloroethene                         | ND                             | ND                  | ug/l         | NC          | 20                            |



Project Name: TERRAMOR

Project Number: Not Specified Lab Number:

L2258610 11/11/22 Report Date:

| arameter                          | Native Sample                       | Duplicate Samp  | ole Units   | RPD            | RPD<br>Qual Limits          |
|-----------------------------------|-------------------------------------|-----------------|-------------|----------------|-----------------------------|
| platile Organics by GC/MS - Westb | orough Lab Associated sample(s): 03 | QC Batch ID: WG | 1706698-5 Q | C Sample: L225 | 9667-01 Client ID: DUP Samp |
| 1,2-Dichloropropane               | ND                                  | ND              | ug/l        | NC             | 20                          |
| Bromodichloromethane              | ND                                  | ND              | ug/l        | NC             | 20                          |
| Dibromomethane                    | ND                                  | ND              | ug/l        | NC             | 20                          |
| cis-1,3-Dichloropropene           | ND                                  | ND              | ug/l        | NC             | 20                          |
| Toluene                           | ND                                  | ND              | ug/l        | NC             | 20                          |
| trans-1,3-Dichloropropene         | ND                                  | ND              | ug/l        | NC             | 20                          |
| 1,1,2-Trichloroethane             | ND                                  | ND              | ug/l        | NC             | 20                          |
| 1,3-Dichloropropane               | ND                                  | ND              | ug/l        | NC             | 20                          |
| Tetrachloroethene                 | ND                                  | ND              | ug/l        | NC             | 20                          |
| Dibromochloromethane              | ND                                  | ND              | ug/l        | NC             | 20                          |
| 1,2-Dibromoethane                 | ND                                  | ND              | ug/l        | NC             | 20                          |
| Chlorobenzene                     | ND                                  | ND              | ug/l        | NC             | 20                          |
| 1,1,1,2-Tetrachloroethane         | ND                                  | ND              | ug/l        | NC             | 20                          |
| Ethylbenzene                      | ND                                  | ND              | ug/l        | NC             | 20                          |
| p/m-Xylene                        | ND                                  | ND              | ug/l        | NC             | 20                          |
| o-Xylene                          | ND                                  | ND              | ug/l        | NC             | 20                          |
| Styrene                           | ND                                  | ND              | ug/l        | NC             | 20                          |
| Isopropylbenzene                  | ND                                  | ND              | ug/l        | NC             | 20                          |
| Bromoform                         | ND                                  | ND              | ug/l        | NC             | 20                          |
| 1,1,2,2-Tetrachloroethane         | ND                                  | ND              | ug/l        | NC             | 20                          |
| Xylene (Total) <sup>1</sup>       | ND                                  | ND              | ug/l        | NC             | 20                          |



Project Name: TERRAMOR

Project Number: Not Specified

Lab Number:

| arameter                                    | Native Sample            | Duplicate Sample    | Units      | RPD          | RPD<br>Qual Limits            |
|---------------------------------------------|--------------------------|---------------------|------------|--------------|-------------------------------|
| olatile Organics by GC/MS - Westborough Lab | Associated sample(s): 03 | QC Batch ID: WG1706 | 698-5 QC S | Sample: L225 | 9667-01 Client ID: DUP Sample |
| 1,2,3-Trichloropropane                      | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,3-Dichloropropene, Total                  | ND                       | ND                  | ug/l       | NC           | 20                            |
| n-Propylbenzene                             | ND                       | ND                  | ug/l       | NC           | 20                            |
| Trihalomethanes, Total                      | ND                       | ND                  | ug/l       | NC           | 20                            |
| Bromobenzene                                | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,3,5-Trimethylbenzene                      | ND                       | ND                  | ug/l       | NC           | 20                            |
| o-Chlorotoluene                             | ND                       | ND                  | ug/l       | NC           | 20                            |
| p-Chlorotoluene                             | ND                       | ND                  | ug/l       | NC           | 20                            |
| tert-Butylbenzene                           | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,2,4-Trimethylbenzene                      | ND                       | ND                  | ug/l       | NC           | 20                            |
| sec-Butylbenzene                            | ND                       | ND                  | ug/l       | NC           | 20                            |
| p-Isopropyltoluene                          | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,3-Dichlorobenzene                         | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,4-Dichlorobenzene                         | ND                       | ND                  | ug/l       | NC           | 20                            |
| n-Butylbenzene                              | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,2-Dichlorobenzene                         | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,2-Dibromo-3-chloropropane                 | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,2,4-Trichlorobenzene                      | ND                       | ND                  | ug/l       | NC           | 20                            |
| Hexachlorobutadiene                         | ND                       | ND                  | ug/l       | NC           | 20                            |
| Naphthalene                                 | ND                       | ND                  | ug/l       | NC           | 20                            |
| 1,2,3-Trichlorobenzene                      | ND                       | ND                  | ug/l       | NC           | 20                            |



| Project Name:<br>Project Number: | TERRAMOR<br>Not Specified | Lab Duplicate Analysis<br>Batch Quality Control |              |           |            | Lab Number:<br>Report Date: |                      | L2258610<br>11/11/22 |            |
|----------------------------------|---------------------------|-------------------------------------------------|--------------|-----------|------------|-----------------------------|----------------------|----------------------|------------|
| Parameter                        |                           | Native Sample                                   | Duplicate S  | Sample    | Units      | RPD                         | Qual                 | RPD<br>Limits        |            |
| Volatile Organics by GC/         | MS - Westborough Lab      | Associated sample(s): 03                        | QC Batch ID: | WG1706    | 698-5 QC S | Sample: L22                 | 59667-01             | Client ID:           | DUP Sample |
| Surrogate                        |                           |                                                 | %Recovery    | Qualifier | %Recovery  | Qualifier                   | Acceptan<br>Criteria |                      |            |
| 1,2-Dichlorobenzer               |                           |                                                 | 96           |           | 101        |                             | 80-120               |                      |            |
| 4-Bromofluorobenz                | ene                       |                                                 | 93           |           | 91         |                             | 80-120               |                      |            |



## SEMIVOLATILES



|                    |                |                | Serial_No         | :11112220:01   |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2258610       |
| Project Number:    | Not Specified  |                | Report Date:      | 11/11/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2258610-01    |                | Date Collected:   | 10/20/22 10:00 |
| Client ID:         | LOT-17-221020  |                | Date Received:    | 10/20/22       |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | : EPA 537.1    |
| Analytical Method: | 133,537.1      |                | Extraction Date:  | 11/02/22 11:00 |
| Analytical Date:   | 11/03/22 01:51 |                |                   |                |
| Analyst:           | LV             |                |                   |                |
| •                  |                |                |                   |                |
|                    |                |                |                   |                |

| Parameter                                      | Result Q                                                | ualifier Un | ts      | RL        | MDL             | Dilution Factor |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------|-------------|---------|-----------|-----------------|-----------------|--|--|--|--|
| Perfluorinated Alkyl Acids by EPA 537.1 -      | Perfluorinated Alkyl Acids by EPA 537.1 - Mansfield Lab |             |         |           |                 |                 |  |  |  |  |
| Perfluorooctanoic Acid (PFOA)                  | ND                                                      | ng          | /I      | 2.07      | 0.693           | 1               |  |  |  |  |
| Perfluorooctanesulfonic Acid (PFOS)            | ND                                                      | ng          | /I      | 2.07      | 0.693           | 1               |  |  |  |  |
| Surrogate                                      |                                                         | % R         | ecovery | Qualifier | Accept<br>Crite |                 |  |  |  |  |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFH)  | (A)                                                     |             | 116     |           | 70-             | -130            |  |  |  |  |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propar | noic acid (13C3-HFPO-                                   | DA)         | 107     |           | 70-             | -130            |  |  |  |  |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFD/  | ۹)                                                      |             | 111     |           | 70-             | -130            |  |  |  |  |
| N-Deuterioethylperfluoro-1-octanesulfonamidoa  | cetic Acid (d5-NEtFOS                                   | AA)         | 97      |           | 70-             | ·130            |  |  |  |  |



|                    |                |                | Serial_No:11112220:0 |                |  |  |
|--------------------|----------------|----------------|----------------------|----------------|--|--|
| Project Name:      | TERRAMOR       |                | Lab Number:          | L2258610       |  |  |
| Project Number:    | Not Specified  |                | Report Date:         | 11/11/22       |  |  |
|                    |                | SAMPLE RESULTS |                      |                |  |  |
| Lab ID:            | L2258610-02    |                | Date Collected:      | 10/20/22 10:40 |  |  |
| Client ID:         | FIELD BLANK    |                | Date Received:       | 10/20/22       |  |  |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:          | Not Specified  |  |  |
| Sample Depth:      |                |                |                      |                |  |  |
| Matrix:            | Dw             |                | Extraction Method    | l: EPA 537.1   |  |  |
| Analytical Method: | 133,537.1      |                | Extraction Date:     | 11/02/22 11:00 |  |  |
| Analytical Date:   | 11/03/22 02:00 |                |                      |                |  |  |
| Analyst:           | LV             |                |                      |                |  |  |
| -                  |                |                |                      |                |  |  |
|                    |                |                |                      |                |  |  |

| Parameter                                     | Result                                                                | Qualifier | Units      | RL        | MDL   | Dilution Factor  |
|-----------------------------------------------|-----------------------------------------------------------------------|-----------|------------|-----------|-------|------------------|
| Perfluorinated Alkyl Acids by EPA 537.1 -     | Mansfield Lab                                                         |           |            |           |       |                  |
| Perfluorooctanoic Acid (PFOA)                 | ND                                                                    |           | ng/l       | 1.78      | 0.594 | 1                |
| Perfluorooctanesulfonic Acid (PFOS)           | ND                                                                    |           | ng/l       | 1.78      | 0.594 | 1                |
| Surrogate                                     |                                                                       |           | % Recovery | Qualifier |       | ptance<br>iteria |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFH  | IxA)                                                                  |           | 114        |           | 7     | 70-130           |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propa | Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) |           | 108        |           | 7     | 70-130           |
|                                               |                                                                       |           |            |           |       |                  |

100

N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA)



70-130

|                    |                |                | Serial_No:11112220:01 |                |  |  |
|--------------------|----------------|----------------|-----------------------|----------------|--|--|
| Project Name:      | TERRAMOR       |                | Lab Number:           | L2258610       |  |  |
| Project Number:    | Not Specified  |                | Report Date:          | 11/11/22       |  |  |
|                    |                | SAMPLE RESULTS |                       |                |  |  |
| Lab ID:            | L2258610-04    |                | Date Collected:       | 10/21/22 13:00 |  |  |
| Client ID:         | LOT-17-221021  |                | Date Received:        | 10/21/22       |  |  |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                |                |                       |                |  |  |
| Matrix:            | Dw             |                | Extraction Metho      | d: EPA 522     |  |  |
| Analytical Method: | 120,522        |                | Extraction Date:      | 10/31/22 08:00 |  |  |
| Analytical Date:   | 11/02/22 18:19 |                |                       |                |  |  |
| Analyst:           | DMB            |                |                       |                |  |  |
|                    |                |                |                       |                |  |  |
|                    |                |                |                       |                |  |  |

| Parameter                              | Result | Qualifier | Units      | RL        | MDL   | Dilution Factor  |
|----------------------------------------|--------|-----------|------------|-----------|-------|------------------|
| 1,4 Dioxane by EPA 522 - Mansfield Lab |        |           |            |           |       |                  |
| 1,4-Dioxane                            | ND     |           | ug/l       | 0.144     | 0.144 | 1                |
| Surrogate                              |        |           | % Recovery | Qualifier |       | ptance<br>iteria |
| 1,4-Dioxane-d8                         |        |           | 80         |           | 7     | 70-130           |



Serial\_No:11112220:01

| Project Name:<br>Project Number:                   | TERRAMOR<br>Not Specified        |             | d Blank<br>h Quality | Analysis<br>Control |       | Lab Number:<br>Report Date:            | L2258610<br>11/11/22      |
|----------------------------------------------------|----------------------------------|-------------|----------------------|---------------------|-------|----------------------------------------|---------------------------|
| Analytical Method:<br>Analytical Date:<br>Analyst: | 120,522<br>11/02/22 12:29<br>DMB |             |                      |                     |       | Extraction Method:<br>Extraction Date: | EPA 522<br>10/31/22 08:00 |
| Parameter                                          |                                  | Result      | Qualifier            | Units               | RL    | MDL                                    |                           |
| 1,4 Dioxane by                                     | y EPA 522 - Mansfield            | Lab for sar | nple(s): C           | 4 Batch:            | WG170 | 6287-1                                 |                           |

ug/l

0.150

0.150

| Surrogate      | %Recovery | Acceptance<br>Criteria |
|----------------|-----------|------------------------|
| 1,4-Dioxane-d8 | 87        | 70-130                 |

ND



1,4-Dioxane

| Project Name:   | TERRAMOR      |                                                | Lab Number:  | L2258610 |
|-----------------|---------------|------------------------------------------------|--------------|----------|
| Project Number: | Not Specified |                                                | Report Date: | 11/11/22 |
|                 |               | Method Blank Analysis<br>Batch Quality Control |              |          |

| Analytical Method: | 133,537.1      | Extraction Method: | EPA 537.1      |
|--------------------|----------------|--------------------|----------------|
| Analytical Date:   | 11/03/22 01:33 | Extraction Date:   | 11/02/22 11:00 |
| Analyst:           | LV             |                    |                |

| Parameter                           | Result      | Qualifier     | Units         | RL    | MDL                |
|-------------------------------------|-------------|---------------|---------------|-------|--------------------|
| Perfluorinated Alkyl Acids by EPA 5 | 537.1 - Man | sfield Lab fo | or sample(s): | 01-02 | Batch: WG1707126-1 |
| Perfluorooctanoic Acid (PFOA)       | ND          |               | ng/l          | 2.00  | 0.668              |
| Perfluorooctanesulfonic Acid (PFOS) | ND          |               | ng/l          | 2.00  | 0.668              |

|                                                                       |           | -         | Acceptance |
|-----------------------------------------------------------------------|-----------|-----------|------------|
| Surrogate                                                             | %Recovery | Qualifier | Criteria   |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                       | 104       |           | 70-130     |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) | 88        |           | 70-130     |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                        | 99        |           | 70-130     |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) | 98        |           | 70-130     |



## Lab Control Sample Analysis

| Project Name:   | TERRAMOR      | Batch Quality Control | Lab Number:  | L2258610 |
|-----------------|---------------|-----------------------|--------------|----------|
| Project Number: | Not Specified |                       | Report Date: | 11/11/22 |

| Parameter                                                                                      | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|------------------------------------------------------------------------------------------------|------------------|------|-------------------|------|---------------------|-----|------|---------------|--|
| 1,4 Dioxane by EPA 522 - Mansfield Lab Associated sample(s): 04 Batch: WG1706287-2 WG1706287-3 |                  |      |                   |      |                     |     |      |               |  |
| 1,4-Dioxane                                                                                    | 88               |      | 90                |      | 70-130              | 2   |      | 30            |  |

| Surrogate      | LCS<br>%Recovery | Qual | LCSD<br>%Recovery | Qual | Acceptance<br>Criteria |
|----------------|------------------|------|-------------------|------|------------------------|
| 1,4-Dioxane-d8 | 84               |      | 84                |      | 70-130                 |



## Lab Control Sample Analysis Batch Quality Control

Lab Number: L2258610 Report Date: 11/11/22

Project Number: Not Specified

TERRAMOR

**Project Name:** 

|                                             | LCS               |                | LCSD         |            | %Recovery |     |      | RPD    |  |
|---------------------------------------------|-------------------|----------------|--------------|------------|-----------|-----|------|--------|--|
| Parameter                                   | %Recovery         | Qual           | %Recovery    | Qual       | Limits    | RPD | Qual | Limits |  |
| Perfluorinated Alkyl Acids by EPA 537.1 - M | lansfield Lab Ass | ociated sample | (s): 01-02 E | Batch: WG1 | 707126-2  |     |      |        |  |
| Perfluorooctanoic Acid (PFOA)               | 86                |                | -            |            | 50-150    | -   |      | 30     |  |
| Perfluorooctanesulfonic Acid (PFOS)         | 90                |                | -            |            | 50-150    | -   |      | 30     |  |

|                                                                       | LCS       |      | LCSD      |      | Acceptance |
|-----------------------------------------------------------------------|-----------|------|-----------|------|------------|
| Surrogate                                                             | %Recovery | Qual | %Recovery | Qual | Criteria   |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                       | 86        |      |           |      | 70-130     |
| Tetrafluoro-2-heptafluoropropoxy-[13C3]-propanoic acid (13C3-HFPO-DA) | 77        |      |           |      | 70-130     |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                        | 79        |      |           |      | 70-130     |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) | 81        |      |           |      | 70-130     |



## Matrix Spike Analysis Batch Quality Control

| Project Name:   | TERRAMOR      |
|-----------------|---------------|
| Project Number: | Not Specified |

 Lab Number:
 L2258610

 Report Date:
 11/11/22

| Parameter                                                                                | Native<br>Sample | MS<br>Added   | MS<br>Found | MS<br>%Recovery   | Qual    | MSD<br>Found | MSD<br>%Recovery |      | Recovery<br>Limits | RPD              | Qual    | RPD<br>Limits |
|------------------------------------------------------------------------------------------|------------------|---------------|-------------|-------------------|---------|--------------|------------------|------|--------------------|------------------|---------|---------------|
| Perfluorinated Alkyl Acids by E Sample                                                   | PA 537.1 -       | Mansfield Lab | Associated  | d sample(s): 01-0 | )2 QC E | Batch ID: V  | VG1707126-3      | QC S | ample: L225        | 59539-0 <i>°</i> | l Clier | nt ID: MS     |
| Perfluorobutanesulfonic Acid (PFBS)                                                      | ND               | 1.67          | 1.74J       | 104               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorohexanoic Acid (PFHxA)                                                           | 0.852J           | 1.89          | 2.83        | 150               |         | -            | -                |      | 50-150             | -                |         | 30            |
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-<br>Heptafluoropropoxy]-Propanoic Acid<br>(HFPO-DA) | ND               | 1.89          | 2.23        | 118               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluoroheptanoic Acid (PFHpA)                                                          | ND               | 1.89          | 1.85J       | 98                |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorohexanesulfonic Acid (PFHxS)                                                     | ND               | 1.72          | 1.70J       | 98                |         | -            | -                |      | 50-150             | -                |         | 30            |
| 4,8-Dioxa-3h-Perfluorononanoic Acid<br>(ADONA)                                           | ND               | 1.78          | 1.96        | 110               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorooctanoic Acid (PFOA)                                                            | ND               | 1.89          | 2.00        | 106               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorononanoic Acid (PFNA)                                                            | ND               | 1.89          | 2.04        | 108               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorooctanesulfonic Acid (PFOS)                                                      | ND               | 1.75          | 1.70J       | 97                |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorodecanoic Acid (PFDA)                                                            | ND               | 1.89          | 2.04        | 108               |         | -            | -                |      | 50-150             | -                |         | 30            |
| 9-Chlorohexadecafluoro-3-<br>Oxanone-1-Sulfonic Acid (9Cl-<br>PF3ONS)                    | ND               | 1.76          | 1.28J       | 73                |         | -            | -                |      | 50-150             | -                |         | 30            |
| N-Methyl<br>Perfluorooctanesulfonamidoacetic<br>Acid (NMeFOSAA)                          | ND               | 1.89          | 1.92J       | 102               |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluoroundecanoic Acid (PFUnA)                                                         | ND               | 1.89          | 2.11        | 112               |         | -            | -                |      | 50-150             | -                |         | 30            |
| N-Ethyl<br>Perfluorooctanesulfonamidoacetic<br>Acid (NEtFOSAA)                           | ND               | 1.89          | 1.85J       | 98                |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorododecanoic Acid (PFDoA)                                                         | ND               | 1.89          | 2.04        | 108               |         | -            | -                |      | 50-150             | -                |         | 30            |
| 11-Chloroeicosafluoro-3-<br>Oxaundecane-1-Sulfonic Acid (11Cl-<br>PF3OUdS)               | ND               | 1.78          | 1.36J       | 76                |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorotridecanoic Acid (PFTrDA)                                                       | ND               | 1.89          | 1.74J       | 92                |         | -            | -                |      | 50-150             | -                |         | 30            |
| Perfluorotetradecanoic Acid (PFTA)                                                       | ND               | 1.89          | 1.70J       | 90                |         | -            | -                |      | 50-150             | -                |         | 30            |



\_

## Matrix Spike Analysis

| Project Name:   | TERRAMOR      | Batch Quality Control | Lab Number:  | L2258610 |
|-----------------|---------------|-----------------------|--------------|----------|
| Project Number: | Not Specified |                       | Report Date: | 11/11/22 |

|                                         | Native        | MS            | MS         | MS                |        | MSD         | MSD         |       | Recovery    |                  |         | RPD       |
|-----------------------------------------|---------------|---------------|------------|-------------------|--------|-------------|-------------|-------|-------------|------------------|---------|-----------|
| Parameter                               | Sample        | Added         | Found      | %Recovery         | Qual   | Found       | %Recovery   | Qual  | Limits      | RPD              | Qual    | Limits    |
| Perfluorinated Alkyl Acids by<br>Sample | EPA 537.1 - N | lansfield Lab | Associated | d sample(s): 01-0 | 2 QC E | Batch ID: W | VG1707126-3 | QC Sa | ample: L225 | 59539-0 <i>°</i> | l Clier | nt ID: MS |

|                                                                       | MS         | ;         | MS         | SD        | Acceptance |  |
|-----------------------------------------------------------------------|------------|-----------|------------|-----------|------------|--|
| Surrogate                                                             | % Recovery | Qualifier | % Recovery | Qualifier | Criteria   |  |
|                                                                       | 102        |           |            |           | 70-130     |  |
| N-Deuterioethylperfluoro-1-octanesulfonamidoacetic Acid (d5-NEtFOSAA) | 93         |           |            |           | 70-130     |  |
| Perfluoro-n-[1,2-13C2]decanoic Acid (13C-PFDA)                        | 99         |           |            |           | 70-130     |  |
| Perfluoro-n-[1,2-13C2]hexanoic Acid (13C-PFHxA)                       | 105        |           |            |           | 70-130     |  |



Project Name: TERRAMOR

Project Number: Not Specified Lab Number: L2258610 Report Date:

11/11/22

| rameter                                                                               | Native Sample             | Duplicate Sample       | Units         | RPD   | RPD<br>Qual Limits           |
|---------------------------------------------------------------------------------------|---------------------------|------------------------|---------------|-------|------------------------------|
| rfluorinated Alkyl Acids by EPA 537.1 - Mansfi<br>JP Sample                           | eld Lab Associated sample | (s): 01-02 QC Batch ID | : WG1707126-4 | QC Sa | mple: L2259541-01 Client ID: |
| Perfluorobutanesulfonic Acid (PFBS)                                                   | 6.22                      | 5.75                   | ng/l          | 8     | 30                           |
| Perfluorohexanoic Acid (PFHxA)                                                        | 40.2                      | 36.8                   | ng/l          | 9     | 30                           |
| 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-<br>Heptafluoropropoxy]-Propanoic Acid (HFPO-DA) | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluoroheptanoic Acid (PFHpA)                                                       | 10.9                      | 10.4                   | ng/l          | 5     | 30                           |
| Perfluorohexanesulfonic Acid (PFHxS)                                                  | 38.6                      | 40.5                   | ng/l          | 5     | 30                           |
| 4,8-Dioxa-3h-Perfluorononanoic Acid (ADONA)                                           | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluorooctanoic Acid (PFOA)                                                         | 7.54                      | 7.76                   | ng/l          | 3     | 30                           |
| Perfluorononanoic Acid (PFNA)                                                         | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluorooctanesulfonic Acid (PFOS)                                                   | 5.06                      | 4.64                   | ng/l          | 9     | 30                           |
| Perfluorodecanoic Acid (PFDA)                                                         | ND                        | ND                     | ng/l          | NC    | 30                           |
| 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic<br>Acid (9CI-PF3ONS)                      | ND                        | ND                     | ng/l          | NC    | 30                           |
| N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)                             | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluoroundecanoic Acid (PFUnA)                                                      | ND                        | ND                     | ng/l          | NC    | 30                           |
| N-Ethyl Perfluorooctanesulfonamidoacetic Acid<br>(NEtFOSAA)                           | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluorododecanoic Acid (PFDoA)                                                      | ND                        | ND                     | ng/l          | NC    | 30                           |
| 11-Chloroeicosafluoro-3-Oxaundecane-1-<br>Sulfonic Acid (11CI-PF3OUdS)                | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluorotridecanoic Acid (PFTrDA)                                                    | ND                        | ND                     | ng/l          | NC    | 30                           |
| Perfluorotetradecanoic Acid (PFTA)                                                    | ND                        | ND                     | ng/l          | NC    | 30                           |



| Project Name:<br>Project Number:        | TERRAMOR<br>Not Specified | Li                                   | Lab Duplicate Analysis<br>Batch Quality Control |               |              |         | Lab Number:<br>Report Date: |               | L2258610<br>11/11/22 |
|-----------------------------------------|---------------------------|--------------------------------------|-------------------------------------------------|---------------|--------------|---------|-----------------------------|---------------|----------------------|
| Parameter                               |                           | Native Sample                        | Duplicate                                       | e Sample      | Units        | RPD     | Qual                        | RPD<br>Limits |                      |
| Perfluorinated Alkyl Acid<br>DUP Sample | s by EPA 537.1            | - Mansfield Lab Associated sample(s) | : 01-02                                         | QC Batch ID:  | WG1707126-4  | QC Sa   | ample: L225                 | 9541-01       | Client ID:           |
| Surrogate                               |                           | 9                                    | %Recover                                        | y Qualifier % | %Recovery Qu | alifier | Acceptance<br>Criteria      | 9             |                      |

| 112 | 99         | 70-130                                   |                                                                        |
|-----|------------|------------------------------------------|------------------------------------------------------------------------|
| 106 | 97         | 70-130                                   |                                                                        |
| 103 | 101        | 70-130                                   |                                                                        |
| 103 | 84         | 70-130                                   |                                                                        |
|     | 106<br>103 | 106         97           103         101 | 106         97         70-130           103         101         70-130 |



## SEMIVOLATILES

High Resolution Mass Spectrometry



|                    |                |                | Serial_No         | :11112220:01   |
|--------------------|----------------|----------------|-------------------|----------------|
| Project Name:      | TERRAMOR       |                | Lab Number:       | L2258610       |
| Project Number:    | Not Specified  |                | Report Date:      | 11/11/22       |
|                    |                | SAMPLE RESULTS |                   |                |
| Lab ID:            | L2258610-01    |                | Date Collected:   | 10/20/22 10:00 |
| Client ID:         | LOT-17-221020  |                | Date Received:    | 10/20/22       |
| Sample Location:   | SAUGERTIES, NY |                | Field Prep:       | Not Specified  |
| Sample Depth:      |                |                |                   |                |
| Matrix:            | Dw             |                | Extraction Method | l: EPA 1613B   |
| Analytical Method: | 132,1613B      |                | Extraction Date:  | 10/27/22 14:35 |
| Analytical Date:   | 11/01/22 20:28 |                | Cleanup Method:   | EPA 1613B      |
| Analyst:           | CP             |                | Cleanup Date:     | 10/31/22       |
|                    |                |                |                   |                |

| Parameter                       | Result             | Qualifier | EMPC | Units | RL    | MDL   | Dilution Factor |
|---------------------------------|--------------------|-----------|------|-------|-------|-------|-----------------|
| Dioxins & Furans by Isotope Dil | ution HRMS - Mansf | eld Lab   |      |       |       |       |                 |
| 2,3,7,8-TCDD                    | ND                 |           |      | pg/l  | 12.6  | 2.63  | 1               |
| 1,2,3,7,8-PeCDD                 | ND                 |           |      | pg/l  | 63.3  | 13.1  | 1               |
| 1,2,3,4,7,8-HxCDD               | ND                 |           |      | pg/l  | 63.3  | 15.9  | 1               |
| 1,2,3,6,7,8-HxCDD               | ND                 |           |      | pg/l  | 63.3  | 19.7  | 1               |
| 1,2,3,7,8,9-HxCDD               | ND                 |           |      | pg/l  | 63.3  | 18.5  | 1               |
| 1,2,3,4,6,7,8-HpCDD             | ND                 |           |      | pg/l  | 63.3  | 18.4  | 1               |
| OCDD                            | ND                 |           |      | pg/l  | 126   | 32.2  | 1               |
| 2,3,7,8-TCDF                    | ND                 |           |      | pg/l  | 12.6  | 3.87  | 1               |
| 1,2,3,7,8-PeCDF                 | ND                 |           |      | pg/l  | 63.3  | 8.86  | 1               |
| 2,3,4,7,8-PeCDF                 | ND                 |           |      | pg/l  | 63.3  | 13.2  | 1               |
| 1,2,3,4,7,8-HxCDF               | ND                 |           |      | pg/l  | 63.3  | 14.1  | 1               |
| 1,2,3,6,7,8-HxCDF               | ND                 |           |      | pg/l  | 63.3  | 20.2  | 1               |
| 1,2,3,7,8,9-HxCDF               | ND                 |           |      | pg/l  | 63.3  | 20.8  | 1               |
| 2,3,4,6,7,8-HxCDF               | ND                 |           |      | pg/l  | 63.3  | 20.0  | 1               |
| 1,2,3,4,6,7,8-HpCDF             | ND                 |           |      | pg/l  | 63.3  | 17.0  | 1               |
| 1,2,3,4,7,8,9-HpCDF             | ND                 |           |      | pg/l  | 63.3  | 16.1  | 1               |
| OCDF                            | ND                 |           |      | pg/l  | 126   | 41.0  | 1               |
| Total TCDD                      | ND                 |           |      | pg/l  | 12.6  | 2.63  | 1               |
| Total PeCDD                     | ND                 |           |      | pg/l  | 63.3  | 13.1  | 1               |
| Total HxCDD                     | ND                 |           |      | pg/l  | 63.3  | 15.9  | 1               |
| Total HpCDD                     | ND                 |           |      | pg/l  | 63.3  | 18.4  | 1               |
| Total TCDF                      | ND                 |           |      | pg/l  | 12.6  | 3.87  | 1               |
| Total PeCDF                     | ND                 |           |      | pg/l  | 63.3  | 8.86  | 1               |
| Total HxCDF                     | ND                 |           |      | pg/l  | 63.3  | 14.1  | 1               |
| Total HpCDF                     | ND                 |           |      | pg/l  | 63.3  | 17.0  | 1               |
| Total PCDD                      | ND                 |           |      | pg/l  | 12.6  | 2.63  | 1               |
| Total PCDF                      | ND                 |           |      | pg/l  | 12.6  | 3.87  | 1               |
| Toxic Equivalency (TEQ)         | ND                 |           |      | pg/l  | 0.038 | 0.038 | 1               |



| Parameter        |                | Result | Qualifier | EMPC  | Units | RL           | MDL     | Dilution Factor |
|------------------|----------------|--------|-----------|-------|-------|--------------|---------|-----------------|
| Sample Depth:    |                |        |           |       |       |              |         |                 |
| Sample Location: | SAUGERTIES, NY |        |           |       | Fi    | eld Prep:    | I       | Not Specified   |
| Client ID:       | LOT-17-221020  |        |           |       | Da    | ate Receive  | ed:     | 10/20/22        |
| Lab ID:          | L2258610-01    |        |           |       | Da    | ate Collecte | ed:     | 10/20/22 10:00  |
|                  |                | SA     | MPLE RE   | SULTS |       |              |         |                 |
| Project Number:  | Not Specified  |        |           |       | F     | Report Date  | e:      | 11/11/22        |
| Project Name:    | TERRAMOR       |        |           |       | L     | ab Numbe     | er:     | L2258610        |
|                  |                |        |           |       |       | Seria        | al_No:1 | 1112220:01      |

Dioxins & Furans by Isotope Dilution HRMS - Mansfield Lab

| Surrogate/Cleanup Standard | % Recovery | Acceptance<br>Qualifier Criteria |
|----------------------------|------------|----------------------------------|
| 13C12-2,3,7,8-TCDF         | 65         | 24-169                           |
| 13C12-2,3,7,8-TCDD         | 64         | 25-164                           |
| 13C12-1,2,3,7,8-PeCDF      | 71         | 24-185                           |
| 13C12-2,3,4,7,8-PeCDF      | 64         | 21-178                           |
| 13C12-1,2,3,7,8-PeCDD      | 84         | 25-181                           |
| 13C12-1,2,3,4,7,8-HxCDF    | 77         | 26-152                           |
| 13C12-1,2,3,6,7,8-HxCDF    | 76         | 26-123                           |
| 13C12-2,3,4,6,7,8-HxCDF    | 70         | 28-136                           |
| 13C12-1,2,3,7,8,9-HxCDF    | 77         | 29-147                           |
| 13C12-1,2,3,4,7,8-HxCDD    | 64         | 32-141                           |
| 13C12-1,2,3,6,7,8-HxCDD    | 66         | 28-130                           |
| 13C12-1,2,3,4,6,7,8-HpCDF  | 75         | 28-143                           |
| 13C12-1,2,3,4,7,8,9-HpCDF  | 83         | 26-138                           |
| 13C12-1,2,3,4,6,7,8-HpCDD  | 81         | 23-140                           |
| 13C12-OCDD                 | 71         | 17-157                           |
| 37CL4-2,3,7,8-TCDD         | 112        | 35-197                           |



L2258610

11/11/22

Lab Number:

 Project Name:
 TERRAMOR

 Project Number:
 Not Specified

Report Date: nk Analysis

Method Blank Analysis Batch Quality Control

| Analytical Method: | 132,1613B      |
|--------------------|----------------|
| Analytical Date:   | 11/01/22 14:02 |
| Analyst:           | CP             |

Extraction Method:EPA 1613BExtraction Date:10/27/22 14:35Cleanup Method:EPA 1613BCleanup Date:10/31/22

| Parameter                     | Result            | Qualifier   | EMPC       | Units    | RL     | MDL         |
|-------------------------------|-------------------|-------------|------------|----------|--------|-------------|
| Dioxins & Furans by Isotope D | ilution HRMS - Ma | nsfield Lab | for sample | e(s): 01 | Batch: | WG1704981-1 |
| 2,3,7,8-TCDD                  | ND                |             |            | pg/l     | 10.0   | 2.08        |
| 1,2,3,7,8-PeCDD               | ND                |             |            | pg/l     | 50.0   | ) 10.4      |
| 1,2,3,4,7,8-HxCDD             | ND                |             |            | pg/l     | 50.0   | ) 12.5      |
| 1,2,3,6,7,8-HxCDD             | ND                |             |            | pg/l     | 50.0   | ) 15.6      |
| 1,2,3,7,8,9-HxCDD             | ND                |             |            | pg/l     | 50.0   | ) 14.6      |
| 1,2,3,4,6,7,8-HpCDD           | ND                |             |            | pg/l     | 50.0   | ) 14.5      |
| OCDD                          | ND                |             |            | pg/l     | 100    | 25.4        |
| 2,3,7,8-TCDF                  | ND                |             |            | pg/l     | 10.0   | 3.06        |
| 1,2,3,7,8-PeCDF               | ND                |             |            | pg/l     | 50.0   | 7.00        |
| 2,3,4,7,8-PeCDF               | ND                |             |            | pg/l     | 50.0   | ) 10.5      |
| 1,2,3,4,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0   | ) 11.1      |
| 1,2,3,6,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0   | ) 15.9      |
| 1,2,3,7,8,9-HxCDF             | ND                |             |            | pg/l     | 50.0   | ) 16.5      |
| 2,3,4,6,7,8-HxCDF             | ND                |             |            | pg/l     | 50.0   | ) 15.8      |
| 1,2,3,4,6,7,8-HpCDF           | ND                |             |            | pg/l     | 50.0   | ) 13.4      |
| 1,2,3,4,7,8,9-HpCDF           | ND                |             |            | pg/l     | 50.0   | ) 12.7      |
| OCDF                          | ND                |             |            | pg/l     | 100    | 32.4        |
| Total TCDD                    | ND                |             |            | pg/l     | 10.0   | 2.08        |
| Total PeCDD                   | ND                |             |            | pg/l     | 50.0   | ) 10.4      |
| Total HxCDD                   | ND                |             |            | pg/l     | 50.0   | ) 12.5      |
| Total HpCDD                   | ND                |             |            | pg/l     | 50.0   | ) 14.5      |
| Total TCDF                    | ND                |             |            | pg/l     | 10.0   | 3.06        |
| Total PeCDF                   | ND                |             |            | pg/l     | 50.0   | 7.00        |
| Total HxCDF                   | ND                |             |            | pg/l     | 50.0   | ) 11.1      |
| Total HpCDF                   | ND                |             |            | pg/l     | 50.0   | ) 13.4      |
| Total PCDD                    | ND                |             |            | pg/l     | 10.0   | 2.08        |
| Total PCDF                    | ND                |             |            | pg/l     | 10.0   | 3.06        |
| Toxic Equivalency (TEQ)       | ND                |             |            | pg/l     | 0.03   | 0 0.030     |



Project Name:TERRAMORLab NotProject Number:Not SpecifiedReport

 Lab Number:
 L2258610

 Report Date:
 11/11/22

#### Method Blank Analysis Batch Quality Control

| Analytical Method: | 132,1613B      |
|--------------------|----------------|
| Analytical Date:   | 11/01/22 14:02 |
| Analyst:           | CP             |

Extraction Method:EPA 1613BExtraction Date:10/27/22 14:35Cleanup Method:EPA 1613BCleanup Date:10/31/22

| Parameter                            | Result    | Qualifier    | EMPC       | Units    | RL         | MDL                       |  |
|--------------------------------------|-----------|--------------|------------|----------|------------|---------------------------|--|
| Dioxins & Furans by Isotope Dilution | HRMS - Ma | insfield Lab | for sample | e(s): 01 | Batch: W   | G1704981-1                |  |
| Surrogate/Cleanup Standa             | rd        |              |            | %Recove  | ry Qualifi | Acceptance<br>er Criteria |  |
| 13C12-2,3,7,8-TCDF                   |           |              |            | 71       |            | 24-169                    |  |
| 13C12-2,3,7,8-TCDD                   |           |              |            | 62       |            | 25-164                    |  |
| 13C12-1,2,3,7,8-PeCDF                |           |              |            | 66       |            | 24-185                    |  |
| 13C12-2,3,4,7,8-PeCDF                |           |              |            | 61       |            | 21-178                    |  |
| 13C12-1,2,3,7,8-PeCDD                |           |              |            | 71       |            | 25-181                    |  |
| 13C12-1,2,3,4,7,8-HxCDF              |           |              |            | 81       |            | 26-152                    |  |
| 13C12-1,2,3,6,7,8-HxCDF              |           |              |            | 79       |            | 26-123                    |  |
| 13C12-2,3,4,6,7,8-HxCDF              |           |              |            | 73       |            | 28-136                    |  |
| 13C12-1,2,3,7,8,9-HxCDF              |           |              |            | 76       |            | 29-147                    |  |
| 13C12-1,2,3,4,7,8-HxCDD              |           |              |            | 63       |            | 32-141                    |  |
| 13C12-1,2,3,6,7,8-HxCDD              |           |              |            | 67       |            | 28-130                    |  |
| 13C12-1,2,3,4,6,7,8-HpCDF            |           |              |            | 79       |            | 28-143                    |  |
| 13C12-1,2,3,4,7,8,9-HpCDF            |           |              |            | 78       |            | 26-138                    |  |
| 13C12-1,2,3,4,6,7,8-HpCDD            |           |              |            | 76       |            | 23-140                    |  |
| 13C12-OCDD                           |           |              |            | 62       |            | 17-157                    |  |
| 37CL4-2,3,7,8-TCDD                   |           |              |            | 111      |            | 35-197                    |  |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** TERRAMOR Project Number: Not Specified Lab Number: L2258610 Report Date: 11/11/22

| Parameter                                 | LCS<br>%Recovery | Qual          | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD        | RPD<br>Qual Limits |  |
|-------------------------------------------|------------------|---------------|-------------------|-----------|---------------------|------------|--------------------|--|
| Dioxins & Furans by Isotope Dilution HRMS | Mansfield Lab    | Associated sa | mple(s): 01       | Batch: WC | G1704981-2 W        | G1704981-3 |                    |  |
| 2,3,7,8-TCDD                              | 103              |               | 108               |           | 67-158              | 5          | 25                 |  |
| 1,2,3,7,8-PeCDD                           | 95               |               | 95                |           | 70-142              | 0          | 25                 |  |
| 1,2,3,4,7,8-HxCDD                         | 113              |               | 119               |           | 70-164              | 5          | 25                 |  |
| 1,2,3,6,7,8-HxCDD                         | 105              |               | 105               |           | 76-134              | 0          | 25                 |  |
| 1,2,3,7,8,9-HxCDD                         | 106              |               | 106               |           | 64-162              | 0          | 25                 |  |
| 1,2,3,4,6,7,8-HpCDD                       | 96               |               | 96                |           | 70-140              | 0          | 25                 |  |
| OCDD                                      | 110              |               | 107               |           | 78-144              | 3          | 25                 |  |
| 2,3,7,8-TCDF                              | 106              |               | 112               |           | 75-158              | 6          | 25                 |  |
| 1,2,3,7,8-PeCDF                           | 99               |               | 102               |           | 80-134              | 3          | 25                 |  |
| 2,3,4,7,8-PeCDF                           | 94               |               | 98                |           | 68-160              | 4          | 25                 |  |
| 1,2,3,4,7,8-HxCDF                         | 110              |               | 115               |           | 72-134              | 4          | 25                 |  |
| 1,2,3,6,7,8-HxCDF                         | 108              |               | 108               |           | 84-130              | 0          | 25                 |  |
| 1,2,3,7,8,9-HxCDF                         | 116              |               | 113               |           | 78-130              | 3          | 25                 |  |
| 2,3,4,6,7,8-HxCDF                         | 107              |               | 111               |           | 70-156              | 4          | 25                 |  |
| 1,2,3,4,6,7,8-HpCDF                       | 112              |               | 113               |           | 82-122              | 1          | 25                 |  |
| 1,2,3,4,7,8,9-HpCDF                       | 116              |               | 110               |           | 78-138              | 5          | 25                 |  |
| OCDF                                      | 126              |               | 120               |           | 63-170              | 5          | 25                 |  |



### Lab Control Sample Analysis Batch Quality Control

Project Name:TERRAMORProject Number:Not Specified

Lab Number: L2258610

**Report Date:** 11/11/22

| Parameter                                 | LCS<br>%Recovery | Qual         | LCSD<br>%Recovery | Qual      | %Recovery<br>Limits | RPD     | Qual | RPD<br>Limits |  |
|-------------------------------------------|------------------|--------------|-------------------|-----------|---------------------|---------|------|---------------|--|
| Dioxins & Furans by Isotope Dilution HRMS | - Mansfield Lab  | Associated s | ample(s): 01 B    | atch: WG1 | 704981-2 WG170      | 04981-3 |      |               |  |

| Surrogate/Cleanup Standard | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|----------------------------|-----------------------|------------------------|------------------------|
| 13C12-2,3,7,8-TCDF         | 65                    | 55                     | 24-169                 |
| 13C12-2,3,7,8-TCDD         | 59                    | 54                     | 25-164                 |
| 13C12-1,2,3,7,8-PeCDF      | 65                    | 58                     | 24-185                 |
| 13C12-2,3,4,7,8-PeCDF      | 64                    | 55                     | 21-178                 |
| 13C12-1,2,3,7,8-PeCDD      | 73                    | 66                     | 25-181                 |
| 13C12-1,2,3,4,7,8-HxCDF    | 74                    | 63                     | 26-152                 |
| 13C12-1,2,3,6,7,8-HxCDF    | 73                    | 65                     | 26-123                 |
| 13C12-2,3,4,6,7,8-HxCDF    | 71                    | 58                     | 28-136                 |
| 13C12-1,2,3,7,8,9-HxCDF    | 75                    | 69                     | 29-147                 |
| 13C12-1,2,3,4,7,8-HxCDD    | 61                    | 52                     | 32-141                 |
| 13C12-1,2,3,6,7,8-HxCDD    | 66                    | 59                     | 28-130                 |
| 13C12-1,2,3,4,6,7,8-HpCDF  | 73                    | 66                     | 28-143                 |
| 13C12-1,2,3,4,7,8,9-HpCDF  | 75                    | 72                     | 26-138                 |
| 13C12-1,2,3,4,6,7,8-HpCDD  | 73                    | 67                     | 23-140                 |
| 13C12-OCDD                 | 62                    | 60                     | 17-157                 |
| 37CL4-2,3,7,8-TCDD         | 108                   | 109                    | 35-197                 |



## METALS



#### Serial\_No:11112220:01

# Project Name: TERRAMOR Project Number: Not Specified

## Lab Number: L2258610 Report Date: 11/11/22 SAMPLE RESULTS Date Collected: 10/20/22 10:00 Date Received: 10/20/22 Field Prep: Not Specified

Lab ID:L2258610-01Client ID:LOT-17-221020Sample Location:SAUGERTIES, NY

Dw

#### Sample Depth:

Matrix:

| Result     | Qualifier                                                                                                                          | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RL                                                                                                                                                                                                                                                                                                               | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date<br>Prepared                                                                                  | Date<br>Analyzed                                                                                                   | Prep<br>Method                                                                                                                      | Analytical<br>Method                                                                                                                               | Analyst                                                                                                                                                           |
|------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ofield Lob |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |                                                                                                                    |                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                   |
|            |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |                                                                                                                    |                                                                                                                                     |                                                                                                                                                    |                                                                                                                                                                   |
| 0.0017     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 0.0809     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| ND         |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0002                                                                                                                                                                                                                                                                                                           | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 1.48       |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.100                                                                                                                                                                                                                                                                                                            | 0.0350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 10/31/22 17:34                                                                                                     | EPA 3005A                                                                                                                           | 19,200.7                                                                                                                                           | NB                                                                                                                                                                |
| 0.0050     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 0.0141     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                           | 0.0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 5.87       |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0500                                                                                                                                                                                                                                                                                                           | 0.0090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 10/31/22 17:34                                                                                                     | EPA 3005A                                                                                                                           | 19,200.7                                                                                                                                           | NB                                                                                                                                                                |
| 0.0022     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0010                                                                                                                                                                                                                                                                                                           | 0.0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 0.0907     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0100                                                                                                                                                                                                                                                                                                           | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 10/31/22 17:34                                                                                                     | EPA 3005A                                                                                                                           | 19,200.7                                                                                                                                           | NB                                                                                                                                                                |
| ND         |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0002                                                                                                                                                                                                                                                                                                           | 0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 02:20                                                                                    | 10/25/22 10:46                                                                                                     | EPA 245.1                                                                                                                           | 3,245.1                                                                                                                                            | ZK                                                                                                                                                                |
| ND         |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0050                                                                                                                                                                                                                                                                                                           | 0.0017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| ND         |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0004                                                                                                                                                                                                                                                                                                           | 0.0002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
| 91.5       |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.00                                                                                                                                                                                                                                                                                                             | 0.120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 10/31/22 17:34                                                                                                     | EPA 3005A                                                                                                                           | 19,200.7                                                                                                                                           | NB                                                                                                                                                                |
| 0.0467     |                                                                                                                                    | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0100                                                                                                                                                                                                                                                                                                           | 0.0034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/25/22 00:26                                                                                    | 11/07/22 14:42                                                                                                     | EPA 3005A                                                                                                                           | 3,200.8                                                                                                                                            | EGW                                                                                                                                                               |
|            | sfield Lab<br>0.0017<br>0.0809<br>ND<br>1.48<br>0.0050<br>0.0141<br>5.87<br>0.0022<br>0.0907<br>ND<br>ND<br>ND<br>ND<br>ND<br>91.5 | sfield Lab<br>0.0017<br>0.0809<br>ND<br>1.48<br>0.0050<br>0.0141<br>5.87<br>0.0022<br>0.0907<br>ND<br>ND<br>ND<br>ND<br>ND<br>1.48<br>0.0050<br>0.0141<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.0022<br>0.0907<br>0.002<br>0.0050<br>0.0141<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0.0050<br>0 | sfield Lab         0.0017       mg/l         0.0809       mg/l         ND       mg/l         1.48       mg/l         0.0050       mg/l         0.0141       mg/l         5.87       mg/l         0.0022       mg/l         0.0907       mg/l         ND       mg/l         ND       mg/l         91.5       mg/l | sfield Lab         mg/l         0.0010           0.0017         mg/l         0.0010           0.0809         mg/l         0.0010           ND         mg/l         0.0002           1.48         mg/l         0.100           0.0050         mg/l         0.0010           0.0141         mg/l         0.0010           5.87         mg/l         0.0500           0.0022         mg/l         0.0010           0.0907         mg/l         0.0002           ND         mg/l         0.0004           91.5         mg/l         2.00 | sfield Lab         mg/l         0.0010         0.0002           0.0809         mg/l         0.0010         0.0002           ND         mg/l         0.0002         0.0001           1.48         mg/l         0.100         0.0350           0.0050         mg/l         0.0010         0.0002           0.0141         mg/l         0.0010         0.0002           0.0022         mg/l         0.0010         0.0002           0.0022         mg/l         0.0010         0.0004           5.87         mg/l         0.0500         0.0090           0.0022         mg/l         0.0010         0.0003           0.0907         mg/l         0.0002         0.0001           ND         mg/l         0.0002         0.0017           ND         mg/l         0.0004         0.0002           91.5         mg/l         2.00         0.120 | Result         Qualifier         Units         RL         MDL         Factor           sfield Lab | Result         Qualifier         Units         RL         MDL         Factor         Prepared           sfield Lab | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed           sfield Lab | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method           sfield Lab | Result         Qualifier         Units         RL         MDL         Factor         Prepared         Analyzed         Method         Method           sfield Lab |



 Lab Number:
 L2258610

 Report Date:
 11/11/22

Project Name:TERRAMORProject Number:Not Specified

## Method Blank Analysis Batch Quality Control

| Parameter              | Result Q      | ualifier | Units   | RL      | MDL      | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|------------------------|---------------|----------|---------|---------|----------|--------------------|------------------|------------------|----------------------|---------|
| Total Metals - Mansfie | ld Lab for sa | mple(s): | 01 Batc | h: WG17 | ′02485-′ | 1                  |                  |                  |                      |         |
| Arsenic, Total         | 0.0004        | J        | mg/l    | 0.0010  | 0.0002   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Barium, Total          | ND            |          | mg/l    | 0.0010  | 0.0002   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Cadmium, Total         | ND            |          | mg/l    | 0.0002  | 0.0001   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Chromium, Total        | ND            |          | mg/l    | 0.0010  | 0.0002   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Copper, Total          | ND            |          | mg/l    | 0.0010  | 0.0004   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Lead, Total            | ND            |          | mg/l    | 0.0010  | 0.0003   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Selenium, Total        | ND            |          | mg/l    | 0.0050  | 0.0017   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Silver, Total          | ND            |          | mg/l    | 0.0004  | 0.0002   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |
| Zinc, Total            | ND            |          | mg/l    | 0.0100  | 0.0034   | 1                  | 10/25/22 00:26   | 10/25/22 18:41   | 3,200.8              | WKP     |

#### **Prep Information**

Digestion Method: EPA 3005A

| Parameter                                                         | Result Qualifier | Units | RL     | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |  |
|-------------------------------------------------------------------|------------------|-------|--------|--------|--------------------|------------------|------------------|----------------------|---------|--|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1702490-1 |                  |       |        |        |                    |                  |                  |                      |         |  |
| Calcium, Total                                                    | ND               | mg/l  | 0.100  | 0.0350 | 1                  | 10/25/22 00:26   | 10/25/22 08:01   | 19,200.7             | NB      |  |
| Iron, Total                                                       | ND               | mg/l  | 0.0500 | 0.0090 | 1                  | 10/25/22 00:26   | 10/25/22 08:01   | 19,200.7             | NB      |  |
| Manganese, Total                                                  | ND               | mg/l  | 0.0100 | 0.0016 | 1                  | 10/25/22 00:26   | 10/25/22 08:01   | 19,200.7             | NB      |  |
| Sodium, Total                                                     | ND               | mg/l  | 2.00   | 0.120  | 1                  | 10/25/22 00:26   | 10/25/22 08:01   | 19,200.7             | NB      |  |

#### **Prep Information**

Digestion Method: EPA 3005A

| Parameter                                                         | Result Qualifier | Units | RL     | MDL    | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |  |
|-------------------------------------------------------------------|------------------|-------|--------|--------|--------------------|------------------|------------------|----------------------|---------|--|
| Total Metals - Mansfield Lab for sample(s): 01 Batch: WG1702492-1 |                  |       |        |        |                    |                  |                  |                      |         |  |
| Mercury, Total                                                    | ND               | mg/l  | 0.0002 | 0.0001 | 1                  | 10/25/22 02:20   | 10/25/22 10:29   | 3,245.1              | ZK      |  |



Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

#### Method Blank Analysis Batch Quality Control

#### **Prep Information**

Digestion Method: EPA 245.1



## Lab Control Sample Analysis Batch Quality Control

Lab Number: L2258610 Report Date: 11/11/22

| arameter                                    | LCS<br>%Recovery  | LCSD<br>Qual %Recovery |    | ecovery<br>imits RPD | Qual | RPD Limits |
|---------------------------------------------|-------------------|------------------------|----|----------------------|------|------------|
| otal Metals - Mansfield Lab Associated samp |                   | WG1702485-2            |    |                      | Quai |            |
| Arsenic, Total                              | 104               | -                      | 85 | 5-115 -              |      |            |
| Barium, Total                               | 100               | -                      | 85 | 5-115 -              |      |            |
| Cadmium, Total                              | 101               | -                      | 85 | 5-115 -              |      |            |
| Chromium, Total                             | 97                | -                      | 85 | 5-115 -              |      |            |
| Copper, Total                               | 97                | -                      | 85 | 5-115 -              |      |            |
| Lead, Total                                 | 99                | -                      | 85 | 5-115 -              |      |            |
| Selenium, Total                             | 103               | -                      | 85 | 5-115 -              |      |            |
| Silver, Total                               | 92                | -                      | 85 | 5-115 -              |      |            |
| Zinc, Total                                 | 96                | -                      | 85 | 5-115 -              |      |            |
| otal Metals - Mansfield Lab Associated samp | e(s): 01 Batch: V | WG1702490-2            |    |                      |      |            |
| Calcium, Total                              | 93                | -                      | 85 | 5-115 -              |      |            |
| Iron, Total                                 | 92                | -                      | 85 | 5-115 -              |      |            |
| Manganese, Total                            | 91                | -                      | 85 | 5-115 -              |      |            |
| Sodium, Total                               | 96                | -                      | 85 | 5-115 -              |      |            |
| otal Metals - Mansfield Lab Associated samp | e(s): 01 Batch: V | NG1702492-2            |    |                      |      |            |
| Mercury, Total                              | 96                | -                      | 85 | 5-115 -              |      |            |



## Matrix Spike Analysis Batch Quality Control

Lab Number: L2258610 **Report Date:** 11/11/22

| Parameter                  | Native<br>Sample  | MS<br>Added | MS<br>Found | MS<br>%Recovery Qu | MSD<br>Jal Found | MSD<br>%Recovery | Recovery<br>Qual Limits | RPD   | Qual | RPD<br>Limits |
|----------------------------|-------------------|-------------|-------------|--------------------|------------------|------------------|-------------------------|-------|------|---------------|
| Total Metals - Mansfield L | ab Associated san | nple(s): 01 | QC Batch II | D: WG1702485-3     | QC Sample        | : L2258620-01    | Client ID: MS Sa        | ample |      |               |
| Arsenic, Total             | 0.0117            | 0.12        | 0.1343      | 102                | -                | -                | 70-130                  | -     |      | 20            |
| Barium, Total              | ND                | 2           | 1.972       | 99                 | -                | -                | 70-130                  | -     |      | 20            |
| Cadmium, Total             | ND                | 0.053       | 0.0527      | 99                 | -                | -                | 70-130                  | -     |      | 20            |
| Chromium, Total            | ND                | 0.2         | 0.1944      | 97                 | -                | -                | 70-130                  | -     |      | 20            |
| Copper, Total              | 0.0170            | 0.25        | 0.2618      | 98                 | -                | -                | 70-130                  | -     |      | 20            |
| Lead, Total                | 0.0014            | 0.53        | 0.5134      | 97                 | -                | -                | 70-130                  | -     |      | 20            |
| Selenium, Total            | ND                | 0.12        | 0.1139      | 95                 | -                | -                | 70-130                  | -     |      | 20            |
| Silver, Total              | ND                | 0.05        | 0.0459      | 92                 | -                | -                | 70-130                  | -     |      | 20            |
| Zinc, Total                | 0.0127            | 0.5         | 0.4913      | 96                 | -                | -                | 70-130                  | -     |      | 20            |
| Total Metals - Mansfield L | ab Associated san | nple(s): 01 | QC Batch II | D: WG1702485-5     | QC Sample        | : L2258620-02    | Client ID: MS Sa        | ample |      |               |
| Arsenic, Total             | 0.0023            | 0.12        | 0.1249      | 102                | -                | -                | 70-130                  | -     |      | 20            |
| Barium, Total              | ND                | 2           | 1.949       | 97                 | -                | -                | 70-130                  | -     |      | 20            |
| Cadmium, Total             | ND                | 0.053       | 0.0477      | 90                 | -                | -                | 70-130                  | -     |      | 20            |
| Chromium, Total            | 0.0006J           | 0.2         | 0.1749      | 87                 | -                | -                | 70-130                  | -     |      | 20            |
| Copper, Total              | 0.0017            | 0.25        | 0.2215      | 88                 | -                | -                | 70-130                  | -     |      | 20            |
| Lead, Total                | 0.0018            | 0.53        | 0.4968      | 93                 | -                | -                | 70-130                  | -     |      | 20            |
| Selenium, Total            | ND                | 0.12        | 0.1133      | 94                 | -                | -                | 70-130                  | -     |      | 20            |
| Silver, Total              | ND                | 0.05        | 0.0495      | 99                 | -                | -                | 70-130                  | -     |      | 20            |
| Zinc, Total                | ND                | 0.5         | 0.4282      | 86                 | -                | -                | 70-130                  | -     |      | 20            |



**Project Name:** 

**Project Number:** 

TERRAMOR

Not Specified

#### Matrix Spike Analysis Batch Quality Control

Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

| Parameter                    | Native<br>Sample | MS<br>Added | MS<br>Found | MS<br>%Recovery | MSD<br>Found | MSD<br>%Recovery | Recovery<br>Limits | RPD   | RPD<br>Limits |
|------------------------------|------------------|-------------|-------------|-----------------|--------------|------------------|--------------------|-------|---------------|
| Total Metals - Mansfield Lal | b Associated sar | mple(s): 01 | QC Batch    | ID: WG1702490-3 | QC Sample    | e: L2258620-01   | Client ID: MS Sa   | ample |               |
| Calcium, Total               | 0.050J           | 10          | 9.35        | 94              | -            | -                | 75-125             | -     | 20            |
| Iron, Total                  | 0.014J           | 1           | 0.946       | 95              | -            | -                | 75-125             | -     | 20            |
| Manganese, Total             | ND               | 0.5         | 0.458       | 92              | -            | -                | 75-125             | -     | 20            |
| Sodium, Total                | 74.6             | 10          | 85.3        | 107             | -            | -                | 75-125             | -     | 20            |
| Fotal Metals - Mansfield Lal | b Associated sar | mple(s): 01 | QC Batch    | ID: WG1702490-7 | QC Sample    | e: L2258620-02   | Client ID: MS Sa   | ample |               |
| Calcium, Total               | 1.00             | 10          | 10.7        | 97              | -            | -                | 75-125             | -     | 20            |
| Iron, Total                  | ND               | 1           | 0.991       | 99              | -            | -                | 75-125             | -     | 20            |
| Manganese, Total             | ND               | 0.5         | 0.484       | 97              | -            | -                | 75-125             | -     | 20            |
| Sodium, Total                | 7.77             | 10          | 17.7        | 99              | -            | -                | 75-125             | -     | 20            |
| Total Metals - Mansfield Lal | b Associated sar | mple(s): 01 | QC Batch    | ID: WG1702492-3 | QC Sample    | e: L2258042-01   | Client ID: MS Sa   | ample |               |
| Mercury, Total               | ND               | 0.005       | 0.0036      | 73              | -            | -                | 70-130             | -     | 20            |



## Lab Duplicate Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: Not Specified Lab Number:

L2258610 11/11/22 Report Date:

| Parameter                                             | Native Sample Du         | olicate Sample Ur | its RPD          | ) Qual     | RPD Limits |
|-------------------------------------------------------|--------------------------|-------------------|------------------|------------|------------|
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1702485-4 | QC Sample: L22586 | 20-01 Client ID: | DUP Sample |            |
| Arsenic, Total                                        | 0.0117                   | 0.0122 m          | g/l 5            |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1702485-6 | QC Sample: L22586 | 20-02 Client ID: | DUP Sample |            |
| Arsenic, Total                                        | 0.0023                   | 0.0022 m          | g/l 2            |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1702490-4 | QC Sample: L22586 | 20-01 Client ID: | DUP Sample |            |
| Sodium, Total                                         | 74.6                     | 71.8 m            | g/l 4            |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1702490-8 | QC Sample: L22586 | 20-02 Client ID  | DUP Sample |            |
| Sodium, Total                                         | 7.77                     | 7.40 m            | g/l 5            |            | 20         |
| Total Metals - Mansfield Lab Associated sample(s): 01 | QC Batch ID: WG1702492-4 | QC Sample: L22580 | 42-01 Client ID: | DUP Sample |            |
| Mercury, Total                                        | ND                       | ND m              | g/l NC           |            | 20         |



## INORGANICS & MISCELLANEOUS



Lab Number: L2258610 Report Date: 11/11/22

Project Name: TERRAMOR

Dw

Project Number: Not Specified

#### SAMPLE RESULTS

| Lab ID:          | L2258610-01    | Date Collected: | 10/20/22 10:00 |
|------------------|----------------|-----------------|----------------|
| Client ID:       | LOT-17-221020  | Date Received:  | 10/20/22       |
| Sample Location: | SAUGERTIES, NY | Field Prep:     | Not Specified  |

Sample Depth: Matrix:

| Parameter             | Result           | Qualifier | Units     | RL    | MDL   | Dilution<br>Factor | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|-----------------------|------------------|-----------|-----------|-------|-------|--------------------|------------------|------------------|----------------------|---------|
| General Chemistry - V | Vestborough Lab  | )         |           |       |       |                    |                  |                  |                      |         |
| Turbidity             | 300              |           | NTU       | 2.0   | 2.0   | 10                 | -                | 10/21/22 09:45   | 44,180.1             | KEP     |
| Odor @ 60 C           | NO ODOR          |           | TON       | 1     | 1.0   | 1                  | -                | 10/21/22 09:00   | 121,2150B            | KEP     |
| Color, Apparent       | ND               |           | A.P.C.U.  | 120   | 120   | 25                 | -                | 10/21/22 18:49   | 121,2120B            | AAS     |
| Alkalinity, Total     | 156.             | m         | g CaCO3/L | 2.00  | NA    | 1                  | -                | 11/01/22 06:09   | 121,2320B            | MRM     |
| Cyanide, Total        | ND               |           | mg/l      | 0.005 | 0.001 | 1                  | 10/28/22 07:40   | 10/28/22 13:27   | 121,4500CN-CE        | JER     |
| Nitrogen, Nitrite     | ND               |           | mg/l      | 0.050 | 0.014 | 1                  | -                | 10/22/22 05:22   | 44,353.2             | KAF     |
| Nitrogen, Nitrate     | 0.058            | J         | mg/l      | 0.10  | 0.023 | 1                  | -                | 10/22/22 05:22   | 44,353.2             | KAF     |
| Bacteria in Water - W | estborough Lab   |           |           |       |       |                    |                  |                  |                      |         |
| Coliform, Total       | Positive         |           | col/100ml | -     | NA    | 1                  | -                | 10/21/22 13:34   | 121,9223B            | DRV     |
| Escherichia Coli      | Negative         |           | col/100ml | -     | NA    | 1                  | -                | 10/21/22 13:34   | 121,9223B            | DRV     |
| Anions by Ion Chroma  | atography - West | borough   | Lab       |       |       |                    |                  |                  |                      |         |
| Chloride              | 28.2             |           | mg/l      | 0.500 | 0.083 | 1                  | -                | 11/07/22 21:54   | 44,300.0             | AT,     |
| Fluoride              | 0.147            |           | mg/l      | 0.050 | 0.037 | 1                  | -                | 11/07/22 21:54   | 44,300.0             | AT,     |
| Sulfate               | 11.6             |           | mg/l      | 1.00  | 0.454 | 1                  | -                | 11/07/22 21:54   | 44,300.0             | AT,     |



Project Name:TERRAMORProject Number:Not Specified

 Lab Number:
 L2258610

 Report Date:
 11/11/22

#### Method Blank Analysis Batch Quality Control

| Parameter                | Result Qu       | alifier | Units       | RL       | MDL    | Dilution<br>Factor    | Date<br>Prepared | Date<br>Analyzed | Analytical<br>Method | Analyst |
|--------------------------|-----------------|---------|-------------|----------|--------|-----------------------|------------------|------------------|----------------------|---------|
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 02423-1               |                  |                  |                      |         |
| Odor                     | NO ODOR         |         | TON         | 1        | 1.0    | 1                     | -                | 10/21/22 09:00   | 121,2150B            | KEP     |
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 02472-1               |                  |                  |                      |         |
| Turbidity                | ND              |         | NTU         | 0.20     | 0.20   | 1                     | -                | 10/21/22 09:45   | 44,180.1             | KEP     |
| Bacteria in Water - West | oorough Lab fo  | or samp | le(s): 01 I | Batch: \ | NG1702 | 2574-1                |                  |                  |                      |         |
| Coliform, Total          | Negative        |         | col/100ml   | -        | NA     | 1                     | -                | 10/21/22 13:34   | 121,9223B            | DRV     |
| Escherichia Coli         | Negative        |         | col/100ml   | -        | NA     | 1                     | -                | 10/21/22 13:34   | 121,9223B            | DRV     |
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 02699-1               |                  |                  |                      |         |
| Nitrogen, Nitrite        | ND              |         | mg/l        | 0.050    | 0.014  | 1                     | -                | 10/22/22 03:27   | 44,353.2             | KAF     |
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 02706-1               |                  |                  |                      |         |
| Nitrogen, Nitrate        | ND              |         | mg/l        | 0.10     | 0.023  | 1                     | -                | 10/22/22 03:32   | 44,353.2             | KAF     |
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 05195-1               |                  |                  |                      |         |
| Cyanide, Total           | ND              |         | mg/l        | 0.005    | 0.001  | 1                     | 10/28/22 07:40   | 10/28/22 13:24   | 121,4500CN-CI        | _ JER   |
| General Chemistry - Wes  | stborough Lab   | for sam | ple(s): 01  | Batch:   | WG17   | 06486-1               |                  |                  |                      |         |
| Alkalinity, Total        | ND              |         | mg CaCO3/L  | 2.00     | NA     | 1                     | -                | 11/01/22 06:09   | 121,2320B            | MRM     |
| Anions by Ion Chromatog  | graphy - Westbo | orough  | Lab for sar | mple(s): | 01 Ba  | atch: WG <sup>2</sup> | 1709241-1        |                  |                      |         |
| Chloride                 | 0.173           | J       | mg/l        | 0.500    | 0.083  | 1                     | -                | 11/07/22 17:10   | 44,300.0             | AT,     |
| Fluoride                 | 0.040           | J       | mg/l        | 0.050    | 0.037  | 1                     | -                | 11/07/22 17:10   | 44,300.0             | AT,     |
| Sulfate                  | ND              |         | mg/l        | 1.00     | 0.454  | 1                     | -                | 11/07/22 17:10   | 44,300.0             | AT,     |



## Lab Control Sample Analysis Batch Quality Control

**Project Name:** TERRAMOR Project Number: Not Specified Lab Number: L2258610 Report Date: 11/11/22

| Parameter                            | LCS<br>%Recovery      | Qual   | LCSD<br>%Recovery   | Qual     | %Recovery<br>Limits | RPD | Qual | RPD Limits |
|--------------------------------------|-----------------------|--------|---------------------|----------|---------------------|-----|------|------------|
| General Chemistry - Westborough Lab  | Associated sample(s): | 01 E   | Batch: WG1702472-   | 2        |                     |     |      |            |
| Turbidity                            | 99                    |        | -                   |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): | 01 E   | Batch: WG1702699-   | 2        |                     |     |      |            |
| Nitrogen, Nitrite                    | 92                    |        | -                   |          | 90-110              | -   |      | 20         |
| General Chemistry - Westborough Lab  | Associated sample(s): | 01 E   | Batch: WG1702706-   | 2        |                     |     |      |            |
| Nitrogen, Nitrate                    | 92                    |        | -                   |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): | 01 E   | Batch: WG1705195-   | 2        |                     |     |      |            |
| Cyanide, Total                       | 110                   |        | -                   |          | 90-110              | -   |      |            |
| General Chemistry - Westborough Lab  | Associated sample(s): | 01 E   | Batch: WG1706486-   | 2        |                     |     |      |            |
| Alkalinity, Total                    | 105                   |        | -                   |          | 90-110              | -   |      | 10         |
| Anions by Ion Chromatography - Westb | orough Lab Associate  | d samı | ple(s): 01 Batch: V | /G170924 | 1-2                 |     |      |            |
| Chloride                             | 102                   |        | -                   |          | 90-110              | -   |      |            |
| Fluoride                             | 103                   |        | -                   |          | 90-110              | -   |      |            |
| Sulfate                              | 100                   |        | -                   |          | 90-110              | -   |      |            |



## Matrix Spike Analysis Batch Quality Control

Project Name: TERRAMOR **Project Number:** Not Specified Lab Number: L2258610 **Report Date:** 11/11/22

| Parameter                          | Native<br>Sample    | MS<br>Added | MS<br>Found | MS<br>%Recovery | MS<br>Qual Foເ |      | MSD<br>%Recovery | R<br>Qual | ecovery<br>Limits | RPD     | RPD<br>Qual Limits |
|------------------------------------|---------------------|-------------|-------------|-----------------|----------------|------|------------------|-----------|-------------------|---------|--------------------|
| General Chemistry - West           | borough Lab Associ  | ated samp   | ole(s): 01  | QC Batch ID: V  | NG1702699-     | 4    | QC Sample: L225  | 58610-0   | 1 Client          |         | -17-221020         |
| Nitrogen, Nitrite                  | ND                  | 4           | 4.2         | 105             |                | -    | -                |           | 80-120            | -       | 20                 |
| General Chemistry - West           | borough Lab Associ  | ated samp   | ole(s): 01  | QC Batch ID: V  | NG1702706-     | 4    | QC Sample: L225  | 8610-0    | 1 Client          | ID: LOT | Г-17-221020        |
| Nitrogen, Nitrate                  | 0.058J              | 4           | 3.8         | 95              |                | -    | -                |           | 83-113            | -       | 6                  |
| General Chemistry - West           | borough Lab Associ  | ated samp   | ole(s): 01  | QC Batch ID: V  | NG1705195-     | 3    | QC Sample: L226  | 60243-0   | 1 Client          | ID: MS  | Sample             |
| Cyanide, Total                     | 0.007               | 0.2         | 0.212       | 102             |                | -    | -                |           | 90-110            | -       | 30                 |
| General Chemistry - West           | borough Lab Associ  | ated samp   | ole(s): 01  | QC Batch ID: V  | NG1706486-     | 4    | QC Sample: L225  | 8776-0    | 1 Client          | ID: MS  | Sample             |
| Alkalinity, Total                  | 65.6                | 100         | 180         | 114             |                | -    | -                |           | 86-116            | -       | 10                 |
| Anions by Ion Chromatogr<br>221020 | raphy - Westborougl | n Lab Asso  | ociated san | nple(s): 01 Q(  | C Batch ID: V  | VG17 | 709241-3 QC S    | ample:    | L2258610          | -01 CI  | ient ID: LOT-1     |
| Chloride                           | 28.2                | 4           | 31.2        | 74              | Q              | -    | -                |           | 90-110            | -       | 18                 |
| Fluoride                           | 0.147               | 0.4         | 0.549       | 100             |                | -    | -                |           | 90-110            | -       | 15                 |
| Sulfate                            | 11.6                | 8           | 19.4        | 98              | _              | -    | -                |           | 90-110            | -       | 20                 |



## Lab Duplicate Analysis Batch Quality Control

Project Name: TERRAMOR Project Number: Not Specified

| Parameter                                      | Native                   | Sample         | Duplicate Sam  | ple Units     | RPD        | Qual       | <b>RPD Limits</b>  |
|------------------------------------------------|--------------------------|----------------|----------------|---------------|------------|------------|--------------------|
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1702423-2    | QC Sample: L2 | 2258610-01 | Client ID: | LOT-17-221020      |
| Odor                                           | NO                       | ODOR           | NO ODOR        | TON           | NC         |            |                    |
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1702472-3    | QC Sample: L2 | 2258594-01 | Client ID: | DUP Sample         |
| Turbidity                                      | C                        | ).37           | 0.36           | NTU           | 3          |            | 13                 |
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1702653-2    | QC Sample: L2 | 2258858-01 | Client ID: | DUP Sample         |
| Color, Apparent                                |                          | ND             | ND             | A.P.C.U.      | NC         |            |                    |
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1702699-3    | QC Sample: L2 | 2258610-01 | Client ID: | LOT-17-221020      |
| Nitrogen, Nitrite                              |                          | ND             | 0.018J         | mg/l          | NC         |            | 20                 |
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1702706-3    | QC Sample: L2 | 2258610-01 | Client ID: | LOT-17-221020      |
| Nitrogen, Nitrate                              | 0.                       | 058J           | 0.058J         | mg/l          | NC         |            | 6                  |
| General Chemistry - Westborough Lab            | Associated sample(s): 07 | 1 QC Batch ID: | WG1706486-3    | QC Sample: L2 | 2258776-01 | Client ID: | DUP Sample         |
| Alkalinity, Total                              | 6                        | 65.6           | 67.9           | mg CaCO3      | /L 3       |            | 10                 |
| Anions by Ion Chromatography - Westb<br>221020 | orough Lab Associated s  | ample(s): 01 Q | C Batch ID: WG | 1709241-4 QC  | Sample: L2 | 2258610-0  | 1 Client ID: LOT-1 |
| Chloride                                       | 2                        | 28.2           | 28.2           | mg/l          | 0          |            | 18                 |
| Fluoride                                       | 0                        | .147           | 0.145          | mg/l          | 1          |            | 15                 |
| Sulfate                                        | 1                        | 11.6           | 11.6           | mg/l          | 0          |            | 20                 |



### Project Name:TERRAMORProject Number:Not Specified

#### Sample Receipt and Container Information

YES

Were project specific reporting limits specified?

#### Cooler Information

| Cooler | Custody Seal |
|--------|--------------|
| A      | Absent       |
| В      | Absent       |
| С      | Absent       |

| Container Info | ormation                               |        | Initial | Final | Temp  |      |        | Frozen    |                                                                                                                                                                                                    |
|----------------|----------------------------------------|--------|---------|-------|-------|------|--------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Container ID   | Container Type                         | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)                                                                                                                                                                                        |
| L2258610-01A   | Vial Na2S2O3 preserved                 | А      | NA      |       | 3.1   | Y    | Absent |           | 504(14)                                                                                                                                                                                            |
| L2258610-01B   | Vial Na2S2O3 preserved                 | А      | NA      |       | 3.1   | Y    | Absent |           | 504(14)                                                                                                                                                                                            |
| L2258610-01C   | Vial Ascorbic Acid/HCl preserved       | А      | NA      |       | 3.1   | Y    | Absent |           | 524.2(14)                                                                                                                                                                                          |
| L2258610-01D   | Vial Ascorbic Acid/HCl preserved       | А      | NA      |       | 3.1   | Y    | Absent |           | 524.2(14)                                                                                                                                                                                          |
| L2258610-01E   | Bacteria Cup Na2S2O3 preserved         | А      | NA      |       | 3.1   | Y    | Absent |           | T-COLI-C(1.25)                                                                                                                                                                                     |
| L2258610-01F   | Bacteria Cup Na2S2O3 preserved         | А      | NA      |       | 3.1   | Y    | Absent |           | T-COLI-C(1.25)                                                                                                                                                                                     |
| L2258610-01G   | Plastic 250ml HNO3 preserved           | A      | <2      | <2    | 3.1   | Y    | Absent |           | CD-2008T(180),CA-UI(180),ZN-<br>2008T(180),FE-UI(180),CU-2008T(180),AS-<br>2008T(180),HG-U(28),SE-2008T(180),AG-<br>2008T(180),MN-UI(180),NA-UI(180),BA-<br>2008T(180),CR-2008T(180),PB-2008T(180) |
| L2258610-01G1  | Plastic 950ml HNO3 preserved           | A      | <2      | <2    | 3.1   | Y    | Absent |           | CD-2008T(180),CA-UI(180),ZN-<br>2008T(180),FE-UI(180),CU-2008T(180),AS-<br>2008T(180),HG-U(28),SE-2008T(180),AG-<br>2008T(180),MN-UI(180),NA-UI(180),BA-<br>2008T(180),CR-2008T(180),PB-2008T(180) |
| L2258610-01H   | Plastic 250ml NaOH preserved           | А      | >12     | >12   | 3.1   | Y    | Absent |           | TCN-4500(14)                                                                                                                                                                                       |
| L2258610-01J   | Plastic 250ml unpreserved/No Headspace | А      | NA      |       | 3.1   | Y    | Absent |           | ALK-T-2320(14)                                                                                                                                                                                     |
| L2258610-01K   | Plastic 250ml Trizma preserved         | В      | NA      |       | 3.0   | Y    | Absent |           | A2-537.1-PFOA/PFOS(14)                                                                                                                                                                             |
| L2258610-01L   | Plastic 250ml Trizma preserved         | В      | NA      |       | 3.0   | Y    | Absent |           | A2-537.1-PFOA/PFOS(14)                                                                                                                                                                             |
| L2258610-01M   | Amber 500ml NaSulfite/NaHSO4 preserved | А      | 5       | 5     | 3.1   | Y    | Absent |           | HOLD-522(28)                                                                                                                                                                                       |
| L2258610-01N   | Amber 500ml NaSulfite/NaHSO4 preserved | А      | 5       | 5     | 3.1   | Y    | Absent |           | HOLD-522(28)                                                                                                                                                                                       |
| L2258610-01O   | Plastic 950ml unpreserved              | А      | 7       | 7     | 3.1   | Y    | Absent |           | SO4-300(28),CL-300(28),F-300(28),NO2-<br>353(2),TURB-180(2),NO3-353(2)                                                                                                                             |
| L2258610-01P   | Plastic 500ml HNO3 preserved           | А      | <2      | <2    | 3.1   | Y    | Absent |           | SUB-URANIUM(180)                                                                                                                                                                                   |
| L2258610-01Q   | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1   | Y    | Absent |           | SUB-RA228(180)                                                                                                                                                                                     |



## Project Name:TERRAMORProject Number:Not Specified

Serial\_No:11112220:01 *Lab Number:* L2258610 *Report Date:* 11/11/22

| Container Information |                                        |        | Initial | Final | Temp |      |        | Frozen    |                              |  |
|-----------------------|----------------------------------------|--------|---------|-------|------|------|--------|-----------|------------------------------|--|
| Container ID          | Container Type                         | Cooler | pН      | pН    |      | Pres | Seal   | Date/Time | Analysis(*)                  |  |
| L2258610-01Q1         | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-RA228(180)               |  |
| L2258610-01R          | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-RA226(180)               |  |
| L2258610-01R1         | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-RA226(180)               |  |
| L2258610-01R2         | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-RA226(180)               |  |
| L2258610-01S          | Amber 950ml unpreserved                | А      | 7       | 7     | 3.1  | Y    | Absent |           | COLOR-A-2120(2),ODOR-2150(1) |  |
| L2258610-01S1         | Amber 500ml unpreserved split          | А      | 7       | 7     | 3.1  | Y    | Absent |           | A2-DIOXIN-1613(365)          |  |
| L2258610-01T          | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-ALPHA/BETA(180)          |  |
| L2258610-01T1         | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-ALPHA/BETA(180)          |  |
| L2258610-01T2         | Plastic 950ml HNO3 preserved           | А      | <2      | <2    | 3.1  | Y    | Absent |           | SUB-ALPHA/BETA(180)          |  |
| L2258610-02A          | Plastic 250ml Trizma preserved         | В      | NA      |       | 3.0  | Y    | Absent |           | A2-537.1-PFOA/PFOS(14)       |  |
| L2258610-03A          | Vial Ascorbic Acid/HCI preserved       | А      | NA      |       | 3.1  | Y    | Absent |           | 524.2(14)                    |  |
| L2258610-03B          | Vial Ascorbic Acid/HCI preserved       | А      | NA      |       | 3.1  | Y    | Absent |           | 524.2(14)                    |  |
| L2258610-04A          | Amber 500ml NaSulfite/NaHSO4 preserved | С      | <4      | <4    | 2.3  | Y    | Absent |           | A2-14DIOXANE-522(28)         |  |
| L2258610-04B          | Amber 500ml NaSulfite/NaHSO4 preserved | С      | <4      | <4    | 2.3  | Y    | Absent |           | A2-14DIOXANE-522(28)         |  |
| L2258610-04C          | Vial NH4Cl preserved                   | С      | 7       | 7     | 2.3  | Y    | Absent |           | SUB-HAA(9)                   |  |
|                       |                                        |        |         |       |      |      |        |           |                              |  |



#### Project Name: TERRAMOR

#### Project Number:

## Serial\_No:11112220:01 Lab Number: L2258610 Report Date: 11/11/22

#### PFAS PARAMETER SUMMARY

| Parameter                                                                                                                                                                                                                                                        | Acronym                                                                          | CAS Number                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs)                                                                                                                                                                                                                          |                                                                                  |                                                                                                                |
| Perfluorooctadecanoic Acid<br>Perfluorohexadecanoic Acid                                                                                                                                                                                                         | PFODA<br>PFHxDA                                                                  | 16517-11-6<br>67905-19-5                                                                                       |
| Perfluorotetradecanoic Acid<br>Perfluorotridecanoic Acid<br>Perfluorododecanoic Acid                                                                                                                                                                             | PFTA/PFTeDA<br>PFTrDA<br>PFDoA                                                   | 376-06-7<br>72629-94-8<br>307-55-1                                                                             |
| Perfluoroundecanoic Acid<br>Perfluorodecanoic Acid                                                                                                                                                                                                               | PFUnA<br>PFDA                                                                    | 2058-94-8<br>335-76-2                                                                                          |
| Perfluorononanoic Acid<br>Perfluorooctanoic Acid<br>Perfluoroheptanoic Acid                                                                                                                                                                                      | PFNA<br>PFOA<br>PFHdA                                                            | 375-95-1<br>335-67-1<br>375-85-9                                                                               |
| Perfluorohexanoic Acid<br>Perfluoropentanoic Acid                                                                                                                                                                                                                | PFHxA<br>PFPeA                                                                   | 307-24-4<br>2706-90-3                                                                                          |
| Perfluorobutanoic Acid PERFLUOROALKYL SULFONIC ACIDS (PFSAs)                                                                                                                                                                                                     | PFBA                                                                             | 375-22-4                                                                                                       |
| Perfluorododecanesulfonic Acid<br>Perfluorodecanesulfonic Acid<br>Perfluorononanesulfonic Acid<br>Perfluorooctanesulfonic Acid<br>Perfluoroheptanesulfonic Acid<br>Perfluoropentanesulfonic Acid<br>Perfluorobutanesulfonic Acid<br>Perfluoroputanesulfonic Acid | PFDoDS/PFDoS<br>PFDS<br>PFNS<br>PFOS<br>PFHpS<br>PFHxS<br>PFPeS<br>PFBS<br>PFPrS | 79780-39-5<br>335-77-3<br>68259-12-1<br>1763-23-1<br>375-92-8<br>355-46-4<br>2706-91-4<br>375-73-5<br>423-41-6 |
| FLUOROTELOMERS<br>1H,1H,2H,2H-Perfluorododecanesulfonic Acid<br>1H,1H,2H,2H-Perfluorodecanesulfonic Acid<br>1H,1H,2H,2H-Perfluorooctanesulfonic Acid<br>1H,1H,2H,2H-Perfluorohexanesulfonic Acid                                                                 | 10:2FTS<br>8:2FTS<br>6:2FTS<br>4:2FTS                                            | 120226-60-0<br>39108-34-4<br>27619-97-2<br>757124-72-4                                                         |
| PERFLUOROALKANE SULFONAMIDES (FASAs)                                                                                                                                                                                                                             |                                                                                  |                                                                                                                |
| Perfluorooctanesulfonamide<br>N-Ethyl Perfluorooctane Sulfonamide<br>N-Methyl Perfluorooctane Sulfonamide                                                                                                                                                        | FOSA/PFOSA<br>NEtFOSA<br>NMeFOSA                                                 | 754-91-6<br>4151-50-2<br>31506-32-8                                                                            |
| PERFLUOROALKANE SULFONYL SUBSTANCES                                                                                                                                                                                                                              |                                                                                  |                                                                                                                |
| N-Ethyl Perfluorooctanesulfonamido Ethanol<br>N-Methyl Perfluorooctanesulfonamido Ethanol<br>N-Ethyl Perfluorooctanesulfonamidoacetic Acid<br>N-Methyl Perfluorooctanesulfonamidoacetic Acid                                                                     | NEtFOSE<br>NMeFOSE<br>NEtFOSAA<br>NMeFOSAA                                       | 1691-99-2<br>24448-09-7<br>2991-50-6<br>2355-31-9                                                              |
| PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS<br>2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid<br>4,8-Dioxa-3h-Perfluorononanoic Acid                                                                                                | HFPO-DA<br>ADONA                                                                 | 13252-13-6<br>919005-14-4                                                                                      |
| CHLORO-PERFLUOROALKYL SULFONIC ACIDS                                                                                                                                                                                                                             |                                                                                  |                                                                                                                |
| 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid<br>9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid                                                                                                                                                          | 11CI-PF3OUdS<br>9CI-PF3ONS                                                       | 763051-92-9<br>756426-58-1                                                                                     |
| PERFLUOROETHER SULFONIC ACIDS (PFESAs)                                                                                                                                                                                                                           |                                                                                  |                                                                                                                |
| Perfluoro(2-Ethoxyethane)Sulfonic Acid                                                                                                                                                                                                                           | PFEESA                                                                           | 113507-82-7                                                                                                    |
| PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs)                                                                                                                                                                                                               |                                                                                  |                                                                                                                |
| Perfluoro-3-Methoxypropanoic Acid<br>Perfluoro-4-Methoxybutanoic Acid<br>Nonafluoro-3,6-Dioxaheptanoic Acid                                                                                                                                                      | PFMPA<br>PFMBA<br>NFDHA                                                          | 377-73-1<br>863090-89-5<br>151772-58-6                                                                         |



#### Project Name: TERRAMOR

#### Project Number:

# Serial\_No:11112220:01 Lab Number: L2258610 Report Date: 11/11/22

#### PFAS PARAMETER SUMMARY

| Parameter                              | Acronym | CAS Number  |
|----------------------------------------|---------|-------------|
| FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs) |         |             |
| 3-Perfluoroheptyl Propanoic Acid       | 7:3FTCA | 812-70-4    |
| 2H,2H,3H,3H-Perfluorooctanoic Acid     | 5:3FTCA | 914637-49-3 |
| 3-Perfluoropropyl Propanoic Acid       | 3:3FTCA | 356-02-5    |



#### Project Name: TERRAMOR

#### Project Number: Not Specified

#### Lab Number: L2258610

#### **Report Date:** 11/11/22

#### GLOSSARY

#### Acronyms

| Acronyms |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.                                                                                                                                   |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
|          | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: DU Report with 'J' Qualifiers



#### Project Name: TERRAMOR

#### Project Number: Not Specified

#### Lab Number: L2258610 Report Date: 11/11/22

#### Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, (flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C -Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers



<sup>1</sup> 

L2258610

11/11/22

Lab Number:

**Report Date:** 

#### Project Name: TERRAMOR

#### Project Number: Not Specified

#### Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)



 Lab Number:
 L2258610

 Report Date:
 11/11/22

#### REFERENCES

- 3 Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- 14 Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.
- 16 Methods for the Determination of Organic Compounds in Drinking Water Supplement II. EPA/600/R-92/129, August 1992.
- 19 Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 44 Methods for the Determination of Inorganic Substances in Environmental Samples, EPA/600/R-93/100, August 1993.
- 120 Determination of 1,4-Dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography/Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM). EPA Method 522, EPA/600/R-08/101. Version 1.0, September 2008.
- 121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.
- 132 Method 1613 Revision B: Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution HRGC/HRMS. USEPA Office of Water, October 1994.
- 133 Determination of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS). EPA Method 537.1, EPA/600/R-18/352. Version 1.0, November 2018.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



#### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA 8270D/8270E:** <u>NPW:</u> Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II.

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs **EPA 625.1**: SVOC (Acid/Base/Neutral Extractables), **EPA 600/4-81-045**: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7:** Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8:** Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

|                                                                       | NEW YORK<br>CHAIN OF<br>CUSTODY                  | Service Centers<br>Mahwah, NJ 07430: 35 Whitne<br>Albany, NY 12205: 14 Walker<br>Tonawanda, NY 14150: 275 Co | Way       | 105       | Pag<br>  o       | e<br>If <b> </b>      |            | Date<br>in l      | Rec'd<br>.ab | 10       | (21 | 122        | The state of the s | ALPHA JOB #<br>12258610                                                                   |
|-----------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------|-----------|------------------|-----------------------|------------|-------------------|--------------|----------|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Westborough, MA 01581<br>8 Walkup Dr.                                 | Mansfield, MA 02048<br>320 Forbes Blvd           | Project Information                                                                                          | NAME OF A |           | and the second   |                       | Deliv      | erable            | 5            |          |     | 100.04     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Billing Information                                                                       |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                | TEL: 508-822-9300<br>FAX: 508-822-3288           | Project Name: Terr                                                                                           | amor      |           |                  |                       |            | ASP-              |              |          | -   | SP-B       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Same as Client Info                                                                       |
| 1701.300-050-3153                                                     | TAN: 500-022-5205                                | Project Location: 3                                                                                          | -2168     | Saugert   | nes, NY          | / <mark> </mark>      | X          | EQui              | S (1 Fi      | ile)     | E   | QuIS (4 Fi | le)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO#                                                                                       |
| Client Information                                                    | CITER NO.                                        | Project # 22.2                                                                                               | 68        | V         | an sa an an      |                       |            | Other             | £2           |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
| Client: CT Male                                                       |                                                  | (Use Project name as P                                                                                       |           |           |                  |                       | Regu       | latory            | Requi        | rement   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disposal Site Information                                                                 |
| Address: 50 Cent                                                      | ury Hill Pr                                      | Project Manager: Jcr                                                                                         | Dipper-   | -         |                  |                       |            | NY TO             | GS           |          | N I | Part 375   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Please identify below location of                                                         |
|                                                                       |                                                  | ALPHAQuote #:                                                                                                |           |           |                  |                       |            | AWQ               | Standar      | rds      | N'  | r CP-51    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | applicable disposal facilities.                                                           |
| Phone: 518 786                                                        | 7400                                             | Turn-Around Time                                                                                             |           |           |                  |                       |            | NY Re             | stricted     | Use      | 0   | her        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Disposal Facility:                                                                        |
| Fax:                                                                  |                                                  | Standar                                                                                                      | d 💢       | Due Date  |                  |                       |            | NY Un             | restrict     | ed Use   |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U NJ UNY                                                                                  |
| Email: J. differt (                                                   | Ditmik.ion                                       | Rush (only if pre approve                                                                                    | d) 🗌      | # of Days |                  |                       |            | NYC S             | ewer C       | lischarg | e   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other:                                                                                    |
| These samples have be                                                 | een previously analyze                           | ed by Alpha                                                                                                  |           |           |                  |                       | ANA        | LYSIS             |              |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Filtration                                                                         |
| Other project specific                                                | requirements/comm                                | ents:                                                                                                        |           |           |                  |                       |            |                   |              |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Done                                                                                      |
| K Becter                                                              |                                                  | es-short hold                                                                                                |           |           |                  |                       | PPAS       | 6                 | orane.       |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lab to do<br>Preservation<br>Lab to do                                                    |
|                                                                       | 1                                                |                                                                                                              | 1         | lection   |                  | 1                     | 1.4        | t                 | - 0          |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Please Specify below)                                                                    |
| ALPHA Lab ID<br>(Lab Use Only)                                        | Sa                                               | mple ID                                                                                                      | Date      | Time      | Sample<br>Matrix | Sampler's<br>Initials | 23         | Pa                | 4            |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Specific Comments                                                                  |
| 58610-01                                                              | LOT_17-2                                         | 21020                                                                                                        | 10/20     | 1000      | GW               | AR                    | X          | X                 | ×            |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                         |
| -02                                                                   | Field Blan                                       |                                                                                                              | 10120     | 10 40     | GV               | AR                    | V          | -                 |              |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
|                                                                       | Price Price                                      |                                                                                                              |           | 10 10     |                  | ALC.                  | -          | <u> </u>          | 1 1          | -        | -   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  |                       |            |                   |              |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  | 6                     |            | 5 - 5             | Q 9          |          |     | -          | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  |                       |            |                   | i i          |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           | -         | 1                |                       | -          | -                 | <u> </u>     |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  |                       |            | <del>2 - 12</del> | -            |          | -   | -          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  |                       |            |                   |              |          | -   |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
|                                                                       |                                                  |                                                                                                              |           |           |                  |                       |            | 5                 |              |          |     |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           |
| A = None                                                              | Container Code<br>P = Plastic<br>A = Amber Glass | Westboro: Certification Mansfield: Certification Mansfield:                                                  |           |           | Cor              | I<br>ntainer Type     | P          | 1                 | A            |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Please print clearly, legibly<br>and completely. Samples ca                               |
| C = HNO3<br>D = H2SO4                                                 | V = Vial<br>G = Glass<br>B = Bacteria Cup        | Manshold, Gerulication NO: MAU15                                                                             |           |           | Preservativ      |                       | 0          | )                 | 0            |          |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | not be logged in and<br>turnaround time clock will not<br>start until any ambiguities are |
| F = MeOH                                                              | C = Cube                                         | Relinquished By: Date/Time                                                                                   |           |           |                  | 1 1                   | Receiv     | ed By             | -            |          | D   | ate/Time   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | resolved. BY EXECUTING                                                                    |
| H = Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>K/E = Zn Ac/NaOH | O = Other<br>E = Encore<br>D = BOD Bottle        | Ruldte                                                                                                       |           | 10/20/    |                  | Kali                  | The second | 5                 |              | 20       | 22  | 113        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THIS COC, THE CLIENT<br>HAS READ AND AGREES<br>TO BE BOUND BY ALPHA'                      |
| 0 = Other<br>Form No: 01-25 HC (rev. 30<br>IGE 86 Of 139              | )-Sept-2013)                                     | /                                                                                                            |           |           |                  |                       |            |                   |              | -        |     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TERMS & CONDITIONS.<br>(See reverse side.)                                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NEW YORK<br>CHAIN OF<br>CUSTODY        | Service Centers<br>Mahwah, NJ 07430: 35 White<br>Albany, NY 12205: 14 Walke<br>Tonawanda, NY 14150: 275 ( | r Way             | 105       | Pag    | ge<br>of <b> </b> |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e Rec'd                  | 10     | 3.5     | E HE       | ALPHA Job #                                                                                                    |                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------|-----------|--------|-------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------|---------|------------|----------------------------------------------------------------------------------------------------------------|-----------------------|
| Westborough, MA 01581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mansfield, MA 02048                    | 101001010010110012731                                                                                     | Cooper Ave, Suite | 105       | 1 A A  |                   | 1      | In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Lab                      | 012    | apr     |            | the second s | ~                     |
| 8 Walkup Dr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 320 Forbes Blvd                        | Project Information                                                                                       |                   |           |        |                   | Deli   | verabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | les                      | CIU    | 21100   |            | L3358(d)                                                                                                       |                       |
| TEL: 508-898-9220<br>FAX: 508-898-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEL: 508-822-9300<br>FAX: 508-822-3288 | Project Name: Terr                                                                                        | amol              |           |        |                   |        | ASP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |        | ASP-    |            | Billing Information                                                                                            |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1764. 506-622-3268                     | Project Location: Say                                                                                     | writes N          | V         |        |                   |        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        | 1       |            | Same as Client Info                                                                                            |                       |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | Project # 22.218                                                                                          | 6                 |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ulS (1 File              | 3) [   | _ EQuis | S (4 File) | PO#                                                                                                            |                       |
| Client: CT Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Associates                             | (Use Project name as I                                                                                    |                   |           |        |                   |        | Othe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                        |        |         |            |                                                                                                                |                       |
| Address: 50 (m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tory Hall Or                           | Design March 10                                                                                           | Project #)        |           |        |                   | Reg    | ulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | y Require                | ment   |         |            | Disposal Site Information                                                                                      |                       |
| Lathan, N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12 12110                               | Project Manager: J                                                                                        | on Deper          | +         |        |                   |        | NYT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OGS                      | [      | NY Par  | 1 375      | Please identify below location                                                                                 | of.                   |
| hone: 518 786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1, 10110                               | ALPHAQuote #:                                                                                             | Contra Contra     |           |        |                   |        | AWG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard                 | s [    | NY CP   | -51        | applicable disposal facilities.                                                                                | 012                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +400                                   | Turn-Around Time                                                                                          | and the second    |           |        |                   |        | NYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lestricted L             | Jse [  | Other   |            | Disposal Facility:                                                                                             |                       |
| ax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | Standa                                                                                                    |                   | Due Date  | e:     |                   |        | NYU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inrestricted             |        |         |            |                                                                                                                |                       |
| Email: J. dupperto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V ctmge. com                           | Rush (only if pre approve                                                                                 | ed) 🔲             | # of Days |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sewer Dis                |        |         |            |                                                                                                                |                       |
| hese samples have be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | een previously analyze                 | ed by Alpha                                                                                               |                   |           |        |                   | 1000   | And in case of the local division of the loc | and the second statement | charge | _       |            | Other:                                                                                                         |                       |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | requirements/comm                      | ients:                                                                                                    |                   |           | _      |                   | ANA    | LYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                        |        |         |            | Sample Filtration                                                                                              |                       |
| lease specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or TAL.                                |                                                                                                           |                   |           |        |                   | Dome   | HAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |        |         |            | Lab to do Preservation Lab to do                                                                               | and the second second |
| ALPHA Lab ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample ID                              |                                                                                                           | Collection        |           | Sample | le Sampler's      | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |         |            | (Please Specify below)                                                                                         |                       |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0-90                                   | mple iD                                                                                                   | Date              | Time      | Matrix | Initials          | 4,1    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        | 1 1     |            |                                                                                                                |                       |
| 8610-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LOT-17-22                              | 1021                                                                                                      | 10/21             | 1300      | GW     | AR                | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                        |        | +       | _          | Sample Specific Comments                                                                                       |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           |                   | 1000      | GW     | New               | V      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | -      | + +     | _          |                                                                                                                | 3                     |
| BC TOWNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                                                           |                   |           | -      | -                 | -      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | _      |         | _          |                                                                                                                |                       |
| Contraction of the local distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                           | -                 | -         | -      |                   | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -      |         |            |                                                                                                                |                       |
| A DIA A THE ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           | -                 |           |        |                   | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |         |            |                                                                                                                | T                     |
| ALL TRUE TO ALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           |                   |           | -      |                   | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |         |            |                                                                                                                | +                     |
| Contraction of the local division of the loc |                                        |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |         |            |                                                                                                                | +                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                        |        | 0.000   |            |                                                                                                                | +                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -      |         |            |                                                                                                                | +                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | -      |         | -          |                                                                                                                | +                     |
| servative Code: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | +      |         |            |                                                                                                                | +                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Container Code<br>P = Plastic          | Westboro: Certification N                                                                                 | lo: MA935         |           | -      |                   | 100    | Δ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | +      | + +     |            |                                                                                                                |                       |
| HCI A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a second a                             | Mansfield: Certification N                                                                                |                   |           | Con    | tainer Type       | A      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        |         |            | Please print clearly, legibl                                                                                   | ly l                  |
| HNO <sub>3</sub> V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V = Vial                               |                                                                                                           |                   |           |        |                   | 11     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          | _      |         |            | and completely. Samples can                                                                                    |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 = Glass<br>I = Bacteria Cup          | Preservative                                                                                              |                   |           |        |                   |        | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        |         |            | not be logged in and                                                                                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C = Cube                               |                                                                                                           |                   |           |        |                   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |        |         |            | turnaround time clock will                                                                                     | not                   |
| NaHSO <sub>4</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) = Other                              | Relinquished I                                                                                            | By:               | Date/     | Time 💦 | F                 | Receiv | ed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                        | -      | Date/Ti | me         | start until any ambiguities<br>resolved. BY EXECUTING                                                          | are                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = Encore<br>= BOD Bottle               | VM                                                                                                        |                   | 10/21     | 1415   | m                 | 0      | AA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 1017   | -1/22   | 615        | THIS COC, THE CLIENT                                                                                           | 8                     |
| = Zn Ac/NaOH D<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - DOD Bottle                           | moun                                                                                                      | /                 | 10/21/22  |        | 14                | 1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |        | -       |            | HAS READ AND AGREES                                                                                            | S                     |
| -0000-110<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | any Delinci                                                                                               | 610               | 10/23/2   |        | T                 | T      | land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ta                       | 19/    | 22/22 0 | Day 1      | TO BE BOUND BY ALPH                                                                                            | A'S                   |
| n No: 01-25 HC (rev. 30-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | K. Mand                                                                                                   |                   | 1 1010    | 0 4000 |                   | . ///  | Concerned to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                        | 101    | 1220    | LUCI       | TERMS & CONDITIONS.                                                                                            |                       |

| Client: Alpha An<br>Address: Eight Wa<br>Westbord | nt Information<br>alytical Labs<br>Ikup Drive<br>bugh, MA 01581-1019             | GE<br>204<br>Cha<br>Project Location<br>Project Manage | L Laboratorie<br>10 savage roa<br>arleston, SC ;<br>Project Inf<br>1: NY<br>r: Candace F<br>ind & Delive | ormation                         | Regulatory Re<br>State/Federal Progra<br>Regulatory Criteria: | Alpha Job Number<br>L2258610<br>equirements/Report Limits |
|---------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
|                                                   | halab.com<br>eference following Alpha Job N<br>ents: Send all results/reports to | Project Specific                                       | Requireme<br>/deliverables                                                                               | ents and/or Report<br>: L2258610 | t Requirements<br>Report to include Method B                  | lank, LCS/LCSD:                                           |
| Lab ID                                            | Client ID<br>LOT-17-221020                                                       | Collection<br>Date/Time<br>10-20-22 10:00              | Sample<br>Matrix<br>DW                                                                                   |                                  | Analysis<br>um 226; Radium 228; Uranium by EPA 20             | 0.8                                                       |
|                                                   |                                                                                  |                                                        |                                                                                                          |                                  |                                                               |                                                           |
| Form No: AL_subco                                 | 0                                                                                | BY: A                                                  |                                                                                                          | Date/Time:<br>10/24/22           | Received By:                                                  | Date/Time:                                                |





| 301 Fulling                                                                                                                                                           | Mill Road   Middletown, PA 17057   Phone: 717-944-5541   Fax: 717-944-1430   <u>www.alsglobal.com</u>                        |  |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618<br>State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343 |                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Analytical Results Report For                                                                                                                                         | Alpha Analytical         Project       L2258610         Workorder       3270378         Report ID       203606 on 10/28/2022 |  |  |  |  |  |  |  |  |  |

#### **Certificate of Analysis**

Enclosed are the analytical results for samples received by the laboratory on Oct 25, 2022.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at

www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Global. ALS Middletown: 301 Fulling Mill Road, Middletown, PA 17057 : 717-944-5541.

Recipient(s):

Ms Kane - Alpha Analytical Ben Rao - Alpha Analytical Candace Fox - Alpha Analytical Cindy Romero - Alpha Analytical Melissa Deyo - Alpha Analytical Nadine Yakes - Alpha Analytical Results - Alpha Analytical

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

George Methlie Project Coordinator (ALS Digital Signature)

George Methlie



# Lab ID Sample ID Matrix Date Collected Date Received Collector Collection Company 3270378001 LOT-17-221021 NY Potable Water 10/21/2022 13:00 10/25/2022 13:13 CBC Collected By Client



#### Reference

#### Notes

- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- Except as qualified, Clean Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 136.
- Except as qualified, Safe Drinking Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 141.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.

#### Standard Acronyms/Flags

| J      | Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------|
| U      | Indicates that the analyte was Not Detected (ND) above the MDL                                                                       |
| Ν      | Indicates presumptive evidence of the presence of a compound                                                                         |
| MDL    | Method Detection Limit                                                                                                               |
| PQL    | Practical Quantitation Limit                                                                                                         |
| RDL    | Practical Quantitation Limit for this Project                                                                                        |
| ND     | Not Detected - indicates that the analyte was Not Detected                                                                           |
| Cntr   | Analysis was performed using this container                                                                                          |
| RegLmt | Regulatory Limit                                                                                                                     |
| LCS    | Laboratory Control Sample                                                                                                            |
| MS     | Matrix Spike                                                                                                                         |
| MSD    | Matrix Spike Duplicate                                                                                                               |
| DUP    | Sample Duplicate                                                                                                                     |
| %Rec   | Percent Recovery                                                                                                                     |
| RPD    | Relative Percent Difference                                                                                                          |
| LOD    | DoD Limit of Detection                                                                                                               |
| LOQ    | DoD Limit of Quantitation                                                                                                            |
| DL     | DoD Detection Limit                                                                                                                  |
| I      | Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL) |
| (S)    | Surrogate Compound                                                                                                                   |
| NC     | Not Calculated                                                                                                                       |
| *      | Result outside of QC limits                                                                                                          |
| #      | Please reference the result in the Results Section for analyte-level flags.                                                          |
|        |                                                                                                                                      |
|        |                                                                                                                                      |

| <u>Project</u><br><u>Workorder</u> | L2258610<br>3270378 | (ALS)             |
|------------------------------------|---------------------|-------------------|
|                                    |                     | Project Notations |
|                                    |                     |                   |
|                                    |                     | Sample Notations  |
| Lab ID                             | Sample ID           |                   |
|                                    |                     |                   |
|                                    |                     | Result Notations  |
| Notation R                         | lef.                |                   |

| Project   | L2258610 |
|-----------|----------|
| Workorder | 3270378  |

#### **Detected Results Summary**

| Client Sample ID<br>Lab Sample ID | LOT-17-221021<br>3270378001 |                            |            | Collected<br>Lab Receipt | 10/21/2022 13:00<br>10/25/2022 13:13 |
|-----------------------------------|-----------------------------|----------------------------|------------|--------------------------|--------------------------------------|
| Compound                          |                             | <u>Result</u> <u>Units</u> | <u>RDL</u> | Metho                    | d <u>Flag</u>                        |
| HALOACETIC AC                     | ID                          | 3.4 ug/L                   | 1.0        | EPA 55                   | 52.2 #                               |

ALS



Results

| Client Sample ID<br>Lab Sample ID | LOT-17-221021<br>3270378001 |             |              |          |           | Collected<br>Lab Receij |                    |                   |             |
|-----------------------------------|-----------------------------|-------------|--------------|----------|-----------|-------------------------|--------------------|-------------------|-------------|
| HALOACETIC ACI                    | D                           |             |              |          |           |                         |                    |                   |             |
| Compound                          | <u>Result</u>               | <u>Flag</u> | <u>Units</u> | RDL      | Method    | <b>Dilution</b>         | Analysis Date/Time | <u>By</u>         | <u>Cntr</u> |
| Dibromoacetic Acid                | ND                          | ND          | ug/L         | 1.0      | EPA 552.2 | 1                       | 10/28/2022 05:25   | KJH               | В           |
| Dichloroacetic Acid               | 3.4                         |             | ug/L         | 1.0      | EPA 552.2 | 1                       | 10/28/2022 05:25   | KJH               | В           |
| Monobromoacetic Acid              | ND                          | ND          | ug/L         | 1.0      | EPA 552.2 | 1                       | 10/28/2022 05:25   | KJH               | в           |
| Monochloroacetic Acid             | ND                          | ND          | ug/L         | 2.0      | EPA 552.2 | 1                       | 10/28/2022 05:25   | KJH               | В           |
| Trichloroacetic Acid              | ND                          | ND          | ug/L         | 1.0      | EPA 552.2 | 1                       | 10/28/2022 05:25   | KJH               | В           |
| SURROGATES                        |                             |             |              |          |           |                         |                    |                   |             |
| <u>Compound</u>                   | CAS No                      |             |              | Recovery | Limits(%) | Analysis                | Date/Time          | <u>Qualifiers</u> |             |
| 2,3-Dibromopropionic Acid         | 600-05-5                    |             |              | 95.9%    | 70 - 130  | 10/28/2022              | 05:25              |                   |             |



#### Sample - Method Cross Reference Table

| Lab ID     | Sample ID     | Analysis Method | Preparation Method | Leachate Method |
|------------|---------------|-----------------|--------------------|-----------------|
| 3270378001 | LOT-17-221021 | EPA 552.2       | EPA 552.2          |                 |

Project L2258610 Workorder 3270378



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Lab ID     | Sample ID     | Preparation Method | Prep Batch | Prep Date/Time   | Ву  | Analysis Method | Anly Batch |
|------------|---------------|--------------------|------------|------------------|-----|-----------------|------------|
| 3270378001 | LOT-17-221021 | EPA 552.2          | 894704     | 10/26/2022 17:30 | JEK | EPA 552.2       | 895785     |

| ALPHA<br>ANALVTICAL                                                                       |                                                                          | Subo<br>ALS Envi<br>301 Fullin<br>Middletov                                  | Subcontract Chain of Custody<br>ALS Environmental (PA)<br>301 Fulling Mill Road<br>Middletown, PA 17057 | 3270378     3270378       Logged Bu: SLS     Alpha Job Number       PM: GJM     12258610                                                                                                                                                                                                                                                       | ber   |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Client Ir                                                                                 | Client Information                                                       | Pro                                                                          | Project Information                                                                                     | Regulatory Requirements/Report Limits                                                                                                                                                                                                                                                                                                          |       |
| Client: Alpha Analytical Labs<br>ddress: Eight Walkup Drive<br>Westborough, MA 01581-1019 | al Labs<br>Drive<br>MA 01581-1019                                        | Project Location: NY<br>Project Manager: Candace Fox<br>Turnaround & Deliver | ndace Fox<br>& Deliverables Information                                                                 | State/Federal Program:<br>Regulatory Criteria:                                                                                                                                                                                                                                                                                                 |       |
| Phone: 716-427-5223<br>Email: cfox@alphalab.com                                           | b.com                                                                    | Due Date:<br>Deliverables:                                                   |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |       |
| Defere                                                                                    | Project Specific Rec                                                     | Project Specific Red                                                         | uirements and/or Report Reg                                                                             | uirements<br>Rebort to include Method Blank, LCS/LCSD:                                                                                                                                                                                                                                                                                         |       |
| Additional Comments:                                                                      | Additional Comments: Send all results/reports to subreports@alphalab.com | ibreports@alphalab.cor                                                       |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                           |                                                                          |                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |       |
| l ab ID                                                                                   | Client ID                                                                | Collection S<br>Date/Time                                                    | Sample<br>Matrix Analysis                                                                               | Batch<br>QC                                                                                                                                                                                                                                                                                                                                    | ch    |
|                                                                                           | <del>101-11-221020-</del><br>LOT-11-221021                               |                                                                              |                                                                                                         | PCB/Chlor/Tox - EPA 505; Chlor. Acids - EPA 515.3; Pesticides - EPA 525.2;<br>Carbamates - EPA 531.1; Bromate; Chlorite;Subcontract Diquat -EPA 549.2;<br><u>Subcontract Endothall -EPA 548.1</u> ;Subcontract Glyphosate -EPA 547<br>Haloacetic Acids - Subcontracted                                                                         |       |
|                                                                                           | ·052-1                                                                   | 1-250ml )NH4ch/AC                                                            |                                                                                                         | Temp Taken By:<br>WO Temp (°C)<br>Therm ID:<br>Receipt Info Cor<br>Cooler Custody<br>Sample Custody<br>Received on Ice<br>Cooler & Sample<br>Correct Contain<br>Sample Label/CC<br>Adequate Samp<br>VOA Headspace<br>Voa Trip Blank<br>NJ≤ 4 Days?<br>Rad Screen (uCi<br>Courier/Trackin<br>SDWA Complian<br>PWSID<br>WV Containers<br>NS GCC, |       |
|                                                                                           | Samplen                                                                  | n-AR                                                                         | <u> </u>                                                                                                | npleted By:<br>Seal Intact<br>seal Intact<br>es Intact<br>es Intact<br>ers Provided<br>DC Agree<br>le Volumes<br>e Present<br>)<br>g#:                                                                                                                                                                                                         |       |
|                                                                                           | -                                                                        |                                                                              |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                           | Relinguished By                                                          | V:<br>Villa                                                                  | Date/Time:                                                                                              | Received By: Date/Time:                                                                                                                                                                                                                                                                                                                        |       |
|                                                                                           |                                                                          | Marko UC                                                                     | 2 CC CC/DB/01                                                                                           | Case Marine 10 100 100 0                                                                                                                                                                                                                                                                                                                       | 24000 |
| Form No: AL_subcoc                                                                        |                                                                          |                                                                              | 10/25/22 0130 X                                                                                         |                                                                                                                                                                                                                                                                                                                                                |       |
|                                                                                           |                                                                          | HAD,                                                                         | 10-25 12.12                                                                                             | Jam 1. 18 25/01 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.                                                                                                                                                                                                                                                                                      | Ŋ     |





a member of The GEL Group INC

PO Box 30712 Charleston, SC 29417 2040 Savage Road Charleston, SC 29407 P 843.556.8171 F 843.766.1178

gel.com

November 07, 2022

Analytical Subreports Alpha Analytical Inc 8 Walkup Drive Westborough, Massachusetts 01581

Re: Analytical Subreports Westborough MA Work Order: 598073

Dear Analytical Subreports:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 25, 2022. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 1614.

Sincerely,

Petto

Jordan Melton for Delaney Stone Project Manager

Enclosures



#### **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### Certificate of Analysis Report for

ALPL001 Alpha Analytical Inc

#### Client SDG: 598073 GEL Work Order: 598073

#### The Qualifiers in this report are defined as follows:

- \* A quality control analyte recovery is outside of specified acceptance criteria
- \*\* Analyte is a Tracer compound
- \*\* Analyte is a surrogate compound
- J See case narrative for an explanation
- J Value is estimated
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Delaney Stone.

Joolan Melton

Reviewed by

#### **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### **Certificate of Analysis**

Report Date: November 7, 2022

|             | Company :<br>Address : | -       | ha Analytical Inc<br>alkup Drive |              |         |          |        |       | Report Dute. |              | , -    |
|-------------|------------------------|---------|----------------------------------|--------------|---------|----------|--------|-------|--------------|--------------|--------|
|             |                        | Wes     | stborough, Massachus             | setts 01581  |         |          |        |       |              |              |        |
|             | Contact:               |         | lytical Subreports               |              |         |          |        |       |              |              |        |
|             | Project:               | Ana     | lytical Subreports We            | estborough M | IA      |          |        |       |              |              |        |
|             | Client Sample ID:      | LOT     | Г-17-221020                      |              |         | Pro      | oject: |       | ALPL00420    |              |        |
|             | Sample ID:             | 598     | 073001                           |              |         | Cli      | ent ID | ):    | ALPL001      |              |        |
|             | Matrix:                | DW      |                                  |              |         |          |        |       |              |              |        |
|             | Collect Date:          | 20-0    | DCT-22 10:00                     |              |         |          |        |       |              |              |        |
|             | Receive Date:          | 25-0    | DCT-22                           |              |         |          |        |       |              |              |        |
|             | Collector:             | Clie    | nt                               |              |         |          |        |       |              |              |        |
| Parameter   | Quali                  | fier    | Result                           | DL           | RL      | Units    | PF     | DF    | Analyst Date | Time Batch   | Method |
| Metals Ana  | lysis-ICP-MS           |         |                                  |              |         |          |        |       |              |              |        |
| 200.2/200.8 | 3 Uranium "As Rece     | ived"   |                                  |              |         |          |        |       |              |              |        |
| Uranium     |                        |         | 0.359                            | 0.0670       | 0.200   | ug/L     | 1.00   | 1     | BAJ 10/27/22 | 2050 2333556 | 1      |
|             | ing Prep Methods w     | ere pe  | erformed:                        |              |         |          |        |       |              |              |        |
| Method      | Descr                  | -       |                                  |              | Analyst | Date     |        | Time  | -            |              |        |
| EPA 200.2   | ICP-M                  | S 200.2 | 2 PREP                           |              | LG2     | 10/26/22 |        | 0820  | 2333555      |              |        |
| The follow  | ring Analytical Meth   | ods v   | vere performed:                  |              |         |          |        |       |              |              |        |
| Method      | Descri                 | ption   |                                  |              |         | A        | Analys | t Cor | nments       |              |        |
| 1           | EPA 20                 | 0.8     |                                  |              |         |          |        |       |              |              |        |

#### Notes:

| Column headers are defined as follows: |                                |
|----------------------------------------|--------------------------------|
| DF: Dilution Factor                    | Lc/LC: Critical Level          |
| DL: Detection Limit                    | PF: Prep Factor                |
| MDA: Minimum Detectable Activity       | RL: Reporting Limit            |
| MDC: Minimum Detectable Concentration  | SQL: Sample Quantitation Limit |

#### **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

#### **Certificate of Analysis**

| Company :<br>Address :                                                                                     | Alpha Analyt<br>8 Walkup Dri             |              |                         |                                                        |                        |      |                   |         |                |              |             |      |
|------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|-------------------------|--------------------------------------------------------|------------------------|------|-------------------|---------|----------------|--------------|-------------|------|
|                                                                                                            | Westborough                              | , Massachus  | etts 01581              |                                                        |                        |      |                   | Re      | port Date:     | November     | 7, 2022     |      |
| Contact:                                                                                                   | Analytical Su                            | breports     |                         |                                                        |                        |      |                   |         |                |              |             |      |
| Project:                                                                                                   | Analytical Su                            | breports We  | estborough N            | ſΑ                                                     |                        |      |                   |         |                |              |             |      |
| Client Sample<br>Sample ID:<br>Matrix:<br>Collect Date:<br>Receive Date<br>Collector:                      | 598073<br>DW<br>20-OCT                   | Г-22         |                         |                                                        |                        |      | oject:<br>ent ID: |         | L00420<br>L001 |              |             |      |
| Parameter                                                                                                  | Qualifier                                | Result U     | ncertainty              | MDC                                                    | TPU                    | RL   | Units             | PF      | DF Analyst     | Date Ti      | ne Batch    | Mtd. |
| Rad Gas Flow Prop<br>GFPC Gross A/B,                                                                       |                                          |              |                         |                                                        |                        |      |                   |         |                |              |             |      |
| Alpha                                                                                                      |                                          | 7.22         | +/-3.98                 | 4.16                                                   | +/-4.15                | 5.00 | pCi/L             |         | KP1            | 11/01/22 132 | 26 2333941  | 1    |
| Beta                                                                                                       |                                          | 11.0         | +/-3.24                 | 3.76                                                   | +/-3.72                | 5.00 | pCi/L             |         |                |              |             |      |
| GFPC Ra228, Liq                                                                                            | uid "As Received                         |              |                         |                                                        |                        |      |                   |         |                |              |             |      |
| Radium-228                                                                                                 | U                                        | 0.559        | +/-1.47                 | 2.59                                                   | +/-1.48                | 3.00 | pCi/L             |         | JE1            | 11/03/22 083 | 34 2334490  | 2    |
| Rad Radium-226<br>Lucas Cell, Ra226                                                                        | 5, Liquid "As Reco                       | eived"       |                         |                                                        |                        |      |                   |         |                |              |             |      |
| Radium-226                                                                                                 | · 1                                      | 0.825        | +/-0.348                | 0.316                                                  | +/-0.389               | 1.00 | pCi/L             |         | LXP1           | 11/06/22 075 | 6 2335610   | 3    |
| The following Analy                                                                                        | vtical Methods v                         | vere nerfor  | med                     |                                                        |                        |      |                   |         |                |              |             |      |
|                                                                                                            | Description                              | vere periori | incu                    |                                                        |                        |      |                   |         |                |              |             |      |
| 1 E                                                                                                        | EPA 900.0/SW846                          | 9310         |                         |                                                        |                        |      |                   |         |                |              |             |      |
| 2 E                                                                                                        | EPA 904.0/SW846 9                        | 9320 Modifie | d                       |                                                        |                        |      |                   |         |                |              |             |      |
| 3 E                                                                                                        | EPA 903.1 Modified                       | ł            |                         |                                                        |                        |      |                   |         |                |              |             |      |
| Surrogate/Tracer I                                                                                         | Recovery                                 | Fest         |                         |                                                        |                        |      |                   | Batch I | D Recover      | y% Accep     | otable Limi | its  |
| Barium-133 Trac                                                                                            | er                                       | GFPC Ra2     | 28, Liquid "A           | As Received"                                           |                        |      |                   | 233449  | 0 78.          | 1 (15        | %-125%)     |      |
|                                                                                                            | ing Uncertainty                          | are calcula  | ated at the 9           | 95% confidence                                         | e level (1.96-sigma    | l).  |                   |         |                |              |             |      |
| Column headers<br>DF: Dilution Fac<br>DL: Detection L<br>Lc/LC: Critical I<br>MDA: Minimum<br>MDC: Minimum | ctor<br>imit<br>Level<br>1 Detectable Ac | tivity       | PF: Pr<br>RL: R<br>TPU: | Method<br>rep Factor<br>eporting Limi<br>Total Propaga | it<br>ated Uncertainty |      |                   |         |                |              |             |      |

Serial\_No:11112220:01

# **GEL LABORATORIES LLC**

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

Report Date: November 7, 2022

Page 1 of 2

Alpha Analytical Inc 8 Walkup Drive Westborough, Massachusetts Analytical Subreports

Workorder: 598073

**Contact:** 

| Parmname                                | NOM  | Sample Q | ual QC   | Units | RPD/D% | REC% | Range      | Anlst | Date    | Time    |
|-----------------------------------------|------|----------|----------|-------|--------|------|------------|-------|---------|---------|
| Metals Analysis - ICPMSBatch2333556     |      |          |          |       |        |      |            |       |         |         |
| QC1205226871 598073001 DUP<br>Uranium   |      | 0.359    | 0.335    | ug/L  | 6.92 ^ |      | (+/-0.200) | ) BAJ | 10/27/2 | 2 20:53 |
| QC1205226869 LCS<br>Uranium             | 50.0 |          | 51.4     | ug/L  |        | 103  | (85%-115%) | )     | 10/27/2 | 2 20:43 |
| QC1205226870 LCSD<br>Uranium            | 50.0 |          | 52.5     | ug/L  | 2.18   | 105  | (0%-20%)   | 1     | 10/27/2 | 2 20:46 |
| QC1205226868 MB<br>Uranium              |      | 1        | U ND     | ug/L  |        |      |            |       | 10/27/2 | 2 20:39 |
| QC1205226872 598073001 MS<br>Uranium    | 50.0 | 0.359    | 51.2     | ug/L  |        | 102  | (75%-125%) | )     | 10/27/2 | 2 20:57 |
| QC1205226873 598073001 SDILT<br>Uranium |      | 0.359    | J 0.0910 | ug/L  | 26.7   |      | (0%-10%)   | )     | 10/27/2 | 2 21:00 |

#### Notes:

The Qualifiers in this report are defined as follows:

- < Result is less than value reported
- > Result is greater than value reported
- E %difference of sample and SD is >10%. Sample concentration must meet flagging criteria
- FB Mercury was found present at quantifiable concentrations in field blanks received with these samples. Data associated with the blank are deemed invalid for reporting to regulatory agencies
- H Analytical holding time was exceeded
- J See case narrative for an explanation
- J Value is estimated
- N Metals--The Matrix spike sample recovery is not within specified control limits
- N/A RPD or %Recovery limits do not apply.
- N1 See case narrative
- ND Analyte concentration is not detected above the detection limit

# **GEL LABORATORIES LLC**

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

| Workoi  | rder: 598073                                                                                                                   |                 |                 |            |              |             |                 |             |           |             | Pag   | e 2 of 2 |
|---------|--------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|------------|--------------|-------------|-----------------|-------------|-----------|-------------|-------|----------|
| Parmna  | me                                                                                                                             | NOM             | Sample          | Qual       | QC           | Units       | RPD/D%          | REC%        | Range     | Anlst       | Date  | Time     |
| NJ      | Consult Case Narrative, Data S                                                                                                 | ummary package  | e, or Project l | Manager o  | concerning ( | his qualifi | ier             |             |           |             |       |          |
| Q       | One or more quality control criteria have not been met. Refer to the applicable narrative or DER.                              |                 |                 |            |              |             |                 |             |           |             |       |          |
| R       | Sample results are rejected                                                                                                    |                 |                 |            |              |             |                 |             |           |             |       |          |
| U       | Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.                                                     |                 |                 |            |              |             |                 |             |           |             |       |          |
| Х       | Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier                                     |                 |                 |            |              |             |                 |             |           |             |       |          |
| Y       | Other specific qualifiers were required to properly define the results. Consult case narrative.                                |                 |                 |            |              |             |                 |             |           |             |       |          |
| ^       | RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry. |                 |                 |            |              |             |                 |             |           |             |       |          |
| h       | Preparation or preservation holding time was exceeded                                                                          |                 |                 |            |              |             |                 |             |           |             |       |          |
| N/A inc | licates that spike recovery limits                                                                                             | do not apply wh | en sample co    | ncentratio | on exceeds s | pike conc.  | . by a factor o | f 4 or more | or %RPD r | not applica | ıble. |          |

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or % RPD not applicable. ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where the duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.

\* Indicates that a Quality Control parameter was not within specifications.

Wardsondam

-----

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Serial\_No:11112220:01

# **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

| Client :               | Alpha Analytical Inc<br>8 Walkup Drive                  |                        | <u>×</u>                   |      | <u>iiiiiiai y</u>           | <u>v</u>     | ]    | Report Da | ate: Novemb<br>Page 1 |               | 2              |
|------------------------|---------------------------------------------------------|------------------------|----------------------------|------|-----------------------------|--------------|------|-----------|-----------------------|---------------|----------------|
| Contact:<br>Workorder: | Westborough, Massach<br>Analytical Subreports<br>598073 | usetts                 |                            |      |                             |              |      |           |                       |               |                |
| Parmname               |                                                         | NOM                    | Sample (                   | Qual | QC                          | Units        | RPD% | REC%      | Range                 | Anlst         | Date Time      |
| Rad Gas Flow<br>Batch  | 2333941                                                 |                        |                            |      |                             |              |      |           |                       |               |                |
| QC1205227665           | 598073001 DUP                                           |                        |                            |      |                             |              |      |           |                       |               |                |
| Alpha                  |                                                         | Uncert:                | 7.22<br>+/-3.98            |      | 6.84<br>+/-3.68             | pCi/L        | 5.32 |           | (0% - 100%            | ) KP1         | 11/01/2213:26  |
| Beta                   |                                                         | TPU:                   | +/-4.15<br>11.0            |      | +/-3.85<br>8.72             | pCi/L        | 22.8 |           | (0% - 100%            | )             |                |
|                        |                                                         | Uncert:<br>TPU:        | +/-3.24<br>+/-3.72         |      | +/-3.34<br>+/-3.64          |              |      |           |                       |               |                |
| QC1205227668           | LCS                                                     | 11.4                   |                            |      | 100                         | <b>C</b> . 1 |      | 110       | 1000                  |               | 11/01/2010 07  |
| Alpha                  |                                                         | 116<br>Uncert:<br>TPU: |                            |      | 132<br>+/-12.0<br>+/-25.5   | pCi/L        |      | 113       | (75%-125%             | ) KPI         | 11/01/2213:26  |
| Beta                   |                                                         | 447<br>Uncert:         |                            |      | 451<br>+/-16.1              | pCi/L        |      | 101       | (75%-125%             | )             |                |
| QC1205227669           | LCSD                                                    | TPU:                   |                            |      | +/-77.2                     |              |      |           |                       |               |                |
| Alpha                  |                                                         | 116<br>Uncert:         |                            |      | 121<br>+/-12.0              | pCi/L        | 8.72 | 104       | (0%-20%               | ) KP1         | 11/01/2213:26  |
| Beta                   |                                                         | TPU:<br>447<br>Uncert: |                            |      | +/-23.3<br>470<br>+/-16.6   | pCi/L        | 4.21 | 105       | (0%-20%               | )             |                |
| QC1205227664           | MB                                                      | TPU:                   |                            |      | +/-79.0                     |              |      |           |                       |               |                |
| Alpha                  | IND                                                     | Uncert:                |                            | U    | 0.223<br>+/-1.29            | pCi/L        |      |           |                       | KP1           | 11/01/2213:26  |
| Beta                   |                                                         | TPU:<br>Uncert:        |                            | U    | +/-1.29<br>-1.55<br>+/-1.98 | pCi/L        |      |           |                       |               |                |
|                        |                                                         | TPU:                   |                            |      | +/-1.98                     |              |      |           |                       |               |                |
| QC1205227666           | 598073001 MS                                            | 477.1                  | 7.00                       |      |                             | 0.4          |      | 017       | (750) 1050            | ) 1751        | 11/01/02/12 05 |
| Alpha                  |                                                         | 471<br>Uncert:<br>TPU: | 7.22<br>+/-3.98<br>+/-4.15 |      | 454<br>+/-47.2<br>+/-88.8   | pCi/L        |      | 94.7      | (75%-125%             | ) KPI         | 11/01/2213:26  |
| Beta                   |                                                         | 1820<br>Uncert:        | 11.0<br>+/-3.24            |      | 1890<br>+/-67.9             | pCi/L        |      | 103       | (75%-125%             | )             |                |
| 0.0120522545           | 500072001 MOD                                           | TPU:                   | +/-3.72                    |      | +/-323                      |              |      |           |                       |               |                |
| QC1205227667<br>Alpha  | 598073001 MSD                                           | 455                    | 7.22                       |      | 442                         | pCi/L        | 2.68 | 95.5      | (0%-20%               | ) <b>KD</b> 1 | 11/01/2213:26  |
| лірпа                  |                                                         | 455<br>Uncert:<br>TPU: | +/-3.98<br>+/-4.15         |      | 442<br>+/-44.6<br>+/-85.2   | pC1/L        | 2.08 | 73.3      | (0%-20%               | ) 11          | 11/01/2213:20  |
| Beta                   |                                                         | 1750<br>Uncert:        | 11.0<br>+/-3.24            |      | 1710<br>+/-63.3             | pCi/L        | 9.74 | 97.2      | (0%-20%               | )             |                |
|                        |                                                         | TPU:                   | +/-3.72                    |      | +/-289                      |              |      |           |                       |               |                |

# **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

| <b>QC</b> Summary |
|-------------------|
|-------------------|

|                     |               |                 |             | Juiiiiai           | <u>y</u> |      |      |              |       |                |
|---------------------|---------------|-----------------|-------------|--------------------|----------|------|------|--------------|-------|----------------|
| Workorder:          | 598073        |                 |             |                    | _        |      |      | Page 2 o     | f 3   |                |
| Parmname            |               | NOM             | Sample Qual | QC                 | Units    | RPD% | REC% | Range A      | Anlst | Date Time      |
| <b>Rad Gas Flow</b> |               |                 |             |                    |          |      |      |              |       |                |
| Batch               | 2334490       |                 |             |                    |          |      |      |              |       |                |
| QC1205228718        | LCS           |                 |             |                    |          |      |      |              |       |                |
| Radium-228          |               | 66.5            |             | 70.4               | pCi/L    |      | 106  | (75%-125%)   | JE1   | 11/03/2208:34  |
|                     |               | Uncert:         |             | +/-4.31            |          |      |      |              |       |                |
|                     |               | TPU:            |             | +/-18.1            |          |      |      |              |       |                |
| QC1205228719        | LCSD          |                 |             |                    |          |      |      |              |       |                |
| Radium-228          |               | 66.5            |             | 71.3               | pCi/L    | 1.31 | 107  | (0%-20%)     | JE1   | 11/03/2208:34  |
|                     |               | Uncert:         |             | +/-4.45            |          |      |      |              |       |                |
|                     |               | TPU:            |             | +/-18.4            |          |      |      |              |       |                |
| QC1205228717        | MB            |                 |             |                    | ~~~      |      |      |              |       |                |
| Radium-228          |               |                 | U           |                    | pCi/L    |      |      |              | JE1   | 11/03/2208:34  |
|                     |               | Uncert:         |             | +/-1.16            |          |      |      |              |       |                |
|                     |               | TPU:            |             | +/-1.19            |          |      |      |              |       |                |
| Rad Ra-226<br>Batch | 2335610 —     |                 |             |                    |          |      |      |              |       |                |
|                     |               |                 |             |                    |          |      |      |              |       |                |
| QC1205230925        | 598717011 DUP |                 |             |                    |          |      |      |              |       |                |
| Radium-226          |               |                 | 0.898       | 0.779              | pCi/L    | 14.2 |      | (0% - 100%)  | LXP1  | 11/06/2209:02  |
|                     |               | Uncert:         | +/-0.350    | +/-0.392           |          |      |      |              |       |                |
|                     |               | TPU:            | +/-0.394    | +/-0.426           |          |      |      |              |       |                |
| QC1205230927        | LCS           | 265             |             | 21.2               | C' 1     |      | 00.1 | (750) 1050() | LVD1  | 11/06/22:00:02 |
| Radium-226          |               | 26.5            |             | 21.3               | pCi/L    |      | 80.1 | (75%-125%)   | LXPI  | 11/06/2209:02  |
|                     |               | Uncert:<br>TPU: |             | +/-1.54<br>+/-4.32 |          |      |      |              |       |                |
| QC1205230928        | LCSD          | IPU:            |             | +/-4.32            |          |      |      |              |       |                |
| Radium-226          | LCSD          | 26.5            |             | 25.1               | pCi/L    | 16.6 | 94.6 | (0%-20%)     |       | 11/06/2209:02  |
| Radium-220          |               | Uncert:         |             | +/-1.80            | pel/L    | 10.0 | 74.0 | (070-2070)   |       | 11/00/2209.02  |
|                     |               | TPU:            |             | +/-4.29            |          |      |      |              |       |                |
| QC1205230924        | MB            |                 |             | 17 1.29            |          |      |      |              |       |                |
| Radium-226          |               |                 | U           | 0.304              | pCi/L    |      |      |              | LXP1  | 11/06/2209:02  |
|                     |               | Uncert:         |             | +/-0.292           | 1        |      |      |              |       |                |
|                     |               | TPU:            |             | +/-0.298           |          |      |      |              |       |                |
| QC1205230926        | 598717011 MS  |                 |             |                    |          |      |      |              |       |                |
| Radium-226          |               | 131             | 0.898       | 116                | pCi/L    |      | 88.1 | (75%-125%)   | LXP1  | 11/06/2209:02  |
|                     |               | Uncert:         | +/-0.350    | +/-8.03            |          |      |      |              |       |                |
|                     |               | TPU:            | +/-0.394    | +/-21.3            |          |      |      |              |       |                |

#### Notes:

TPU and Counting Uncertainty are calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- \*\* Analyte is a Tracer compound
- < Result is less than value reported
- > Result is greater than value reported
- BD Results are either below the MDC or tracer recovery is low

FA Failed analysis.

- H Analytical holding time was exceeded
- J See case narrative for an explanation

# **GEL LABORATORIES LLC**

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

# **QC Summary**

| Worko                                     | rder: 598073 Page 3 of 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Parmna                                    | me NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| J                                         | Value is estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Κ                                         | Analyte present. Reported value may be biased high. Actual value is expected to be lower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| L                                         | Analyte present. Reported value may be biased low. Actual value is expected to be higher.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| М                                         | M if above MDC and less than LLD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| М                                         | REMP Result > MDC/CL and < RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| N/A                                       | RPD or %Recovery limits do not apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| N1                                        | See case narrative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| ND                                        | Analyte concentration is not detected above the detection limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| NJ                                        | Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Q                                         | One or more quality control criteria have not been met. Refer to the applicable narrative or DER.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| R                                         | Sample results are rejected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |  |
| U                                         | Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| UI                                        | Gamma SpectroscopyUncertain identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| UJ                                        | Gamma SpectroscopyUncertain identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| UL                                        | Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| Х                                         | Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Y                                         | Other specific qualifiers were required to properly define the results. Consult case narrative.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| ^                                         | RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| h                                         | Preparation or preservation holding time was exceeded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| ** Indi<br>^ The I<br>five tin<br>RL is u | dicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.<br>cates analyte is a surrogate/tracer compound.<br>Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptence criteria when the sample is greater than<br>nes (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the<br>used to evaluate the DUP result. |  |  |  |  |  |  |  |  |  |

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Workordon

500072

Alpha Job Number Batch QC 1000 Regulatory Requirements/Report Limits L2258610 540043 10/25/22 Date/Time: Report to include Method Blank, LCS/LCSD: State/Federal Program: Gross Alpha/Beta; Radium 226; Radium 228; Uranium by EPA 200.8 Regulatory Criteria: Received By: Project Specific Requirements and/or Report Requirements Analysis Subcontract Chain of Custody Turnaround & Deliverables Information Reference following Alpha Job Number on final report/deliverables: L2258610 Date/Time: 2124/0 Project Information GEL Laboratories, LLC 2040 savage road Charleston, SC 29407 Project Location: NY Project Manager: Candace Fox Sample Matrix MD Additional Comments: Send all results/reports to subreports@alphalab.com Due Date: Deliverables: Collection Date/Time 10-20-22 10:00 Relinquished By: Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Client ID LOT-17-221020 Client Information Phone: 716-427-5223 Email: cfox@alphalab.com ANALYTICAL World Class Chemistry **ALPHA** Form No: AL subcoc Lab ID

1

|           | GEL Laboratories LLC                                                        |       |      |         |                                                                                                                                                                               |
|-----------|-----------------------------------------------------------------------------|-------|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cli       | mt 2112                                                                     |       |      |         | SAMPLE RECEIPT & REVIEW FORM                                                                                                                                                  |
| -         | 1 ATC                                                                       |       |      | -       | G/AR/COC/Work Order: 570073                                                                                                                                                   |
| Rec       | eived By: MVH                                                               |       |      | Dat     | te Received: 1000000000000000000000000000000000000                                                                                                                            |
|           | Carrier and Tracking Number                                                 |       |      |         | FedEx Express FedEx Ground UPS Field Services Courier Other                                                                                                                   |
|           | Carrier and Tracking Humber                                                 |       |      | 1       | 2E306540195223174                                                                                                                                                             |
| Sus       | pected Hazard Information                                                   | Yes   | No   | *If I   | Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.                                                        |
| A)S       | hipped as a DOT Hazardous?                                                  |       |      | Haz     | ard Class Shipped: UN#:<br>If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No                                                                                    |
|           | Did the client designate the samples are to be ived as radioactive?         |       | /    | coo     | C notation or radioactive stickers on containers equal client designation.                                                                                                    |
|           | Did the RSO classify the samples as<br>pactive?                             |       | -    | Max     | imum Net Counts Observed* (Observed Counts - Area Background Counts):CPM / mR/Hr<br>Classified as: Rad 1 Rad 2 Rad 3                                                          |
| D) I      | Did the client designate samples are hazardous?                             |       | -    |         | C notation or hazard labels on containers equal client designation.                                                                                                           |
| E) I      | oid the RSO identify possible hazards?                                      |       | /    | If D    | or E is yes, select Hazards below.<br>PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:                                                                             |
|           | Sample Receipt Criteria                                                     | Yes   | NA   | No.     | Comments/Qualifiers (Required for Non-Conforming Items)                                                                                                                       |
| 1         | Shipping containers received intact and sealed?                             | /     |      | -       | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                          |
| 2         | Chain of custody documents included<br>with shipment?                       | /     |      | Ļ       | Circle Applicable: Client contacted and provided COC COC created upon receipt Preservation Method: Wet Ice Ice Packs Dry ce None Other:                                       |
| 3         | Samples requiring cold preservation within $(0 \le 6 \text{ deg. C})$ ?*    |       | /    | 1       | *all temperatures are recorded in Celsius                                                                                                                                     |
| 4         | Daily check performed and passed on IR temperature gun?                     | /     |      | /       | Temperature Device Serial #: IR2-21           Secondary Temperature Device Serial # (If Applicable):                                                                          |
| 5         | Sample containers intact and sealed?                                        | /     |      |         | Circle Applicable: Seals broken Damaged container Leaking container Other (describe)                                                                                          |
| 6         | Samples requiring chemical preservation<br>at proper pH?                    | 1     |      |         | Sample ID's and Containers Affected:<br>If Preservation added, Lot#:                                                                                                          |
|           |                                                                             |       |      |         | If Yes, are Encores or Soil Kits present for solids? Yes No NA (If yes, take to VOA Freezer) Do figuid VOA vials contain acid preservation? Yes No NA (If unknown, select No) |
| 7         | Do any samples require Volatile<br>Analysis?                                |       |      | /       | Are liquid VOA vials free of headspace? Yes No NA<br>Sample ID's and containers affected:                                                                                     |
| 8         | Samples received within holding time?                                       | /     |      | -       | ID's and tests affected:                                                                                                                                                      |
| 9         | Sample ID's on COC match ID's on bottles?                                   | 1     | No S | -       | ID's and containers affected:                                                                                                                                                 |
| 10        | Date & time on COC match date & time on bottles?                            | /     | /    | -       | Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)                                                                            |
| 11        | Number of containers received match number indicated on COC?                |       |      |         | Cifcle Applicable: No container count on COC Other (describe)                                                                                                                 |
| 12        | Are sample containers identifiable as<br>GEL provided by use of GEL labels? |       |      | 1       |                                                                                                                                                                               |
| 13<br>Con | COC form is properly signed in<br>relinquished/received sections?           | 1     |      |         | Circle Applicable: Not relinquished Other (describe)                                                                                                                          |
|           |                                                                             |       |      |         |                                                                                                                                                                               |
|           |                                                                             |       |      |         | 11 interface 1 1                                                                                                                                                              |
|           | PM (or PM                                                                   | A) re | view | : Initi | ials Date Date Page of                                                                                                                                                        |
|           |                                                                             |       |      |         | GL-CHL-SR-001 Rev 7                                                                                                                                                           |

| State                     | Certification                |
|---------------------------|------------------------------|
| Alabama                   | 42200                        |
| Alaska                    | 17-018                       |
| Alaska Drinking Water     | SC00012                      |
| Arkansas                  | 88-0651                      |
| CLIA                      | 42D0904046                   |
| California                | 2940                         |
| Colorado                  | SC00012                      |
| Connecticut               | PH-0169                      |
| DoD ELAP/ ISO17025 A2LA   | 2567.01                      |
| Florida NELAP             | E87156                       |
| Foreign Soils Permit      | P330-15-00283, P330-15-00253 |
| Georgia                   | SC00012                      |
| Georgia SDWA              | 967                          |
| Hawaii                    | SC00012                      |
| Idaho                     | SC00012                      |
| Illinois NELAP            | 200029                       |
| Indiana                   | C-SC-01                      |
| Kansas NELAP              | E-10332                      |
| Kentucky SDWA             | 90129                        |
| Kentucky Wastewater       | 90129                        |
| Louisiana Drinking Water  | LA024                        |
| Louisiana NELAP           | 03046 (AI33904)              |
| Maine                     | 2019020                      |
| Maryland                  | 270                          |
| Massachusetts             | M-SC012                      |
| Massachusetts PFAS Approv | Letter                       |
| Michigan                  | 9976                         |
| Mississippi               | SC00012                      |
| Nebraska                  | NE-OS-26-13                  |
| Nevada                    | SC000122023-3                |
| New Hampshire NELAP       | 2054                         |
| New Jersey NELAP          | SC002                        |
| New Mexico                | SC00012                      |
| New York NELAP            | 11501                        |
| North Carolina            | 233                          |
| North Carolina SDWA       | 45709                        |
| North Dakota              | R-158                        |
| Oklahoma                  | 2022–160                     |
| Pennsylvania NELAP        | 68-00485                     |
| Puerto Rico               | SC00012                      |
| S. Carolina Radiochem     | 10120002                     |
| Sanitation Districts of L | 9255651                      |
| South Carolina Chemistry  | 10120001                     |
| Tennessee                 | TN 02934                     |
| Texas NELAP               | T104704235-22-20             |
| Utah NELAP                | SC000122022–37               |
| Vermont                   | VT87156                      |
| Virginia NELAP            | 460202                       |
| Washington                | C780                         |

# List of current GEL Certifications as of 07 November 2022

Technical Case Narrative Alpha Analytical Inc SDG #: 598073

# **Metals**

**Product: Determination of Metals by ICP-MS Analytical Method:** EPA 200.8 **Analytical Procedure:** GL-MA-E-014 REV# 35 **Analytical Batch:** 2333556

**Preparation Method:** EPA 200.2 **Preparation Procedure:** GL-MA-E-016 REV# 18 **Preparation Batch:** 2333555

The following samples were analyzed using the above methods and analytical procedure(s).

| GEL Sample ID# | Client Sample Identification                     |
|----------------|--------------------------------------------------|
| 598073001      | LOT-17-221020                                    |
| 1205226868     | Method Blank (MB)ICP-MS                          |
| 1205226869     | Laboratory Control Sample (LCS)                  |
| 1205226870     | Laboratory Control Sample Duplicate (LCSD)       |
| 1205226873     | 598073001(LOT-17-221020L) Serial Dilution (SD)   |
| 1205226871     | 598073001(LOT-17-221020D) Sample Duplicate (DUP) |
| 1205226872     | 598073001(LOT-17-221020S) Matrix Spike (MS)      |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Calibration Information**

#### **ICSA/ICSAB Statement**

For the ICP-MS analysis, the ICSA solution contains analyte concentrations which are verified trace impurities indigenous to the purchased standard.

# **Radiochemistry**

**Product: GFPC Gross A/B, Liquid Analytical Method:** EPA 900.0/SW846 9310 **Analytical Procedure:** GL-RAD-A-001 REV# 20 **Analytical Batch:** 2333941

The following samples were analyzed using the above methods and analytical procedure(s).

<u>GEL Sample ID#</u> <u>Client Sample Identification</u>

| 598073001  | LOT-17-221020                                         |
|------------|-------------------------------------------------------|
| 1205227664 | Method Blank (MB)                                     |
| 1205227665 | 598073001(LOT-17-221020) Sample Duplicate (DUP)       |
| 1205227666 | 598073001(LOT-17-221020) Matrix Spike (MS)            |
| 1205227667 | 598073001(LOT-17-221020) Matrix Spike Duplicate (MSD) |
| 1205227668 | Laboratory Control Sample (LCS)                       |
| 1205227669 | Laboratory Control Sample Duplicate (LCSD)            |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Preparation Information**

#### **Homogenous Matrix**

Samples were non-homogenous matrix. sample has an orange tint

#### **Technical Information**

#### **Gross Alpha/Beta Preparation Information**

High hygroscopic salt content in evaporated samples can cause the sample mass to fluctuate due to moisture absorption. To minimize this interference, the salts are converted to oxides by heating the sample under a flame until a dull red color is obtained. The conversion to oxides stabilizes the sample weight and ensures that proper alpha/beta efficiencies are assigned for each sample. Volatile radioisotopes of carbon, hydrogen, technetium, polonium and cesium may be lost during sample heating.

#### **Miscellaneous Information**

#### **Additional Comments**

The matrix spike and matrix spike duplicate, 1205227666 (LOT-17-221020MS) and 1205227667 (LOT-17-221020MSD), aliquots were reduced to conserve sample volume.

Product: GFPC Ra228, Liquid Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5 Analytical Batch: 2334490

The following samples were analyzed using the above methods and analytical procedure(s).

| <u>GEL Sample ID#</u> | <b><u>Client Sample Identification</u></b> |
|-----------------------|--------------------------------------------|
| 598073001             | LOT-17-221020                              |
| 1205228717            | Method Blank (MB)                          |
| 1205228718            | Laboratory Control Sample (LCS)            |
| 1205228719            | Laboratory Control Sample Duplicate (LCSD) |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

Product: Lucas Cell, Ra226, Liquid Analytical Method: EPA 903.1 Modified Analytical Procedure: GL-RAD-A-008 REV# 15 Analytical Batch: 2335610

The following samples were analyzed using the above methods and analytical procedure(s).

| <u>GEL Sample ID#</u> | Client Sample Identification               |
|-----------------------|--------------------------------------------|
| 598073001             | LOT-17-221020                              |
| 1205230924            | Method Blank (MB)                          |
| 1205230925            | 598717011(NonSDG) Sample Duplicate (DUP)   |
| 1205230926            | 598717011(NonSDG) Matrix Spike (MS)        |
| 1205230927            | Laboratory Control Sample (LCS)            |
| 1205230928            | Laboratory Control Sample Duplicate (LCSD) |

The samples in this SDG were analyzed on an "as received" basis.

#### **Data Summary:**

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

#### **Preparation Information**

#### **Homogenous Matrix**

Sample 598073001 (LOT-17-221020) was non-homogenous matrix.

#### **Miscellaneous Information**

#### **Additional Comments**

The matrix spike, 1205230926 (Non SDG 598717011MS), aliquot was reduced to conserve sample volume.

#### **Certification Statement**

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

| EMSL |
|------|
|      |
| SM   |

# EMSL Analytical, Inc.

200 Route 130 North Cinnaminson, NJ 08077 Phone/Fax: (800) 220-3675 / (856) 786-5974 http://www.EMSL.com / cinnasblab@EMSL.com

At Ρ

EMSL Order ID: 042226392 ALPH55 Customer ID: Customer PO: Project ID:

| ttn: | Candace Fox            | Phone:    | (508) 898-9220 |
|------|------------------------|-----------|----------------|
|      | Alpha Analytical, Inc. | Fax:      | (508) 898-9193 |
|      | Accounts Payable       | Received: | 10/21/2022     |
|      | 145 Flanders Road      | Analyzed: | 11/06/2022     |
|      | Westborough, MA 01581  |           |                |
| roj: | L2258610               |           |                |

# Test Report: Determination of Asbestos Structures >10µm in Drinking Water Performed by the 100.2 Method (EPA 600/R-94/134)

|                                 |                                   |                                     |                                      |                       |                   | A                     | SBESTOS                   |               |                      |
|---------------------------------|-----------------------------------|-------------------------------------|--------------------------------------|-----------------------|-------------------|-----------------------|---------------------------|---------------|----------------------|
| Sample ID<br>Client / EMSL      | Sample<br>Filtration<br>Date/Time | Original<br>Sample Vol.<br>Filtered | Effective<br>Filter<br>Area<br>(mm²) | -<br>Area<br>Analyzed | Asbestos<br>Types | Fibers<br>Detected    | Analytical<br>Sensitivity | Concentration | Confidence<br>Limits |
|                                 |                                   | (ml)                                |                                      | (mm²)                 |                   | _ (million fibers per | liter)                    |               |                      |
| Lot-17-221020<br>042226392-0001 | 10/21/2022<br>03:35 PM            | 0.10                                | 1335                                 | 0.2580                | None Detected     | ND                    | 52.00                     | <52.00        | 0.00 - 190.00        |
| Collection Date/Time:           | 10/20/2022 10:0                   | 00 AM                               |                                      |                       |                   |                       |                           |               |                      |

Due to excessive particulate the analytical sensitivity of 0.2 MFL as required by the method was not reached.

Bottle supplied by client.

Analyst(s) Daniel Blake

(1)

Somantha Remotion

Samantha Rundstrom, Laboratory Manager or Other Approved Signatory

Any questions please contact Samantha Rundstrom-Cruz.

Initial report from: 11/07/2022 16:22:06

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. Estimation of uncertainty is available on request. Sample collection performed by the client. Pre-cleaned sample containers are available for purchase from EMSL. Note if sample containers are provided by the client, acceptable bottle blank level is defined as <0.01MFL for >=10um fibers. ND=None Detected. No Fibers Detected: the value will be reported as less than 369% of the concentration equivalent to one fiber. 1 to 4 fibers: The result will be reported as less than the corresponding upper 95% confidence limit (Poisson),5 to 30 fibers: Mean and 95% confidence intervals will be reported on the basis of the Poisson assumption. When more than 30 fibers are counted, both the Gaussian 95% confidence interval and the Poisson 95% confidence interval will be calculated. The large of these two intervals will be selected for data reporting When the Gaussian 95% confidence interval is selected for data reporting, the Poisson will also be noted



Samples analyzed by EMSL Analytical, Inc. Cinnaminson, NJ NELAC NYS ELAP 10872, NJ DEP 03036, FL DOH E87975, PA ID# 68-00367





|                               | NELAP Certifications: NJ PA010 , NY 11759 , PA 22-293 DoD ELAP: PJLA 74618<br>State Certifications: FL E871113 , WA C999 , MD 128 , VA 460157 , WV DW 9961-C , WV 343 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analytical Results Report For | Alpha Analytical         Project       L2258610         Workorder       3269986         Report ID       206552 on 11/11/2022                                          |

#### **Certificate of Analysis**

Enclosed are the analytical results for samples received by the laboratory on Oct 21, 2022.

The ALS Environmental laboratory in Middletown, Pennsylvania is a National Environmental Laboratory Accreditation Program (NELAP) accredited laboratory and as such, certifies that all applicable test results meet the requirements of NELAP.

If you have any questions regarding this certificate of analysis, please contact George Methlie (Project Coordinator) at (717) 944-5541.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable. For a specific list of accredited analytes, refer to the certifications section of the ALS website at

www.alsglobal.com/en/Our-Services/Life-Sciences/Environmental/Downloads.

This laboratory report may not be reproduced, except in full, without the written approval of ALS Global. ALS Middletown: 301 Fulling Mill Road, Middletown, PA 17057 : 717-944-5541.

Recipient(s):

Ms Kane - Alpha Analytical Ben Rao - Alpha Analytical Candace Fox - Alpha Analytical Cindy Romero - Alpha Analytical Melissa Deyo - Alpha Analytical Nadine Yakes - Alpha Analytical Results - Alpha Analytical

This page is included as part of the Analytical Report and must be retained as a permanent record thereof.

George Methlie Project Coordinator (ALS Digital Signature)

George Methlie

Sample ID

LOT-17-221020



## Sample Summary

<u>Lab ID</u> 3269986001 <u>Matrix</u> NY Potable Water

Date Collected 10/20/2022 10:00 Date Received 10/21/2022 13:00 CollectorCollection CompanyCBCCollected By Client



## Reference

#### Notes

- Samples collected by ALS personnel are done so in accordance with the procedures set forth in the ALS Field Sampling Plan (20 Field Services Sampling Plan).
- Except as qualified, Clean Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 136.
- Except as qualified, Safe Drinking Water Act sample analyses are consistent with methodology requirements in 40 CFR Part 141.
- The Chain of Custody document is included as part of this report.
- All Library Search analytes should be regarded as tentative identifications based on the presumptive evidence of the mass spectra. Concentrations reported are estimated values.
- Parameters identified as "analyze immediately" require analysis within 15 minutes of collection. Any "analyze immediately" parameters not listed under the header "Field Parameters" are preformed in the laboratory and are therefore analyzed out of hold time.
- Method references listed on this report beginning with the prefix "S" followed by a method number (such as S2310B-97) refer to methods from "Standard Methods for the Examination of Water and Wastewater".
- For microbiological analyses, the "Prepared" value is the date/time into the incubator and the "Analyzed" value is the date/time out the incubator.
- An Analysis-Prep Method Cross Reference Table is included after Analytical Results & Qualifiers section in this report.
- Unless otherwise noted, all quantitative results for soils are reported on a dry weight basis.

#### Standard Acronyms/Flags

J Indicates an estimated value between the Method Detection Limit (MDL) and the Practical Quantitation Limit (PQL) for the analyte U Indicates that the analyte was Not Detected (ND) above the MDL Ν Indicates presumptive evidence of the presence of a compound MDL Method Detection Limit PQL Practical Quantitation Limit RDL Practical Quantitation Limit for this Project ND Not Detected - indicates that the analyte was Not Detected Cntr Analysis was performed using this container RegLmt Regulatory Limit LCS Laboratory Control Sample MS Matrix Spike MSD Matrix Spike Duplicate DUP Sample Duplicate %Rec Percent Recovery RPD **Relative Percent Difference** LOD DoD Limit of Detection LOQ DoD Limit of Quantitation DL **DoD Detection Limit** Т Indicates reported value is greater than or equal to the Method Detection Limit (MDL) but less than the Report Detection Limit (RDL) (S) Surrogate Compound NC Not Calculated \* Result outside of QC limits # Please reference the result in the Results Section for analyte-level flags.

| <u>Project</u><br>Workorder | L2258610<br>3269986                                       |                    |                                         |                         | A     |
|-----------------------------|-----------------------------------------------------------|--------------------|-----------------------------------------|-------------------------|-------|
|                             |                                                           |                    |                                         | Project Nota            | tions |
| Lab ID                      | Sample ID                                                 |                    |                                         | Sample Notat            | ions  |
| 3269986001                  | LOT-17-221020                                             | S1                 | No trip blank was provided with sample  | for the 504.1 analysis. |       |
|                             |                                                           |                    |                                         | Result Notat            | ions  |
| Notation Re                 | əf.                                                       |                    |                                         |                         |       |
| 1                           | Due to sample matrix inter<br>detection levels adjusted a |                    | lyte was analyzed at a dilution and the |                         |       |
| 2                           | See attached subcontract r                                | esults from Eurofi | ins Eaton. SLW 11/11/2022               |                         |       |
|                             |                                                           |                    |                                         |                         |       |

Subcontract

#

| Workorder 3269986 |               |                            |                |             | ALS              |
|-------------------|---------------|----------------------------|----------------|-------------|------------------|
|                   |               | Detected Re                | esults Summary |             |                  |
| Client Sample ID  | LOT-17-221020 |                            |                | Collected   | 10/20/2022 10:00 |
| Lab Sample ID     | 3269986001    |                            |                | Lab Receipt | 10/21/2022 13:00 |
| <u>Compound</u>   |               | <u>Result</u> <u>Units</u> | RDL            | <u>Me</u>   | thod Flag        |
| SUBCONTRACT       | ED ANALYSIS   |                            |                |             |                  |

See attached

**Project** 

L2258610

Subcontracted Analysis



#### Results

| Client Sample ID | LOT-17-221020 | Collected   | 10/20/2022 10:00 |
|------------------|---------------|-------------|------------------|
| Lab Sample ID    | 3269986001    | Lab Receipt | 10/21/2022 13:00 |
|                  |               |             |                  |

# CARBAMATES

Project

Workorder

L2258610

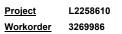
3269986

| Compound            | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL | Method    | Dilution | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|---------------------|---------------|-------------|--------------|-----|-----------|----------|--------------------|-----------|-------------|
| 3-Hydroxycarbofuran | ND            | ND,S1       | ug/L         | 1.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Aldicarb            | ND            | ND,S1       | ug/L         | 2.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Aldicarb Sulfone    | ND            | ND,S1       | ug/L         | 2.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Aldicarb Sulfoxide  | ND            | ND,S1       | ug/L         | 2.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Carbaryl            | ND            | ND,S1       | ug/L         | 1.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Carbofuran          | ND            | ND,S1       | ug/L         | 1.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Methomyl            | ND            | ND,S1       | ug/L         | 1.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
| Oxamyl              | ND            | ND,S1       | ug/L         | 1.0 | EPA 531.1 | 1        | 10/26/2022 18:55   | CGS       | G           |
|                     |               |             |              |     |           |          |                    |           |             |

## HERBICIDES

| Compound   | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL  | <u>Method</u> | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|------------|---------------|-------------|--------------|------|---------------|-----------------|--------------------|-----------|-------------|
| Diquat     | ND            | ND,S1       | ug/L         | 2.0  | EPA 549.2     | 1               | 10/25/2022 15:15   | CGS       | 11          |
| Endothall  | ND            | ND,S1       | ug/L         | 20.0 | EPA 548.1     | 1               | 10/27/2022 14:13   | CGS       | J1          |
| Glyphosate | ND            | ND,S1       | ug/L         | 25.0 | EPA 547       | 1               | 10/27/2022 20:12   | CGS       | L           |

# PESTICIDES


| Compound                  | <u>Result</u> | Flag  | <u>Units</u> | RDL      | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u>        | <u>Cntr</u> |
|---------------------------|---------------|-------|--------------|----------|-----------|-----------------|--------------------|------------------|-------------|
| Aroclor-1016              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1221              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1232              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1242              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1248              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1254              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Aroclor-1260              | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Chlordane                 | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Polychlorinated Biphenyls | ND            | ND,S1 | ug/L         | 0.48     | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| Toxaphene                 | ND            | ND,S1 | ug/L         | 1.9      | EPA 505   | 1               | 10/27/2022 07:33   | DXL              | В           |
| SURROGATES                |               |       |              |          |           |                 |                    |                  |             |
| Compound                  | CAS No        |       |              | Recovery | Limits(%) | Analysis        | Date/Time          | <u>Qualifier</u> | <u>rs</u>   |
| Tetrachloro-m-xylene      | 877-09-8      |       |              | 84.9%    | 70 - 130  | 10/27/2022      | 07:33              |                  |             |

## SEMIVOLATILES

| Compound                   | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL   | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|----------------------------|---------------|-------------|--------------|-------|-----------|-----------------|--------------------|-----------|-------------|
| Alachlor                   | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Aldrin                     | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Atrazine                   | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Benzo(a)pyrene             | ND            | ND,S1       | ug/L         | 0.095 | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| bis(2-Ethylhexyl)phthalate | ND            | ND,S1       | ug/L         | 0.95  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Butachlor                  | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Di(2-Ethylhexyl)adipate    | ND            | ND,S1       | ug/L         | 0.95  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Dieldrin                   | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |

ALS is one of the world's largest and most diversified analytical testing service providers. To learn more visit us at: www.alsglobal.com 11/11/2022 12:48 PM

ALS



| Client Sample ID | LOT-17-221020 | Collected   | 10/20/2022 10:00 |
|------------------|---------------|-------------|------------------|
| Lab Sample ID    | 3269986001    | Lab Receipt | 10/21/2022 13:00 |

# SEMIVOLATILES (cont.)

| Compound                  | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL   | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|---------------------------|---------------|-------------|--------------|-------|-----------|-----------------|--------------------|-----------|-------------|
| Endrin                    | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| gamma-BHC                 | ND            | ND,S1       | ug/L         | 0.095 | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Heptachlor                | ND            | ND,S1       | ug/L         | 0.095 | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Heptachlor Epoxide        | ND            | ND,S1       | ug/L         | 0.095 | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Hexachlorobenzene         | ND            | ND,S1       | ug/L         | 0.095 | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Hexachlorocyclopentadiene | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Methoxychlor              | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Metolachlor               | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Metribuzin                | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Propachlor                | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |
| Simazine                  | ND            | ND,S1       | ug/L         | 0.19  | EPA 525.2 | 1               | 10/31/2022 17:34   | CGS       | Е           |

#### SURROGATES

| Compound                    | CAS No    | <u>Recovery</u> | Limits(%) | Analysis Date/Time | <b>Qualifiers</b> |
|-----------------------------|-----------|-----------------|-----------|--------------------|-------------------|
| 1,3-Dimethyl-2-Nitrobenzene | 81-20-9   | 96.5%           | 70 - 130  | 10/31/2022 17:34   |                   |
| IS_Perylene-d12             | 1520-96-3 | 112%            | 70 – 130  | 10/31/2022 17:34   |                   |
| Pyrene-d10                  | 1718-52-1 | 98.3%           | 70 – 130  | 10/31/2022 17:34   |                   |
| Triphenylphosphate          | 115-86-6  | 120%            | 70 – 130  | 10/31/2022 17:34   |                   |

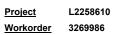
## SUBCONTRACTED ANALYSIS


| <u>Compound</u>        | <u>Result</u>   | Flag | <u>Units</u> | RDL | Method      | <b>Dilution</b> | Analysis Date/Time | By  | <u>Cntr</u> |
|------------------------|-----------------|------|--------------|-----|-------------|-----------------|--------------------|-----|-------------|
| Subcontracted Analysis | See<br>attached | 2,S1 |              |     | Subcontract | 1               | 11/11/2022 12:31   | SUB |             |
| VOLATILE ORGANICS      |                 |      |              |     |             |                 |                    |     |             |

| Compound                    | <u>Result</u> | Flag  | <u>Units</u> | <u>RDL</u> | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | <u>Cntr</u> |
|-----------------------------|---------------|-------|--------------|------------|-----------|-----------------|--------------------|-----------|-------------|
| 1,2-Dibromo-3-chloropropane | ND            | ND,S1 | ug/L         | 0.0096     | EPA 504.1 | 1               | 10/28/2022 04:47   | DXL       | А           |
| 1,2-Dibromoethane           | ND            | ND,S1 | ug/L         | 0.0096     | EPA 504.1 | 1               | 10/28/2022 04:47   | DXL       | А           |
| SURROGATES                  |               |       |              |            |           |                 |                    |           |             |
| Compound                    | CAS No        |       |              | Recovery   | Limits(%) | <u>Analysis</u> | Date/Time          | Qualifie  | rs          |
| 1-Chloro-2-Fluorobenzene    | 348-51-6      |       |              | 94.8%      | 70 - 130  | 10/28/2022      | . 04:47            |           |             |

# WET CHEMISTRY

| <u>Compound</u> | <u>Result</u> | <u>Flag</u> | <u>Units</u> | RDL  | Method    | <b>Dilution</b> | Analysis Date/Time | <u>By</u> | Cntr |
|-----------------|---------------|-------------|--------------|------|-----------|-----------------|--------------------|-----------|------|
| Bromate         | ND            | ND,1,S1     | ug/L         | 50.0 | EPA 300.1 | 10              | 10/30/2022 05:51   | DMG       | 0    |
| Chlorite        | ND            | ND,1,S1     | ug/L         | 200  | EPA 300.1 | 10              | 10/30/2022 05:51   | DMG       | 0    |


| <u>Project</u> L2258610<br><u>Workorder</u> 3269986 |                             |                 |          |           |                          | ALS                                  |
|-----------------------------------------------------|-----------------------------|-----------------|----------|-----------|--------------------------|--------------------------------------|
|                                                     |                             |                 | Results  | 3         |                          |                                      |
| Client Sample ID<br>Lab Sample ID                   | LOT-17-221020<br>3269986001 |                 |          |           | Collected<br>Lab Receipt | 10/20/2022 10:00<br>10/21/2022 13:00 |
| WET CHEMISTRY                                       | (cont.)                     |                 |          |           |                          |                                      |
| Compound                                            | <u>Result</u> Fla           | ag <u>Units</u> | RDL      | Method    | Dilution Analysi         | <u>s Date/Time By Cntr</u>           |
| SURROGATES                                          |                             |                 |          |           |                          |                                      |
| Compound                                            | CAS No                      |                 | Recovery | Limits(%) | Analysis Date/Tim        | e Qualifiers                         |
| Dichloroacetate                                     | DCA                         |                 | 105%     | 90 - 115  | 10/30/2022 05:51         |                                      |
| Dichloroacetate                                     | DCA                         |                 | 105%     | 90 - 115  | 10/30/2022 05:51         |                                      |





# Sample - Method Cross Reference Table

| _ab ID     | Sample ID     | Analysis Method | Preparation Method | Leachate Method |
|------------|---------------|-----------------|--------------------|-----------------|
| 3269986001 | LOT-17-221020 | EPA 531.1       | N/A                |                 |
|            |               | EPA 547         | N/A                |                 |
|            |               | EPA 549.2       | EPA 549.2          |                 |
|            |               | Subcontract     | N/A                |                 |
|            |               | EPA 504.1       | EPA 504.1          |                 |
|            |               | EPA 505         | EPA 505            |                 |
|            |               | EPA 525.2       | EPA 525.2          |                 |
|            |               | EPA 548.1       | EPA 548.1          |                 |
|            |               | EPA 300.1       | N/A                |                 |





# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Lab ID     | Sample ID     | Preparation Method | Prep Batch | Prep Date/Time   | Ву  | Analysis Method | Anly Batch |
|------------|---------------|--------------------|------------|------------------|-----|-----------------|------------|
| 3269986001 | LOT-17-221020 | N/A                | N/A        | N/A              |     | EPA 531.1       | 893434     |
|            |               | N/A                | N/A        | N/A              |     | EPA 547         | 895697     |
|            |               | EPA 549.2          | 893678     | 10/24/2022 23:30 | KMR | EPA 549.2       | 893957     |
|            |               | N/A                | N/A        | N/A              |     | Subcontract     |            |
|            |               | EPA 504.1          | 896175     | 10/27/2022 21:15 | DXL | EPA 504.1       | 896376     |
|            |               | EPA 505            | 895082     | 10/26/2022 21:00 | DXL | EPA 505         | 895477     |
|            |               | EPA 525.2          | 896438     | 10/28/2022 11:30 | JEK | EPA 525.2       | 898977     |
|            |               | EPA 548.1          | 895480     | 10/27/2022 02:45 | KMR | EPA 548.1       | 895826     |
|            |               | N/A                | N/A        | N/A              |     | EPA 300.1       | 896464     |

Alpha Job Number Batch QC Regulatory Requirements/Report Limits Courier/Tracking #: **26306570191832558** SDWA Compliance 0 × L2258610 **Correct Containers Provided** 26000 WO Temp (°C, 3° Receipt Info Completed By: Sample Custody Seal Intact 326975 Logged By: SLS Ph: Gum Est Cooler Custody Seal Intact Adequate Sample Volumes Report to include Method Blank, LCS/LCSD: Sample Label/COC Agree Cooler & Samples Intact VOA Headspace Present WV Containers 0-6°C PCB/Chlor/Tox - EPA 505; Chlor. Acids - EPA 515.3; Pesticides - EPA 525.2; Carbamates - EPA 531.1; Bromate; Chlorite;Subcontract Diquat -EPA 549.2; Subcontract Endothall -EPA 548.1;Subcontract Glyphosate -EPA 547;Haloacetic femp Taken By: Received on Ice Rad Screen (uCi) Voa Trip Blank NJ≤4 Days? PWSID State/Federal Program: Regulatory Criteria: an Outers AUS Received By: No 6/c 00 Sampler-AR 10/21/22 Project Specific Requirements and/or Report Requirements 16/21/22 2-11/545,76 AC 1-11-1Na25203/AP 4-250m1/Na25203/AP 4-40m1/Na25203/AC 2-40m1/57/C 1-250m1/600/P No G/C Analysis 3:00 Subcontract Chain of Custody Turnaround & Deliverables Information Acids - Subcontracted 10/20/22 Date/Time: Project Information Reference following Alpha Job Number on final report/deliverables: L2258610 ALS Environmental (PA) 301 Fulling Mill Road Middletown, PA 17057 Project Location: NY Project Manager: Candace Fox Sample Matrix Additional Comments: Send all results/reports to subreports@alphalab.com ğ ŧ Due Date: Deliverables: Collection Date/Time 10-20-22 10:00 ₿ Relinquished By: Client: Alpha Analytical Labs Address: Eight Walkup Drive Westborough, MA 01581-1019 Client Information OT-17-221020 Client ID Phone: 716-427-5223 Email: cfox@alphalab.com ANALVICAL Wolld Class Chemistry **ALPHA** Form No: AL subcoc Lab ID

# 🛟 eurofins

# **Environment Testing**

# **ANALYTICAL REPORT**

Eurofins Eaton South Bend 110 S Hill Street South Bend, IN 46617 Tel: (574)233-4777

# Laboratory Job ID: 810-42921-1

Client Project/Site: 40-3269986

# For:

ALS Environmental 301 Fulling Mill Road Middletown, Pennsylvania 17057

Attn: Sarah Leung

Authorized for release by: 11/11/2022 6:30:10 AM

Caleb Hunsberger, Project Manager (574)233-4777 Anthony.Hunsberger@et.eurofinsus.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the {0} Project Manager.



# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 2  |
| Definitions/Glossary   | 3  |
| Case Narrative         | 4  |
| Detection Summary      | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 7  |
| QC Sample Results      | 8  |
| QC Association Summary | 9  |
| Lab Chronicle          | 10 |
| Certification Summary  | 11 |
| Method Summary         | 12 |
| Sample Summary         | 13 |
| Chain of Custody       | 14 |
| Receipt Checklists     | 16 |
|                        |    |

# **Definitions/Glossary**

#### Client: ALS Environmental Project/Site: 40-3269986

Job ID: 810-42921-1

# Qualifiers

| Qualifiers     |                                                                                                                | 3  |
|----------------|----------------------------------------------------------------------------------------------------------------|----|
| GC Semi VOA    |                                                                                                                |    |
| Qualifier      | Qualifier Description                                                                                          | 4  |
| J              | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. | 5  |
| Glossary       |                                                                                                                | 5  |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                    |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                     |    |
| %R             | Percent Recovery                                                                                               |    |
| CFL            | Contains Free Liquid                                                                                           |    |
| CFU            | Colony Forming Unit                                                                                            | 0  |
| CNF            | Contains No Free Liquid                                                                                        | 0  |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                         |    |
| Dil Fac        | Dilution Factor                                                                                                | 9  |
| DL             | Detection Limit (DoD/DOE)                                                                                      |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample    |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                                  |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                             |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                   |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                                |    |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                    |    |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                   | 13 |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                              |    |
| MDL            | Method Detection Limit                                                                                         |    |
| ML             | Minimum Level (Dioxin)                                                                                         |    |
| MPN            | Most Probable Number                                                                                           |    |
| MQL            | Method Quantitation Limit                                                                                      |    |
| NC             | Not Calculated                                                                                                 |    |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                   |    |
| NEG            | Negative / Absent                                                                                              |    |
| POS            | Positive / Present                                                                                             |    |
| PQL            | Practical Quantitation Limit                                                                                   |    |
| PRES           | Presumptive                                                                                                    |    |
| QC             | Quality Control                                                                                                |    |
| RER            | Relative Error Ratio (Radiochemistry)                                                                          |    |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                            |    |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                           |    |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                            |    |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                          |    |
| TNTC           | Too Numerous To Count                                                                                          |    |
|                |                                                                                                                |    |

## **Case Narrative**

Client: ALS Environmental Project/Site: 40-3269986 Job ID: 810-42921-1

#### Job ID: 810-42921-1

#### Laboratory: Eurofins Eaton South Bend

#### Narrative

Job Narrative 810-42921-1

#### Receipt

The sample was received on 10/27/2022 1:30 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0°C

#### GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

| Detection | Summary |
|-----------|---------|
|-----------|---------|

Client: ALS Environmental Project/Site: 40-3269986

#### Client Sample ID: LOT-17-221020

No Detections.

Job ID: 810-42921-1

Lab Sample ID: 810-42921-1

This Detection Summary does not include radiochemical test results.

# **Client Sample Results**

Client: ALS Environmental Project/Site: 40-3269986

## Client Sample ID: LOT-17-221020 Date Collected: 10/20/22 10:00

Date Received: 10/27/22 13:30

| Method: EPA 515.3 - Herbicide | es (GC)   |           |          |      |   |                |                |         |
|-------------------------------|-----------|-----------|----------|------|---|----------------|----------------|---------|
| Analyte                       | Result    | Qualifier | RL       | Unit | D | Prepared       | Analyzed       | Dil Fac |
| 2,4,5-TP (Silvex)             | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Dalapon                       | <1.0      |           | 1.0      | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Dicamba                       | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Dinoseb                       | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Pentachlorophenol             | <0.040    |           | 0.040    | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Picloram                      | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| 2,4-D                         | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |
| Surrogate                     | %Recovery | Qualifier | Limits   |      |   | Prepared       | Analyzed       | Dil Fac |
| 2,4-Dichlorophenylacetic acid | 89        |           | 70 - 130 |      |   | 11/02/22 10:13 | 11/09/22 17:01 | 1       |

Job ID: 810-42921-1

## Lab Sample ID: 810-42921-1 Matrix: Drinking Water

# Surrogate Summary

Client: ALS Environmental Project/Site: 40-3269986

# Method: 515.3 - Herbicides (GC)

| Matrix: Drinking water |          | ł                                              |
|------------------------|----------|------------------------------------------------|
| Г                      |          | Percent Surrogate Recovery (Acceptance Limits) |
|                        | DCPAA1   |                                                |
|                        | (70.400) |                                                |

|                    |                    | DCPAA1   |
|--------------------|--------------------|----------|
| Lab Sample ID      | Client Sample ID   | (70-130) |
| 810-42921-1        | LOT-17-221020      | 89       |
| LLCS 810-37210/2-B | Lab Control Sample | 97       |
| MB 810-37210/1-B   | Method Blank       | 98       |

DCPAA = 2,4-Dichlorophenylacetic acid

Job ID: 810-42921-1

Prep Type: Total/NA

# **QC Sample Results**

#### Method: 515.3 - Herbicides (GC)

| Lab Sample ID: MB 810-37210/1-B |
|---------------------------------|
| Matrix: Drinking Water          |

Analysis Batch: 37771

| Analysis Batch: 37771         |           |           |          |      |   |                | Prep Batcl     | n: <b>37210</b> |
|-------------------------------|-----------|-----------|----------|------|---|----------------|----------------|-----------------|
|                               | MB        | MB        |          |      |   |                |                |                 |
| Analyte                       | Result    | Qualifier | RL       | Unit | D | Prepared       | Analyzed       | Dil Fac         |
| 2,4,5-TP (Silvex)             | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| Dalapon                       | <1.0      |           | 1.0      | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| Dicamba                       | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| Dinoseb                       | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| Pentachlorophenol             | <0.040    |           | 0.040    | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| Picloram                      | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
| 2,4-D                         | <0.10     |           | 0.10     | ug/L |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |
|                               | МВ        | МВ        |          |      |   |                |                |                 |
| Surrogate                     | %Recovery | Qualifier | Limits   |      |   | Prepared       | Analyzed       | Dil Fac         |
| 2,4-Dichlorophenylacetic acid | 98        |           | 70 - 130 |      |   | 11/02/22 10:13 | 11/08/22 22:23 | 1               |

#### Lab Sample ID: LLCS 810-37210/2-B Matrix: Drinking Water Analysis Batch: 37771

| Analysis Batch: 37771 |      |      |        |        |           |      |   |      | Prep B   | atch: 37210 |
|-----------------------|------|------|--------|--------|-----------|------|---|------|----------|-------------|
|                       |      |      | Spike  | LLCS   | LLCS      |      |   |      | %Rec     |             |
| Analyte               |      |      | Added  | Result | Qualifier | Unit | D | %Rec | Limits   |             |
| 2,4,5-TP (Silvex)     |      |      | 0.100  | 0.100  |           | ug/L |   | 100  | 48 - 148 |             |
| Dicamba               |      |      | 0.200  | 0.175  |           | ug/L |   | 87   |          |             |
| Dinoseb               |      |      | 0.200  | 0.228  |           | ug/L |   | 114  | 39 - 141 |             |
| Pentachlorophenol     |      |      | 0.0400 | 0.0341 | J         | ug/L |   | 85   | 30 - 171 |             |
| Picloram              |      |      | 0.100  | 0.127  |           | ug/L |   | 127  | 24 - 150 |             |
| 2,4-D                 |      |      | 0.200  | 0.151  |           | ug/L |   | 76   | 24 - 138 |             |
|                       | LLCS | LLCS |        |        |           |      |   |      |          |             |
| <b>a</b> <i>i</i>     |      | 0 "" |        |        |           |      |   |      |          |             |

| Surrogate                     | %Recovery Qualifier | Limits   |
|-------------------------------|---------------------|----------|
| 2.4-Dichlorophenylacetic acid | 97                  | 70 - 130 |

Job ID: 810-42921-1

Prep Type: Total/NA

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

# QC Association Summary

Client: ALS Environmental Project/Site: 40-3269986 Job ID: 810-42921-1

5

9

13

37244

# GC Semi VOA Prep Batch: 37210

LLCS 810-37210/2-B

Lab Control Sample

#### Lab Sample ID **Client Sample ID** Method Matrix Prep Batch Prep Type 810-42921-1 LOT-17-221020 Total/NA Drinking Water 515.3 MB 810-37210/1-B Method Blank Total/NA **Drinking Water** 515.3 Total/NA LLCS 810-37210/2-B Lab Control Sample Drinking Water 515.3 Cleanup Batch: 37244 Lab Sample ID Prep Type **Client Sample ID** Matrix Method Prep Batch LOT-17-221020 810-42921-1 Total/NA Drinking Water Aliquot 37210 Total/NA MB 810-37210/1-B Method Blank **Drinking Water** 37210 Aliquot LLCS 810-37210/2-B Lab Control Sample Total/NA Drinking Water 37210 Aliquot Analysis Batch: 37771 Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 810-42921-1 LOT-17-221020 Total/NA **Drinking Water** 515.3 37244 MB 810-37210/1-B Method Blank Total/NA Drinking Water 515.3 37244

Total/NA

**Drinking Water** 

515.3

# Lab Chronicle

Client: ALS Environmental Project/Site: 40-3269986

Client Sample ID: LOT-17-221020 Date Collected: 10/20/22 10:00 Date Received: 10/27/22 13:30

|           | Batch    | Batch   |     | Dilution | Batch  |         |       | Prepared       |
|-----------|----------|---------|-----|----------|--------|---------|-------|----------------|
| Prep Type | Туре     | Method  | Run | Factor   | Number | Analyst | Lab   | or Analyzed    |
| Total/NA  | Prep     | 515.3   |     |          | 37210  | ER      | EA SB | 11/02/22 10:13 |
| Total/NA  | Cleanup  | Aliquot |     |          | 37244  | ER      | EA SB | 11/02/22 13:42 |
| Total/NA  | Analysis | 515.3   |     | 1        | 37771  | TL      | EA SB | 11/09/22 17:01 |

#### Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

Job ID: 810-42921-1

Matrix: Drinking Water

Lab Sample ID: 810-42921-1

# 5 6 7 10

## Accreditation/Certification Summary

Client: ALS Environmental Project/Site: 40-3269986 Job ID: 810-42921-1

#### Laboratory: Eurofins Eaton South Bend The accreditations/certifications listed below are applicable to this report.

AuthorityProgramIdentification NumberExpiration DatePennsylvaniaNELAP68-0046604-30-23

2921-1

Serial\_No:11112220:01

# Method Summary

#### Client: ALS Environmental Project/Site: 40-3269986

Job ID: 810-42921-1

| Method  | Method Description              | Protocol | Laboratory |
|---------|---------------------------------|----------|------------|
| 515.3   | Herbicides (GC)                 | EPA      | EASB       |
| 515.3   | Extraction of Chlorinated Acids | EPA-DW   | EA SB      |
| Aliquot | Preparation, Extract aliquot    | None     | EA SB      |

#### Protocol References:

EPA = US Environmental Protection Agency

EPA-DW = "Methods For The Determination Of Organic Compounds In Drinking Water", EPA/600/4-88/039, December 1988 And Its Supplements. None = None

#### Laboratory References:

EA SB = Eurofins Eaton South Bend, 110 S Hill Street, South Bend, IN 46617, TEL (574)233-4777

# Sample Summary

Client: ALS Environmental Project/Site: 40-3269986 Job ID: 810-42921-1

| Lab Sample ID | Client Sample ID | Matrix         | Collected      | Received       |
|---------------|------------------|----------------|----------------|----------------|
| 810-42921-1   | LOT-17-221020    | Drinking Water | 10/20/22 10:00 | 10/27/22 13:30 |

# Serial\_No:11112220:01

14

| 301 Fulling Mil<br>Middletown, P<br>P. 717-944-554 | PA 17057                   | A             |                       | A                           | LL SH                | ADED .    | REQUES        | T FOR A        | COMPLET          | ED BY THE         |             |                      | COC #:<br>ALS Quote #: 4                                | 0-3269986           |              |                 |        |
|----------------------------------------------------|----------------------------|---------------|-----------------------|-----------------------------|----------------------|-----------|---------------|----------------|------------------|-------------------|-------------|----------------------|---------------------------------------------------------|---------------------|--------------|-----------------|--------|
| Client Name: ALS Middletown                        |                            |               | Contair               | ner Type                    | e AG                 |           | PLER. IN      | STRUCTI        | ONS ON           | HE BACK.          |             |                      | Receipt Informa                                         | ation (completed by | Receiving La | b)              |        |
|                                                    |                            |               | Contair               | lier Type                   | AC                   |           |               |                |                  |                   |             |                      | Temp Taken By:                                          | Therm ID:           | W            | /O Temp (°C)    |        |
| Address:<br>301 Fulling Mill Road                  |                            |               | Contai                | ner Siz                     | e 250n               | nL        |               |                |                  |                   |             |                      | Receipt Info completed by:                              |                     |              | °C Y N          |        |
|                                                    |                            |               |                       |                             | -                    |           |               |                |                  |                   |             |                      | Cooler Custody Seals Intact                             | Y N                 |              | eviations? NC   |        |
| Middletown, PA 17057                               |                            |               | Prese                 | ervative                    | ST                   |           | 810-429       | 21 Chain       | of Custo         | dy                |             |                      | Sample Custody Seal Intact                              | Y N                 | NA           | If YES, llist b | below: |
|                                                    | -                          |               |                       |                             | Inless oth           | envise In | dicated press | ervation indic | cates field fill | ration on applica | nie methods |                      | Received on Ice<br>Coolers & Samples Intact             | Y N<br>Y N          | NA           |                 |        |
| Contact: Mr. George Methlie                        |                            |               |                       |                             | 11633 00             |           |               |                | OD REQUE         |                   |             |                      | Correct Containers Provided                             | Y N<br>Y N          |              |                 |        |
| Phone#: 717-944-5541                               |                            |               |                       | T                           | T                    |           |               |                |                  |                   | 1           |                      | Sample Label/COC Agree                                  | YN                  |              |                 |        |
| Project Name/#:                                    | 1223                       | 1.76          |                       |                             |                      |           |               |                |                  | 13181             |             |                      | Adequate Sample Volumes                                 | Y N                 |              |                 |        |
| Bill To:                                           |                            |               |                       |                             |                      |           |               |                |                  |                   |             |                      | VOA only: Headspace Present                             | Y N                 | NA           |                 |        |
| Purchase Order #: 40-3269986                       | 1957                       |               | key                   | 000                         |                      |           |               |                |                  |                   |             |                      | VOA only: Trip Blank                                    | Y N                 | NA           | Client cont     | tac    |
| TAT X Normal-Standard TAT is 10-12 b               |                            |               | (see                  | n of (                      |                      |           |               |                |                  |                   |             |                      | NJ ≤ 4 days? Y N                                        |                     | Da           | te/Tech:        |        |
| Date Required: Approve                             |                            | es.           | Sample Type (see key) | ottor                       |                      |           |               |                |                  |                   |             |                      | Courier/Tracking #:<br>Sample(s) for Radiation testing? | Y N                 |              | reen (uCi)      |        |
| Email? X-Y NAMDT.Subcontract@alsg                  |                            |               | nple                  | bee b                       |                      |           |               |                |                  | 200               |             |                      | Reportable SDWA Sample(s)?                              | Y N                 | New So       |                 |        |
|                                                    |                            |               | C Sar                 | rix (S                      | 515.3                |           |               | 2.20           |                  |                   |             |                      | SDWA State of Origin?                                   |                     |              | urce Contact:   |        |
| (as it will appear on the lab report)              | Date Collected<br>mm/dd/yy | Time<br>hh:mm | SDWA                  | *Matrix (See bottom of COC) | 51                   |           | Number of     | Containe       | rs Per Sam       | ple or Field R    | esults Be   | low.                 | PWSID #                                                 |                     | INCW SU      | urce contact.   |        |
| 1 LOT-17-221020                                    | 10/20/22                   | 10:00         |                       | DW                          |                      |           |               | 15000          |                  |                   |             |                      | PWS Contact:                                            | PWS Phor            | ь. #·        |                 | -      |
| 2                                                  |                            |               |                       |                             |                      |           |               |                |                  |                   |             |                      | SDWA Sample Type Key:                                   |                     |              | try Point       | _      |
| 3 ruhassi                                          | coat                       | in a st       | hin                   | 10                          | -                    |           |               |                |                  |                   |             |                      | R=Raw P=Plant C=C                                       |                     |              |                 |        |
| 4 11 DIA 1" OLD G                                  | noul                       | War<br>blig   | 1                     | The                         | 21-2                 | 2         | _             |                |                  |                   |             |                      | Sam                                                     | ple/COC Rema        | arks         | the state t     | _      |
| UV ALLED.                                          | MUT                        | pices         |                       | 100                         | 11-0                 | 0         |               |                |                  |                   |             |                      |                                                         |                     |              |                 |        |
|                                                    | -28-0                      | 22            |                       |                             | -                    |           |               |                | H Comh           | e Contain         | er alle     | 1620                 | New Sc                                                  | urce/ Not Rep       | ortable      |                 |        |
| 6                                                  |                            |               |                       |                             | -                    | _         | Client        | ALONING        |                  | e Contain         | o m         |                      | -                                                       |                     |              |                 |        |
| 7                                                  |                            |               |                       |                             |                      |           |               |                |                  | itial lemp        |             |                      | _                                                       |                     |              |                 |        |
| 8                                                  |                            |               |                       |                             |                      |           |               |                | d                | mecled ]          | emp:        | 1.0_                 |                                                         |                     |              |                 |        |
| 9                                                  |                            |               |                       |                             | -                    | _         |               |                |                  | R Gun #_          | - 2         | 21                   | Contains Short H                                        | old Testir          | ng           | YES NO          | )      |
| 10                                                 |                            |               |                       |                             | 5131410 4111 (0.000) | -         | 1             |                |                  |                   | 1           | wat                  | Internal Use: If less th                                | an 48 hours - no    | otify lab up | on receipt      |        |
| Circle Sample Collector: ALS Tech / Clie           | nt                         | Comments:     |                       |                             |                      |           |               |                | 4                |                   |             | s l                  | Standard Lvl 1                                          | LP-like             | HSCA         | State Sa        | amj    |
| ID:                                                | A                          |               |                       |                             |                      |           |               |                |                  |                   |             | Data<br>verable      | Standard Lvl 2                                          | OD 🗌                | Landfill     | Collect         |        |
|                                                    | Brinquished                | By / Comp     | any Nar               | ne                          |                      |           |               | Received       | By / Comp        |                   |             | Data<br>Deliverables |                                                         | J RED               | ]NJ GW       | X               | $\Box$ |
| Waddo lan 1 Kf                                     | lh                         |               |                       |                             |                      | 2         | 6             | sxc            | Z                |                   | EA          |                      |                                                         | J Full              |              |                 |        |
| 3                                                  |                            |               |                       |                             |                      | 4         | )6            | 1223           | 77 DI            | 330               |             |                      | Excel Summary                                           | Sample Disp         | osal         |                 |        |
| 5                                                  |                            |               |                       |                             |                      | 6         |               |                |                  |                   |             | EDO                  | Equis                                                   | Lab                 |              |                 |        |
| 7                                                  |                            | _             |                       |                             |                      | 8         |               |                |                  |                   |             | EDDO                 | Custom                                                  | Special             |              |                 |        |
| 9                                                  | * G=Gr                     |               |                       |                             | A=Air; D=            | 10        |               |                |                  |                   |             | cous                 | Format Type                                             |                     |              | MD              | ·      |

# Login Sample Receipt Checklist

#### Client: ALS Environmental

# Login Number: 42921 List Number: 1 Creator: Spurgeon, Sheri

| Question                                                                         | Answer | Comment                    |
|----------------------------------------------------------------------------------|--------|----------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                            |
| Sample custody seals, if present, are intact.                                    | True   |                            |
| Samples were received on ice.                                                    | True   |                            |
| Cooler Temperature is acceptable.                                                | True   |                            |
| Cooler Temperature is recorded.                                                  | True   |                            |
| COC is present.                                                                  | True   |                            |
| COC is filled out in ink and legible.                                            | True   |                            |
| COC is filled out with all pertinent information.                                | True   |                            |
| There are no discrepancies between the containers received and the COC.          | True   |                            |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                            |
| Sample containers have legible labels.                                           | True   |                            |
| Containers are not broken or leaking.                                            | True   |                            |
| Sample collection date/times are provided.                                       | True   |                            |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                            |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | True   |                            |
| Samples do not require splitting or compositing.                                 | True   |                            |
| Container provided by EEA                                                        | False  | Client provided containers |

#### Job Number: 810-42921-1

List Source: Eurofins Eaton South Bend

# G



# MEMO

| Project name<br>Project no. | Terramor Air Quality Services - Catskills<br>1940103256 |
|-----------------------------|---------------------------------------------------------|
| Client                      | Terramor                                                |
| Memo no.                    | 1                                                       |
| Version                     | Final                                                   |
| То                          | Ahmed Helmi                                             |
| From                        | Julia Lester                                            |
| Copy to                     | Kim White                                               |
|                             | Charles Gottlieb, Esq.                                  |
|                             | Jenny Mccullough                                        |
|                             | Kevin Franke                                            |
|                             | CherylAnn Whitmore, PE                                  |

Date December 2, 2022

# 1 Introduction

# 1.1 Scope of the Document

Kampgrounds of America Inc. d/b/a Terramor is proposing construction of a campground with 75 camping spaces in the Town of Saugerties, Ulster County, New York. This report assesses potential impacts and proposed requirements related to campfire smoke from the proposed facility, specifically potential opacity, pollution, odor, and nuisance issues.

# 1.2 Project Description

The proposed facility is a 75 unit "glamping" campground including:

- 75 camping spaces with their individual bathroom facilities
- Welcome center building
- Lodge building with food and beverage services
- Swimming pool area
- Event lawn pavilion
- Wellness tent
- Walking trails
- Maintenance and laundry building
- Covered golf cart storage
- Employee housing for 32 employees (30 occupied & 2 for extra capacity if needed)
- Manager's residence
- Parking areas

The proposed project site is located within the Catskill Mountain Region on two (2) parcels totaling 77.51 acres in the Moderate Density Residential (MDR) zoning district. Figure 1 in **Attachment A** shows the project location.

Ramboll 333 West Washington Street Syracuse, NY 13202 USA

T 315-956-6100 F 315-463-7554 https://ramboll.com



Terramor is seeking site plan, special use permit, and subdivision approval from the Town of Saugerties Planning Board. The Ulster County Planning Board is also required to provide a review and the State Environmental Quality Review must be completed.

One feature of the proposed facility, the primary focus of this report, is campfire pits at each of the 75 camping spaces spread throughout the wooded project area. Wood campfires can happen at all hours, but based on the applicant's experience, the peak time is between 6:00 and 9:00 PM and some during 8:00 to 10:00 AM time frame. There is an at least 100' setback between the campfire locations and the property boundary in all but five instances (two are at least 50' and three are at least 75' from the property line). The shortest distance between the proposed camping spaces and the nearest residence has been estimated to be approximately 204 feet (near the western boundary of the project).

# 2 NPV Memorandum – Wood Smoke and Odor Provisions

# 2.1 Overview

Nelson Pope Vorhees (NPV), consultant to the Saugerties Planning Board, reviewed the proposed facility as part of the process required for the Saugerties Planning Board to issue a Special Use Permit (SUP). NPV prepared a memorandum dated July 22, 2022 (NPV Memorandum) summarizing their review of the most recent project related submittals. The NPV Memorandum, which has been included in **Attachment B** for reference, specifically identified the following area of concern related to wood smoke:

"At least 7 or 8 tent sites depict fire pits situated between the tent site and the property boundary. With the proposed design, a fire is likely to be visible from the existing residences and woodsmoke (both smell and visible smoke) could carry over to adjoining residential parcels."

As such, the NPV Memorandum outlines specific considerations of Zoning Code Section 245-34-D that require further review. Specifically, Zoning Code Section 245-34-D:

# Wood smoke (air quality, opacity, odors, nuisance)

- (g) Smoke. No emission shall be permitted of a shade equal to or darker than Ringelmann Smoke Chart No. 2.
- (i) Other forms of pollution. No emission of fly ash, dust, smoke, vapors, gases or other forms of air pollution shall be permitted which can jeopardize human health, animal or vegetable life or which otherwise contributes to the deterioration of or detracts from adjacent properties.
- (h) Odors. No emission of odorous gases or other matter shall be permitted in a quantity or of a type that permits it to be detectable, other than by instrument, at the property line.
- (s) Nuisances. The proposed use shall not be more objectionable to nearby property owners or occupants by reason of noise, fumes, vibration or lighting than would be the operations of a permitted use.

As noted above, this report is intended to review these wood smoke and odor concerns.



# 3 Ramboll Analysis

# 3.1 Wood Smoke Characterization

The smoke from wood burning is made up of a complex mixture of gases and fine particles (*i.e.*, particulate pollution or particulate matter (PM)). PM is a mixture of solid particles (*i.e.*, filterable PM) and liquid droplets found in the air (*i.e.*, condensable PM). Filterable PM can further be broken down by particle size. For example, PM less than 10 microns in diameter (PM<sub>10</sub>) and less than 2.5 microns in diameter (PM<sub>2.5</sub>). Wood smoke can be in both of these size ranges. PM<sub>2.5</sub> is often responsible for reduced visibility or haze.

# 3.2 Ambient Air Quality Standards and Local Attainment Status

The United State Environmental Protection Agency (USEPA) has concluded that  $PM_{10}$  and  $PM_{2.5}$  can have adverse health effects above specific concentrations (typically micrograms per cubic meter or  $\mu g/m^3$ ). The Clean Air Act requires that USEPA establish and periodically review the National Air Quality Standards for each criteria air pollutant. This includes  $PM_{10}/PM_{2.5}$ , ground-level ozone, nitrogen oxides, carbon monoxide, sulfur dioxide and lead. Primary standards provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. The federal  $PM_{10}$  standard (both primary and secondary) is 150  $\mu g/m^3$  (24-hour average). The federal  $PM_{2.5}$  standard (primary and secondary) is 35  $\mu g/m^3$  (24hour average). The federal primary annual average  $PM_{2.5}$  standard is 12  $\mu g/m^3$  (annual average); the secondary primary annual average  $PM_{2.5}$  standard is 15  $\mu g/m^3$  (annual average).<sup>1</sup>

Ulster County, NY, which includes Saugerties, is in attainment for each federal criteria pollutant health standard, including for particulate matter  $(PM_{10} \text{ and } PM_{2.5})^2$ .

# 3.3 Regulatory Review

Ramboll reviewed New York State regulations for specific regulatory requirements that may apply to recreational campfires. Since Ulster County is an attainment area for the federal  $PM_{10}$  and  $PM_{2.5}$  standards, there are no specific Clean Air Act requirements applicable to the area for control measures to attain the PM standards. It should be noted that even serious  $PM_{10}/PM_{2.5}$  non-attainment areas do not include control measures specific to recreational campfires as part of their State Implementation Plans and attainment strategies.

# 3.3.1 New York State: Open Burning and Campfires Exemption

Open burning is prohibited in New York State with several exceptions. Title 6 of the New York State Codes, Rules and Regulations (6 NYCRR) Part 215 addresses the requirements for Open Fires. Pursuant to 6 NYCRR 215.1(a) "open fire" is defined as:

Confidential

<sup>&</sup>lt;sup>1</sup> <u>https://www.epa.gov/criteria-air-pollutants/naaqs-table</u> (accessed November 15, 2022).

<sup>&</sup>lt;sup>2</sup> Counties Designated Nonattainment <u>https://www3.epa.gov/airquality/greenbook/mapnpoll.html</u> Accessed: November 2022



Any outdoor fire or outdoor smoke producing process from which air contaminants are emitted directly into the outdoor atmosphere. Open fires include burning in barrels or modified barrels. Open fires do not include burning in outdoor furnaces or boilers that are used to heat buildings when the devices are actually used for such purpose.

A campfire is an open fire. Pursuant to 6 NYCRR 215.1(c) "camp fire" is defined as:

A camp fire or any other outdoor open fire less than three feet in height, and less than four feet in length and width or diameter.

In accordance with 6 NYCRR 215.3(c) campfires <u>are</u> allowed provided only untreated wood is used as fuel and the fire is not left unattended until extinguished.

<u>Assessment:</u> Campfires at the proposed facility will be in compliance with NY State laws related to campfires so long as they only use untreated wood as fuel and each campfire is attended. In addition, the untreated wood made available at the site will meet the requirements outlined in 6 NYCRR 192.5 and source documentation will be maintained by Terramor.

# 3.3.2 Opacity

Opacity is a measure of the amount of light obscured by the particulate matter (PM) or soot. Smoke density or opacity limits are commonly incorporated into municipal, state, and federal regulations as a means of regulating sources of visual emissions. Opacity tests are typically performed for combustion equipment, as higher opacity is associated with inefficient fuel combustion, particularly for diesel and mixed fuels. Some of these regulations rely on the Ringelmann Smoke Chart, a set of charts representing graduated shades of gray, by which the density of a column of smoke rising from a source may be compared. The Ringelmann Smoke Chart is acknowledged to have many limitations. For example, the apparent darkness or opacity of a plume depends upon several factors including the concentration and size of the particulate matter in the plume, the depth of the smoke column being observed, the natural lighting conditions and positioning of the sun relative to the observer, and the color of the smoke particles. Despite these limitations, the Ringelmann Smoke Chart can give good practical results when used by well-trained operators. In 1974, the USEPA stopped using Ringelmann Smoke Chart in New Source Performance Standards (NSPS) when the revised USEPA Method 9 - Visual Determination of the Opacity of Emissions from Stationary Sources was promulgated. Opacity is evaluated as an average of 24 consecutive observations recorded in 15-second intervals (6-minute averaging period) unless an alternative time period is specified in the regulation or standard (e.g., some NSPS specify a 3-minute averaging period). The USEPA conducted extensive field studies on the accuracy and reliability of the revised Method 9 and showed that visible emissions can be accurately assessed under the method by properly trained and certified observers<sup>3</sup>. For regulatory determinations, a trained and generally certified Visual Emissions Evaluation (VEE) is required to make a determination (https://www.epa.gov/emc/method-9-visual-opacity). Consistent with 6 NYCRR, wood-only campfires are explicitly excluded from open burning requirements, including opacity limits, in open burning

<sup>3</sup> References:

Eastern Technical Associates and Entrophy Environmentalist, Inc. 1993. Visible Emissions Field Manual – EPA Methods 9 and 22. EPA 340/1-92-004. December. Available at: https://www3.epa.gov/ttnemc01/methods/VEFieldManual.pdf. Accessed: September 2022.

United States Department of the Interior. 1967. Ringelmann Smoke Chart (Revision of IC 7718). Bureau of Mines. May. Available at: https://www.cdc.gov/niosh/mining/userfiles/works/pdfs/ic8333.pdf. Accessed: September 2022.



regulations in PM non-attainment and attainment areas.<sup>4</sup> This is in contrast to explicit opacity requirements for diesel equipment and large-scale and/or mixed-fuel open burning.

Saugerties Zoning Code 245-34-D(g), which specifically addresses "Smoke", states that "[n]o emission shall be permitted of a shade equal to or darker than Ringelmann Smoke Chart No. 2." It does not appear as if the Zoning Code includes reference to regulatory methods to evaluate Ringelmann levels or reference to the current visual opacity metric (*i.e.*, percent opacity) and its regulatory methods. (As a note, Ringelmann Smoke Chart No. 2 is generally equivalent to an opacity reading of 40%.)

Assessment: Regulatory opacity reading methodologies require multiple observations by trained observers over required intervals and time periods. As such, they are difficult to use on highly-variable, transient sources such as small campfires. Campfires, by their nature, are small open-air combustion sources characterized by more efficient combustion of smaller amounts of fuel compared to sources with explicit opacity requirements such as diesel combustion engines/equipment and larger open air burning of mixed (*e.g.*, not untreated wood only) fuels. In addition, key observation metrics (*e.g.*, the natural lighting conditions and positioning of the sun relative to the observer) may be difficult to achieve for readings of campfire smoke in wooded and low-light conditions. In addition, the campfires will only be using untreated wood as fuel, which would minimize dense and/or darker smoke associated with more general burning regulatory requirements. Wood-only campfires are too small and well-provided with oxygen to expect the type of dark smoke equal or darker than Ringelmann Smoke Chart No. 2 (or related opacity metrics), even if the regulatory methods could be accurately applied to them.

#### 3.4 Odor and Nuisance

As noted in the NPV Memorandum, "*At least 7 or 8 tent sites depict fire pits situated between the tent site and the property boundary. With the proposed design, a fire is likely to be visible from the existing residences and woodsmoke (both smell and visible smoke) could carry over to adjoining residential parcels."* Wood smoke contains many different chemical compounds that can be detected by the human olfactory system and, for certain compounds, by instruments. The detection by the human sense of smell is highly variable in the human population. The cause of this variation is the variation in genetics that manifests in the diversity of the global human population.<sup>5</sup> Small differences in olfactory receptor genes, which are extremely common in humans, can affect the way each receptor functions. These genetic differences mean that when two people smell the same molecule, one person may detect a floral odor while another smells nothing at all.<sup>6</sup> The proposed provision that "No emission of odorous gases or other matter shall be permitted in a quantity or of a type that permits it to be detectable, other than by

<sup>4</sup> Imperial County Air Pollution Control District. Exemption C.7 in Rule 421. Available at: <u>https://apcd.imperialcounty.org/wp-</u>

content/uploads/2020/05/1RULE421.pdf. Accessed November 2022.

South Coast Air Quality Management District. Exemptions (h)(6)(A) and (B) in Rule 444. Available at <u>http://www.aqmd.gov/docs/default-source/rule-book/rule-iv/rule-444.pdf?sfvrsn=4</u> Accessed November 2022.

British Columbia Open Burning Smoke Control Regulation. Available at:

https://www.bclaws.gov.bc.ca/civix/document/id/complete/statreg/152\_2019/#section4. Accessed November 2022

Florida Department of Environment Protection – Open Burning. Available at <u>https://floridadep.gov/air/permitting-compliance/content/open-burning</u>. Accessed November 2022.

San Diego County Air Pollution Control District. Exemption (b)(1)(ii) in Rule 101. Available at:

https://www.sdapcd.org/content/dam/sdapcd/documents/rules/current-rules/Rule-101.pdf. Accessed November 2022.

<sup>5</sup> Logan DW. Do you smell what I smell? Genetic variation in olfactory perception. Biochem Soc Trans. 2014 Aug;42(4):861-5. doi: 10.1042/BST20140052. PMID: 25109969. Accessed November 2022.

<sup>6</sup> Monell Chemical Senses Center. "Do you smell what I smell? From genes to receptors to perception: Olfaction unraveled." ScienceDaily. ScienceDaily, 30 April 2019. Available at <u>www.sciencedaily.com/releases/2019/04/190430164208.htm</u>. Accessed November 2022.

Confidential



instrument, at the property line" is highly restrictive, in that certain individuals can be highly sensitive to an odor of a specific chemical component of wood smoke odors and a different individual may not detect that same odor or perceive it in the same manner. Definition of "detectable" in zoning code condition does not appear to be further defined nor is the type or impact of the odor qualified. In the code section on nuisance (Zoning Code Section 245-34-D (s), it specifically refers to "objectionable" by reason on fumes; although this is still subjective, it does provide more specificity as to the type of odor that is of concern.

Campfires at the proposed facility will only be allowed to use untreated wood as fuel, minimizing or eliminating certain odorous emissions. In addition, the project campfires are located in a wooded area. Vegetation is a known mitigation of PM concentrations, including organic aerosol compounds.<sup>7</sup> For example, reductions of fine particulate concentrations of 55-88% have been reported, particularly at lower windspeeds when concentrations are expected to be higher (*e.g.*, not dispersed to lower concentrations by the wind).<sup>8</sup> This should also reduce potential fumes and odors. We note that fireplace and residential outdoor fire pits are not restricted in Saugerties. Thus, similar wood smoke compounds and odors are likely already in the area.

# 4 Ramboll Summary and Conclusions

Ramboll reviewed the NPV memorandum's analysis and recommendations related to wood smoke. The conclusions below are based on the analysis in Section 3 above.

# Zoning Code 245-34-D(g) Smoke. No emission shall be permitted of a shade equal to or darker than <u>Ringelmann Smoke Chart No. 2</u>.

Campfires at the proposed facility will only be allowed to use untreated wood as fuel and each campfire will be attended. We note that the Zoning Code does not reference how Ringelmann determinations will be made (*e.g.*, methodology, certified readers, newer opacity techniques) and our experience suggests that regulatory opacity readings on campfire smoke on the property may not be possible. Regardless, it is not anticipated that project campfires would result in Ringelmann Smoke Chart No. 2 (*i.e.*, 40% opacity) or greater levels because the campfires will only be using untreated wood as fuel, which would minimize dense and/or darker smoke associated with incomplete diesel combustion and larger-scale mixed-fuel open burning.

Zoning Code 245-34-D(i): Other forms of pollution. No emission of fly ash, dust, smoke, vapors, gases or other forms of air pollution shall be permitted which can jeopardize human health, animal or vegetable life or which otherwise contributes to the deterioration of or detracts from adjacent properties.

Ulster County is an attainment area for primary and secondary federal  $PM_{10}$  and  $PM_{2.5}$  standards and there are no specific Clean Air Act requirements for PM control measures on campfires to attain or maintain these health standards in this area. Thus, it would not be expected that the campfire wood smoke from the project would jeopardize human health (*i.e.*, no exceedances of the primary PM

<sup>&</sup>lt;sup>7</sup> EPA Workshop. The Role of Vegetation in Mitigating Air Quality Impacts from Traffic Emissions Seminar, EPA Campus, RTP, NC, April 27-2,2010. Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/html/workshop.html</u>. Accessed: November 2022.

<sup>&</sup>lt;sup>8</sup> Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/pdf/2bcahill2.pdf</u>. Accessed November 2022.



standards) or animal / vegetable life or decreased visibility (*i.e.*, no exceedances of the secondary PM standards). 6 NYCRR 215.3(c) exempts wood-only campfires from open burning regulatory requirements. In addition, the project campfires are located in a wooded area. Vegetation is a known mitigation of PM concentrations.<sup>9</sup> For example, reductions of fine particulate concentrations of 55-88% have been reported, particularly at lower windspeeds when concentrations are expected to be higher (*e.g.*, not dispersed to lower concentrations by the wind).<sup>10</sup>

# Zoning Code 245-34-D(h): Odors. No emission of odorous gases or other matter shall be permitted in a guantity or of a type that permits it to be detectable, other than by instrument, at the property line.

It is not anticipated that wood smoke fumes from the project would be a nuisance because they are dispersed over the project area, vegetation in the project area would reduce wood smoke compound concentrations, the campfires are only fueled by untreated wood (eliminating potential nuisance compounds), and distances to all but five of the fire pits are over 100' from the property line (two of which are at least 50' and three are at least 75' from the property line).

# Zoning Code 245-34-D(s) Nuisances. The proposed use shall not be more objectionable to nearby property owners or occupants by reason of noise, fumes, vibration or lighting than would be the operations of a permitted use.

Ramboll's analysis is confined to the potential fume impacts from the campfire woodsmoke. Campfires at the proposed facility will only be allowed to use untreated wood as fuel, minimizing or eliminating certain odorous emissions. In addition, the project campfires are located in a wooded area. Vegetation is a known mitigation of PM concentrations, including organic aerosol compounds.<sup>11</sup> For example, reductions of fine particulate concentrations of 55-88% have been reported, particularly at lower windspeeds when concentrations are expected to be higher (*e.g.*, not dispersed to lower concentrations by the wind).<sup>12</sup> This should also reduce any potential fumes. We note that fireplace and residential outdoor fire pits are not restricted in Saugerties. Thus, similar wood smoke odors are likely already in the area. It is not anticipated that wood smoke fumes from the project area would reduce wood smoke compound concentrations, the campfires are only fueled by wood (eliminating potential nuisance compounds), and distances to all but five of the fire pits are over 100' from the property line (two of which are at least 50' and three are at least 75' from the property line).

Based on the above assessment, we find that project's use of campfires would not have appreciable impacts on air quality or odor, in part because the project design includes multiple mitigating effects ((*e.g.*, use of untreated wood only for campfires, vegetation around camping spaces, setbacks between camping spaces and the property boundary, etc.).

# Attachments: A. Figure 1 - Site Location Map B. NPV Memorandum

#### Confidential

<sup>&</sup>lt;sup>9</sup> EPA Workshop. The Role of Vegetation in Mitigating Air Quality Impacts from Traffic Emissions Seminar, EPA Campus, RTP, NC, April 27-2,2010. Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/html/workshop.html</u>. Accessed: November 2022.

<sup>&</sup>lt;sup>10</sup> Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/pdf/2bcahill2.pdf</u>. Accessed November 2022.

<sup>&</sup>lt;sup>11</sup> EPA Workshop. The Role of Vegetation in Mitigating Air Quality Impacts from Traffic Emissions Seminar, EPA Campus, RTP, NC, April 27-2,2010. Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/html/workshop.html</u>. Accessed: November 2022.

<sup>&</sup>lt;sup>12</sup> Available at: <u>https://archive.epa.gov/nrmrl/archive-appcd/web/pdf/2bcahill2.pdf</u>. Accessed November 2022.

ATTACHMENT A FIGURE 1 – SITE LOCATION MAP



# SITE LOCATION MAP

# **FIGURE 1**

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC A RAMBOLL COMPANY

RAMBOLL



500

ATTACHMENT B NPV MEMORANDUM

# VINELSON POPE VOORHIS

environmental • land use • planning

| то:   | MEMORANDUM<br>Howard Post, Planning Board Chair<br>Members, Saugerties Planning Board                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FROM: | Adriana Beltrani, AICP<br>Max Stach, AICP                                                                                                                                                         |
| RE:   | Terramor Catskills; SBL 27.2-8-28/32.110                                                                                                                                                          |
| DATE: | July 11, 2022                                                                                                                                                                                     |
| CC:   | Kevin Franke Applicant Representative<br>Ahmed Helmi, Applicant Representative<br>Becky Bertorelli, Planning Board Clerk<br>Alvah Weeks, Building Inspector<br>Dennis Larios, P.E., Town Engineer |

We are in receipt of the following items:

- Determination from Alvah Weeks, Building Inspector, dated June 6, 2022;
- Cover Letter prepared by Kevin Franke, dated July 1, 2022;
- Site Plan Application not signed, dated July 1, 2022;
- Responses to NPV Sketch Plan Comments, prepared by Kevin J. Franke, dated July 1, 2022;
- Site Plan Set, 86 sheets dated July 1, 2022 including:
  - o Boundary Survey prepared by Ausfelt & Waldruff Land Surveyors, LLP
  - Landscape Plans including Existing and Proposed Conditions, Grading and Drainage, Road Profiles, Lighting, Materials and Planting Plan, prepared by the LA Group
  - o Architectural Drawings prepared by Design Group Collaborative
  - o Sewer and Water Engineering Plans Prepared by C.T. Male Associates
- Lighting Cut Sheets, 37 sheets dated July 1, 2021
- Full EAF Part 1 prepared by Kimberly White, dated July 1, 2022
- Ground Water Sampling Results prepared by ALPHA Geoscience dated December 21, 2021
- Traffic Impact Study prepared by GPI, dated June 2022
- Stormwater Pol
- Wastewater Basis of Design Report
- Water Supply Basis of Design Report

We previously reviewed additional documents, enumerated in our March 11, 2022 memorandum.

The applicant seeks site plan and special use permit approval for a 75 unit "glamping" campground including a wellness center, activity lawns, swimming pool, lodge and facility operations including a maintenance facility, golf cart storage and on-site employee housing. The project is proposed on two (2) parcels totaling 77.51 acres in the Moderate Density Residential (MDR) zoning district. The applicant proposes to gain primary access from Route 212 with emergency access via Cotton Tail Lane.

We have been as thorough as possible in our review but given the size of this submission and time allotted to review, it is likely that we may have additional comments as the planning and review process proceeds. Our comments are as follows:

# **Process**

- The Lead Agency Notice of Intent for this Type I action should be circulated along with the Full EAF Part 1 form and a copy of the application. Due to the voluminous size of the application, the Board may wish to send flash drives or provide a link to the document posted online in lieu of paper copies. If so, the Lead Agency NOI should indicate how involved and interested agencies may request paper copies.
  - a. The Board must wait 30 days to assume Lead Agency status and proceed with SEQR review, as detailed below.
- 2. Ulster County Planning Board review is required. The plans and required forms should be submitted at this time.
- 3. The project site borders the Town Boundary with the Town of Woodstock. Pursuant to GML §239-nn, the clerk of the Town will need to receive written notice of the public hearing for this application. We suggest including the Town of Woodstock as an interested agency for SEQR review.
- 4. Comment or correspondence should be solicited from the following organization or agencies in addition to any others identified by the Planning Board:
  - a. Centerville Fire Department
  - b. NYS DEC regarding disturbance to wetlands and waterbodies, wastewater (SPDES), biodiversity and bulk petroleum storage
  - c. US ACOE for jurisdictional determination of wetlands, possible disturbance permits
  - d. NYS DOT for curb cut permit and sight distance review
  - e. UC DOH/NYS DOH for public water supply and wastewater permitting, campground permitting, public swimming pool permitting
  - f. Town Engineer for SWPPP, water/wastewater and site plan review.
- 5. The Board should consider engaging with a traffic engineer to review the Traffic Impact Study.
- 6. The Board may wish to forward the plans, particularly the architectural drawings, to the Building Department for Building Inspector review to ensure that applicable codes are met which might relate to the site plan and layout (see comments below).
- 7. A public hearing will be required for special use permit review.

# **Application**

- 1. The applicant proposes to merge the two parcels as part of the application, a subdivision application will be required and should be coordinated through the Planning Board secretary.
- 2. The application forms must be signed by the preparer.

# Planning & Zoning

3. In issuing a Special Use Permit, the Planning Board must consider the supplemental requirements set forth in the zoning code and can request additional studies or analyses to support its review. Based on our review, specific consideration of the following provisions is warranted: <u>§245-34.D states:</u>



- a. (g) Smoke. No emission shall be permitted of a shade equal to or darker than Ringelmann Smoke Chart No. 2.
- b. (h) Odors. No emission of odorous gases or other matter shall be permitted in a quantity or of a type that permits it to be detectable, other than by instrument, at the property line.
- c. (i) Other forms of pollution. No emission of fly ash, dust, smoke, vapors, gases or other forms of air pollution shall be permitted which can jeopardize human health, animal or vegetable life or which otherwise contributes to the deterioration of or detracts from adjacent properties.
- d. (o)Character and appearance. The character and appearance of the proposed use, buildings, structures, outdoor signs, and lighting shall be in general harmony with the character and appearance of the surrounding neighborhood and of the Town of Saugerties and shall not adversely affect the general welfare of the inhabitants of the Town.
- e. (q) Sewage treatment and water supply. The adequacy of available sewage disposal and water supply services supporting the proposed activity or use shall be sufficient to meet the needs of the proposed activity or use. This consideration shall include, but not be limited to, the suitability of water supply and sanitary sewage facilities to accommodate the intended use and adequate means to protect surface and groundwater from pollution.
- f. (s) Nuisances. The proposed use shall not be more objectionable to nearby property owners or occupants by reason of noise, fumes, vibration or lighting than would be the operations of a permitted use.
- g. (v) The design of structures and the operation of the use (including hours of operation) shall ensure compatibility with surrounding uses and with the scenic and visual characteristics of the Town.

# §245-11.I includes the following paraphrased considerations:

- h. The Planning Board shall consider the following: Overcrowding of units; and the extent to which noise or light interferes with the use and enjoyment of surrounding properties.
- 4. Campsites are now proposed along the western boundary of the site which are located near to existing residences and residential lot lines. A field investigation conducted on June 7, 2022 showed these sites are clearly visible from these existing residences. While forest cover is shown on the plans as a buffer, the forest cover actually lacks significant understory, consistent with mature eastern hemlock forests. At least 7 or 8 tent sites depict fire pits situated between the tent site and the property boundary. With the proposed design, a fire is likely to be visible from the existing residences and woodsmoke (both smell and visible smoke) could carry over to adjoining residential parcels. (See below image which depicts a residential structure from a camp site proposed at the time.)
  - i. The applicant should suggest methods to ensure that these sites meet the above referenced special permit standards with relation to screening and buffering campsites and campfires from adjacent residences.





- 5. An inventory of buildings on the site should be provided on the Project Master Plan Sheet L-2.0 indicating the name of the building, gross building square footage and/or seats, beds or maximum occupancy for staff and guests. In addition, the 'Woody 35' and 'Woody 45' sized tents should be more clearly indicated on the plans. Currently the only enumeration of the number and breakdown of campsite types is within the Water Supply BOD report. If these tents are intended to be interchangeable, the Planning Board may wish to establish limitations on the total number of the larger tent to reflect the water use/wastewater generation and traffic studies.
- 6. The comment response letter states that the maximum capacity of a Woody 35 tent is 6 people and for a Woody 45 tent is 8 people. This equates to a capacity of 510 guests at the facility. The Water and Wastewater Basis of Design Reports indicate that the maximum capacity of the campsites is 240, which vastly underrepresents the possible worst-case scenario.
  - j. It seems that these lower numbers are based on average occupancy rates from the Bar Harbor site. We question whether this Bar Harbor site is representative of the proposed site in terms of market economics and demographics.
  - k. We defer to the Town Engineer on what standard to design a water or wastewater system, but to meet the hard-look requirement under SEQR, a "reasonable worst-case standard" should be utilized, which would be related to full occupancy, or if full occupancy is not reasonably likely to occur, then some percentage of full occupancy that is reasonably likely to occur. The Planning Board may wish to impose an occupancy restriction based on the capacity outlined by the applicant to establish environmental determinations and/or findings, and for the wastewater and potable water facilities.



- 7. We question whether traffic impacts from this resort campground should be assessed as a traditional campground/RV park or as a resort hotel. We suggest that the Planning Board engage with a Traffic Engineer to review this and other traffic related questions.
- 8. Sheets A213, A214. The arrangement of beds for guest tents should be shown on the architectural plans, and it should be indicated whether these beds are single or bunk beds. We note that "Tent 2" (we assume this is the Woody 45 model) has two bedrooms while "Tent 1" has one bedroom. It appears that an indoor and an outdoor shower is proposed for each unit-this should be confirmed.
- 9. The capacity of employee housing does not match between the architectural drawings, the water and wastewater BOD reports, the comment response letter or the EAF project description. The BOD report states that 6 dorm units are proposed for 30 workers. This would require five beds per dorm building. Dorm buildings depicted on sheet A210 show 3 beds. If these represent bunk beds, then 36 employees can be accommodated with 6 to a dorm building.
  - I. Further, the comment response letter states that 4 structures are proposed to house 5 employees each, and 2 structures are proposed with a capacity for 4 employees each. Sheet A212 depicts the studio units with two rooms each containing a full-sized bed. We assume that these are the 2 structures proposed to house 4 employees each. Is this housing for couples only?
  - m. The number of Dorm and Studio units must be called out on the Master Plan Sheet L-2.0.
- 10. The BOD report indicates that the General Manager's House contains bedrooms, but three bedrooms are shown on the Architectural Drawings. Are these bedrooms intended to house employees or family members? The Planning Board may wish to limit occupancy to only the manager and/or their family, especially if water and sewer usage for this building is based on a single family detached residence.
- 11. The number of residential and non-residential employees and/or non-employee residents should be established. The comment response letter states that 42 employees are anticipated, split into two shifts. The letter totals 28 on-site employees, while the architectural drawings and BOD report indicate up to 48 individuals could be accommodated within the dorm and studio units. This calculation does not include the General Manager's House, as the capacity of this building is not clear (comment #8).
- 12. The single kitchen provided does not appear to be large enough to support between 24-42 residential employees, especially if meals are prepared individually by residents at mealtimes. Please verify that the single kitchen devoted to these employees is enough.
- 13. The Building Inspectors should review the site, building and floor plans to ensure compliance with the Americans with Disabilities Act (ADA) and other applicable building codes that could impact site design. We believe this may be a concern with regard to employee housing as depicted in the architectural plans.
- 14. We have counted 168 parking spaces. A parking calculation reflecting the maximum capacity of the resort should be included on the site plans which differentiates guest parking from employee parking. The Planning Board shall determine the appropriate number of parking spaces (245-29(a)).
- 15. From where will firewood be sourced? Please verify that all firewood will comply with NYS DEC requirements of 6 NYCRR 192.5.



- 16. Seasonality. The timing of activities and occupancy of the site must be clarified. Is the General Manager on site year-round? Are events proposed to take place during a full 12-month period or only from May-October?
- 17. Dumpsters should be called out on the plans.
- 18. We note that 2-3 box truck deliveries could occur per day. Is this anticipated year-round? Where and when are these deliveries received? It appears that loading space is accommodated only at the maintenance buildings and the Lodge.
- 19. Is the restaurant at the lodge open to the public or to guests only?
- 20. While the notes sheet lists a diversity of plantings, the landscape plans indicate only the type of planting proposed (evergreen tree, deciduous tree etc). More detail should be submitted regarding landscaping given the ecological importance of the site.
- 21. Three (3) propane storage tanks are proposed totaling 30,000 gallons is each tank 10,000 gallons? These should be clearly marked on the site plans. Liquid propane stored on site must demonstrate compliance with 6CRR-NY 613-4.1. The applicant should submit drawings, construction details and a narrative or correspondence with NYS DEC that demonstrates propane tanks are protective of sensitive receptors referenced in the law. (Law section linked <u>here</u>)
- 22. We defer review of the erosion and sediment control plans, grading plans, road profiles, construction details, water and wastewater concept plans and the SWPPP to the Town Engineer.

# **SEQR/Environmental Review**

- 23. This is a Type I action under SEQR as more than 10 acres is proposed to be physically altered. The Board should classify the action and notice its intent to assume Lead Agency (a draft NOI is attached). The Board must allow involved agencies 30 days to contest Lead Agency before taking any further SEQR action.
- 24. In general, all correspondence with agencies and studies conducted should be provided to the Planning Board. This includes letters or correspondence with the NYS DEC and NYS Department of Health. The wetland delineation report should be provided along with the request for jurisdictional determination. It is typical for State agencies to provide formal letters upon receipt of the SEQR NOI.
- 25. The Ducks Unlimited wetland mitigation program is a new program in the State of New York. It is unclear if this program has even been authorized at this time. We request documentation from NYS DEC to confirm that this is a feasible and appropriate mitigation. The applicant should also provide the Board with additional information about the Ducks Unlimited program, and its applicability in the State of New York.
- 26. We have reviewed the long EAF Part 1 and have the following comments:
  - a. C.2.c- The project site is part of an "Important Natural Area", within the Catskill Mountain physiographic area, Map 2, of the Open Space Plan. Further, the Open Space Vision Map calls out this physiographic area, including the project site. The response to this question should be "yes."



- b. D.2.b- We note that 19.13 acres are proposed to be disturbed. We defer to the Town Engineer and NYS DEC in the review of the SWPPP. This should be reconciled with the land cover changes indicated in Table I.1.a which indicate the reduction of only 5.0 acres of wetland and forest. Since almost the entirety of the existing site is forest and wetland it is difficult to reconcile without further explanation.
- c. D.1.e- We note that the proposed project will be conducted over the course of a 14-month period. Construction phasing or sequencing should be discussed.
- d. D.2.f- Regarding employee housing, clarification is needed and water/wastewater calculations must match the actual proposed accommodations on site.
- e. D.2.g- Please ensure that architectural drawings match EAF. The lodge appears to be 111 feet long on plans.
- f. D.2.b- See above discussion of Ducks Unlimited mitigation. In addition, part ii is left blank where the applicant proposes stream disturbances. The extent and nature of the stream disturbances should be explained, even if temporary. NYS DEC permits may be required for disturbances to the bed or banks of Class B streams, ie "protected streams."
- g. D.2.c, d- We note that the water and wastewater calculations may not be based on the maximum capacity of the facility per above comments.
  - i. In addition, a SPDES permit will be required from NYSDEC to discharge effluent from the proposed wastewater treatment plant into a protected, Class B stream.
  - ii. We note that 5 acres of impervious surface is proposed as a result of this project and defer a review of stormwater management practices to the Town Engineer.
- h. D2j- The number of parking spaces does not match the number we counted on the plans, this should be confirmed (166 or 168?). Please see our comments regarding the TIS and parking above.
- i. D2j- EV charging stations are proposed, these must be shown on the site plans.
- j. D2k- Please confirm the estimated annual electricity demand. The response is missing a zero or the comma is incorrect. A willingness to serve letter from the local utility should be provided.
   i. Does this calculation include the proposed EV charging stations?
- k. D2o- We note that wood campfires are to be permitted at all hours. This may produce odors for more than one hour per day.
- I. D2p- See above comment referencing bulk storage of liquid propane.
- m. D2q- Treatments are proposed for mosquito and tick control 2-3 times per year. Information regarding the chemicals proposed, application methodologies, safety, hazards and any required permits must be provided.
- n. E1h- We defer to the Town Engineer regarding water quality assessment.
- o. E2h- The project site is within five miles of Big Indian Wilderness and Overlook Mountain. This response should be "yes."
- 27. Based on a review of the Part 1 EAF, we have provided the Board with a draft Part 2 EAF to review. The Part 2 cannot be adopted until the Board declares Lead Agency, 30 days from circulation of the attached NOI. The Part 2 identifies the following potential impacts, to be reviewed and confirmed by the Board at the next meeting:
  - p. Impacts on Land
  - q. Impacts on Surface Water
  - r. Impacts on groundwater
  - s. Impact on Plants and Animals
  - t. Impact on Agricultural Resources
  - u. Impact on Open Space and Recreation
  - v. Impact on Transportation



- w. Impact on Noise, Odor and Light
- x. Impact on Human Health

Further Review is needed by the Planning Board to determine whether the proposed action may impact the following:

- y. Consistency with Community Plans (see comment 28)
- z. Consistency with Community Character (See comment 29)
- 28. When considering the proposed action's consistency with Community Plans, the Board should consider whether this project is consistent with the Town of Saugerties 2020 Comprehensive Plan. In particular, NYS DEC guidance states: "How do the vision and goals described in these plans compare with various elements of the proposed project? Do any elements of the proposed project conflict with the vision, goals, and strategies outlined in any of these adopted plans?"
  - aa. We have attached pages from the Comprehensive Plan that enumerate recommendations related to Land Use and Development (#6), Economics (Diversify Economic Base, Goal #9) and Tourism (#13). The following are the goal statements:
    - i. #6: "The Town and Village support, and encourage, planning policies that promote environmentally sound development (see Glossary) in all zoning districts and are responsive to the socioeconomic needs of the communities. These two factors must be balanced. The open spaces and rural aspects of the area are not replaceable, and any development should be well thought-out and planned with the future in mind. The Comprehensive Plan also seeks to strike a balance between open space conservation and economic development as stated in the Open Space Plan."
    - ii. #9: "The Town and the Village should attempt to diversify its economic base by encouraging a variety of business and employment opportunities."
    - iii. #13: "Promotion of tourism will be well-planned to maximize its economic benefit to the community. Tourism is important to many town businesses. In promoting tourism and it benefits, the community must consider the potential impacts of tourism development, such as additional parking demands, increased traffic, and pollution."
- 29. When considering the proposed action's consistency with Community Character, the Board should consider the following NYS DEC guidance:
  - bb. "Community character is defined by all the man-made and natural features of the area. It includes the visual character of a town, village, or city, and its visual landscape; but also includes the buildings and structures and their uses, the natural environment, activities, town services, and local policies that are in place...Changes to the type and intensity of land use, housing, public services, aesthetic quality, and to the balance between residential and commercial uses can all change community character."



# Η



Prepared for



**Terramor Catskills** 

# Indiana Bat and Northern Long-Eared Bat Habitat and Acoustic Survey

Terramor Catskills Site, Town of Saugerties, Ulster County, NY

5 October 2022



Edgewood Environmental Consulting, LLC

Thinking Outside.

| Document details  | The details entered below are automatically shown on the cover and the main page footer.<br>PLEASE NOTE: This table must NOT be removed from this document. |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Document title    | Indiana Bat and Northern Long-Eared Bat Habitat and Acoustic Survey                                                                                         |  |  |
| Document subtitle | Terramor Catskills Site, Town of Saugerties, Ulster County, NY                                                                                              |  |  |
| Project No.       | 2022-026                                                                                                                                                    |  |  |
| Date              | 5 October 2022                                                                                                                                              |  |  |
| Version           | 1.0                                                                                                                                                         |  |  |
| Author            | Michael S. Fishman                                                                                                                                          |  |  |
| Client Name       | Terramor Outdoor Resorts                                                                                                                                    |  |  |

|         |          |        |             | Edgewood | approval to issue |                           |
|---------|----------|--------|-------------|----------|-------------------|---------------------------|
| Version | Revision | Author | Reviewed by | Name     | Date              | Comments                  |
| Draft   | 0.0      | MSF    | JPSF        | MSF      | 10/05/22          | Internal draft for review |
| Final   | 1.0      | MSF    |             |          |                   | For Client Review         |
| 8 B     |          |        |             |          |                   |                           |
| R       | 6        |        |             |          |                   |                           |
|         |          |        |             |          |                   |                           |
|         |          |        | -           |          |                   |                           |



# Indiana Bat and Northern Long-Eared Bat Habitat and Acoustic Survey

Terramor Catskills Site, Town of Saugerties, Ulster County, NY



Edgewood Environmental Consulting, LLC Consulting · Research · Education 5 Edgewood Parkway Fayetteville, NY 13066 (315) 456-8731

© Copyright 2022 by Edgewood Environmental Consulting, LLC. All rights reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of Edgewood Environmental Consulting, LLC.



# CONTENTS

| 1.                                     | INTRODUCTION                        |                                                                                           |  |  |  |
|----------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
|                                        | 1.1                                 | Site Location, Description, and Surrounding Landscape1                                    |  |  |  |
|                                        | 1.2                                 | Indiana Bat and Northern Long-Eared Bat Habitat Requirements                              |  |  |  |
|                                        | 1.3<br>1.4                          | Acoustic Identification of Bats                                                           |  |  |  |
| 2                                      |                                     |                                                                                           |  |  |  |
| 2.                                     |                                     | DS                                                                                        |  |  |  |
|                                        | 2.1<br>2.2                          | Habitat Assessment                                                                        |  |  |  |
| 3.                                     | FINDIN                              | GS                                                                                        |  |  |  |
|                                        | 3.1                                 | Habitat Description and Suitability                                                       |  |  |  |
|                                        | 3.2                                 | Acoustic Survey                                                                           |  |  |  |
| 4.                                     | CONCL                               | USIONS                                                                                    |  |  |  |
|                                        | 4.1                                 | Bat Habitat Suitability14                                                                 |  |  |  |
|                                        | 4.2                                 | Presence of Listed Species                                                                |  |  |  |
|                                        | 4.3                                 | Management Recommendations15                                                              |  |  |  |
| 5.                                     | REFER                               | ENCES CITED                                                                               |  |  |  |
| TABL                                   | .ES                                 |                                                                                           |  |  |  |
| Table                                  | 2.2-1. B                            | at detector settings for the Terramor Catskills Project Acoustic Bat Survey6              |  |  |  |
|                                        |                                     | Signal parameter settings for Kaleidoscope Pro7                                           |  |  |  |
|                                        |                                     | Standard 6-letter bat name abbreviations used by Kaleidoscope Pro and Vetting7            |  |  |  |
|                                        |                                     | Codes used to describe bat call parameters and qualities for visual vetting               |  |  |  |
|                                        |                                     | Kaleidoscope Pro bat species classifications by sample site and night with MLE p-values12 |  |  |  |
|                                        |                                     | Listed bat species Kaleidoscope Pro classifications and visual vetting results by sample  |  |  |  |
|                                        |                                     | site with MLE p-values14                                                                  |  |  |  |
| FIGU                                   |                                     |                                                                                           |  |  |  |
| FIGU                                   |                                     | SITE LOCATION MAP                                                                         |  |  |  |
| FIGU                                   | RE 2                                | HABITAT COVER TYPE MAP                                                                    |  |  |  |
| FIGU                                   | RE 3                                | POTENTIAL BAT HABITAT MAP AND PHOTO LOCATION KEY                                          |  |  |  |
| FIGU                                   | RE 4                                | BAT HABITAT AND ACOUSTIC SAMPLING MAP                                                     |  |  |  |
| APPE                                   | ENDICES                             |                                                                                           |  |  |  |
| APPE                                   | ENDIX A                             | AGENCY BAT LOCATION DATA                                                                  |  |  |  |
| APPENDIX B BAT SURVEYOR QUALIFICATIONS |                                     |                                                                                           |  |  |  |
| APPE                                   | ENDIX C                             | BAT ACOUSTIC SURVEY STUDY PLAN AND APPROVAL                                               |  |  |  |
| APPE                                   | ENDIX D                             | BAT HABITAT ASSESSMENT DATA SHEETS AND PHOTOS                                             |  |  |  |
| APPE                                   | ENDIX E                             | SUMMARY OF BAT DETECTOR TYPES AND DEPLOYMENTS                                             |  |  |  |
| APPE                                   | ENDIX F                             | BAT ACOUSTIC SURVEY DATA SHEETS AND PHOTOS                                                |  |  |  |
| APPE                                   | endix g                             | WEATHER DATA                                                                              |  |  |  |
| APPE                                   | APPENDIX H BAT CALL VETTING RESULTS |                                                                                           |  |  |  |



# ACRONYMS AND ABBREVIATIONS

| ACKON TWIS AND | ADDREVIATIONS                                             |
|----------------|-----------------------------------------------------------|
| Name           | Description                                               |
| Ac             | Acre                                                      |
| AMSL           | Above Mean Sea Level                                      |
| BCM            | Bat Conservation and Management                           |
| °C             | Degrees Celsius                                           |
| CA             | California                                                |
| cm             | Centimeter                                                |
| CWB            | Certified Wildlife Biologist®                             |
| dB             | Decibels                                                  |
| DBH            | Diameter at Breast Height                                 |
| DD             | Decimal Degrees                                           |
| EDT            | Eastern Daylight Time                                     |
| ERM            | Environmental Resource Management                         |
| °F             | Degrees Fahrenheit                                        |
| Fc             | Characteristic Frequency                                  |
| Fmax           | Maximum Frequency                                         |
| Fmin           | Minimum Frequency                                         |
| FS             | Full Spectrum                                             |
| GB             | Gigabyte                                                  |
| GPS            | Global Positioning System                                 |
| In             | Inches                                                    |
| IPaC           | Information for Planning and Consultation system (USFWS)  |
| kHz            | Kilohertz                                                 |
| km             | Kilometer                                                 |
| KS             | Kansas                                                    |
| LLC            | Limited Liability Corporation                             |
| Ltd.           | Limited                                                   |
| m              | Meter                                                     |
| m/s            | Meters per second                                         |
| ms             | Milliseconds                                              |
| MA             | Massachusetts                                             |
| mi             | Mile(s)                                                   |
| MLE            | Maximum Likelihood Estimator                              |
| Mph            | Miles per hour                                            |
| NWS            | National Weather Service                                  |
| NY             | New York                                                  |
| NYNHP          | New York Natural Heritage Program                         |
| NYSDEC         | New York State Department of Environmental Conservation   |
| o/s            | Octaves per second (unit of slope)                        |
| Sc             | Characteristic Slope                                      |
| SD             | Secure Digital                                            |
| Sec            | Seconds                                                   |
| USFWS          | United States Fish & Wildlife Service                     |
| UTC            | Universal Time Coordinated (formerly Greenwich Mean Time) |
| ۷.             | Version                                                   |
| WGS84          | World Geodetic System 1984 (geodetic datum)               |
| ZC             | Zero Crossing                                             |
|                |                                                           |



# 1. INTRODUCTION

Terramor Outdoor Resorts (Terramor, or Project Sponsor) proposes to develop the Terramor Catskills Outdoor Resort Project (Project) on a 77.4-acre parcel located west of State Route 212 (Saugerties-Woodstock Road), and south of Glasco Turnpike in the Town of Saugerties, Ulster County, New York (Project Site). The Project will be a public camping and outdoor recreation resort.

Routine environmental due diligence review indicated that the endangered species, Indiana Bat (Myotis sodaliis), may occur in the vicinity of the Project Site<sup>1</sup> (Appendix A). Due to the presence of wetlands on the Project Site, permitting of the proposed Project may require U.S. Army Corps of Engineers' (USACE) authorization for wetland crossings or discharges. General Condition #18 of the Clean Water Act (CWA) Section 404 Nationwide General Permits (NWPs) requires that, "Non-federal permittees must submit a preconstruction notification to the district engineer if any listed species or designated critical habitat might be affected or is in the vicinity of the activity...and shall not begin work on the activity until notified by the district engineer that the requirements of the [Endangered Species Act] have been satisfied and that the activity is authorized." Therefore, the Project Sponsor retained Edgewood Environmental Consulting, LLC (Edgewood) to conduct a habitat assessment and Phase 2 acoustic presence/probable absence survey of the Project Site to determine whether this listed species actually uses the Site. Whereas the threatened Northern Long-eared Bat (Myotis septentrionalis) was not indicated by either the U.S. Fish & Wildlife Service's (USFWS) Information for Planning and Consultation (IPaC) system, nor the New York State Department of Environmental Conservation's online Environmental Resource Mapper, it is currently under consideration for listing to endangered status, and was once considered to be virtually ubiquitous in the Northeast. Therefore, Edgewood conducted the survey with sufficient effort to detect both species. Edgewood conducted this study from 31 July to 3 August 2022 with additional documentation of site conditions on 21 September 2022, and this report outlines the methods and findings of the study.

# 1.1 Site Location, Description, and Surrounding Landscape

The Project Site was located on an undeveloped 77.4-acre parcel situated on the west side of Saugerties-Woodstock Road, south of Glasco Turnpike in the Town of Saugerties, Ulster County, New York (see *Figure 1. Site Location Map*). Coordinates of a central point on the Site were 42.049596°N, 74.074725°W (WGS84 Datum, New York Plane Projection). Ecological cover types on the Project Site include hemlock-northern hardwood forest, successional northern hardwood forest, red maple-hardwood swamp, hemlock-hardwood swamp, eutrophic pond (woodland pool), midreach stream, and unpaved road/path (see *Figure 2, Habitat Cover Type Map*). Elevations on the site range from ±428 feet to ±534 feet above mean sea level (AMSL), and the terrain on site could be described as rolling hills. Habitats around the Project Site include large expanses of mixed age successional evergreen and hardwood forest with low-density residential and commercial development interspersed along roads in the region. Potential access to the site is available from Saugerties-Woodstock Road (State Route 212) on the eastern side of the Site, and also from Cottontail Lane from the north.

<sup>&</sup>lt;sup>1</sup> U.S. Fish & Wildlife Service. 2022. Information for Planning and Consultation Website. <u>https://ipac.ecosphere.fws.gov/location/KTC2CEB5ZBBBNKVG5JTZ3MMAZI/resources</u>, Accessed 06 July 2022.

# 1.2 Indiana Bat and Northern Long-Eared Bat Habitat Requirements

In order to assess potential habitat for bats it is necessary to understand how bats use their habitats. Potential bat habitats should provide a range of resources for bats at multiple spatial scales. These resources may include hibernacula (hibernation sites), roost structures, food and foraging space, water, and protective cover. They should also have habitat corridors to allow them to disperse or travel across the landscape to migrate, find food, and move among multiple roosts. Indiana bats and northern long-eared bats are both known to hibernate in caves or mines underground. Northern long-eared bats have also been found hibernating in building basements and beneath frame buildings in areas that lack subsurface caves or mines.

Spring and summer roost structures for both species are typically trees, although both have been known to occasionally roost in man-made structures. Indiana bats typically roost beneath exfoliating bark or in crevices of standing live trees or snags (standing dead trees) that are larger than 12.5 cm (about 5 inches) diameter at breast height (DBH), whereas northern long-eared bats may roost in similar places in trees or snags as small as 7.5 cm (about 3 inches) DBH, and may also roost in fallen trees on the forest floor.

Both bat species forage for insects in flight, usually below the tree canopy in mature hardwood or mixed evergreen and hardwood forests with open understories. Both species may capture their prey in flight, but northern long-eared bats are also known to glean their insect prey from surfaces of leaves, branches, and trunks of trees. Both species therefore require mature forest communities with open space beneath the tree canopy that allows them to acoustically detect prey and pursue prey in flight.

Bats drink water by flying low over open still or slow-flowing water bodies, and dipping their tongues into the water to lap it up. They therefore require open water bodies with minimal clutter over which they can fly and drink.

Bats may travel many miles in a night between roosting locations and foraging locations, and may travel tens to hundreds of miles to migrate to winter hibernation sites. Indiana bats are known to fly longer distances to avoid crossing open habitats, such as large fields or open grasslands. Therefore, they require contiguous corridors of mature forest with open understory to travel longer distances across the landscape to other large patches of mature forest that provide potential foraging, watering, and roosting habitat.

Thus, identification of potential habitat for Indiana bats and northern long-eared bats includes: reviewing aerial photos to identify areas of public or private forest land and potential connective habitat corridors between the Project Site and those forested lands; review of aerial photos of the Project Site to identify forested cover types; onsite identification of trees that provide potential roost structure, as well as flyways for transit onsite; and potential water sources that could provide drinking water for bats.

# 1.3 Acoustic Identification of Bats

Although bats have eyes that function very well in lighted areas, they cannot see very well in the dark. They therefore use ultrasonic sound (high-frequency sound waves above the range of human hearing) to sense their way through their environment in the dark, in a process called echolocation. They project high frequency sound pulses and listen for the echoes bouncing off of objects in their immediate surroundings, to determine the distance of each object, whether it is still or moving, and if it is moving, how fast and in what direction. Echolocation is a surrogate for vision that allows bats to detect obstacles in their flightpaths and to identify, pursue, and capture potential prey, as well as to maneuver through the forest at night. The sounds that bats

emit for echolocation vary depending on what they are doing. If they are navigating through the woods or searching for prey, they emit regularly spaced sound pulses about 1/10 second apart, called search-phase calls. Their calls change in both quality and quantity under different activities (*e.g.*, pursuing prey, interacting with other bats) and circumstances (*e.g.*, in highly cluttered environments). Bats can be identified to species by their search phase calls, using special computer programs designed to measure certain parameters of their echolocation calls. Only search phase calls can be identified to species, but the natural variability of bat calls and the impact of environmental factors on both calls and recording quality (*e.g.*, wind, insect noise, distance of bat from the microphone, density of surrounding vegetation, temperature variations, etc.) can confound species identification. Further, some bat species have very similar search phase call characteristics to other species making it difficult or sometimes impossible to distinguish between the species. Acoustic identification of bats is a useful tool to detect bat species that is less costly than capture-based survey methods, but it is also less accurate than capture-based methods, and does not provide information on population density.

Computer programs designed to classify bat species from their echolocation calls can only measure certain parameters of each call, and may therefore be limited in their ability to identify bat species accurately. Therefore, when rare species are indicated by the computer programs, trained and experienced bat biologists are required to visually review each call sonogram (a visual representation of the sound plotted as sound frequency and intensity over time) to independently classify the call to species. This is done because the human eye and brain are able to observe combinations of parameters in the calls that cannot be consistently measured by the computer programs. Observed call parameters are assessed based on known ranges of each parameter for each species, so that a scientifically repeatable, defensible process can be used to identify a call to species. Again, natural variability among bat call parameters may yield overlap between species, so that some species identifications may be less certain or definitive than others. In many cases, calls cannot be identified to species at all because the call is either not a search phase call, or the recording of the call is not of sufficient quality to observe the necessary classification parameters (i.e., the bat was too far from the microphone and the call is too faint to exhibit the necessary parameters). Acoustic identification of bats is therefore not an exact science, but it is more often accurate than not. It is important to understand that although acoustic identification of bats is a valuable tool for determining potential presence of rare bat species, it has natural limitations in its accuracy and must be practiced by experienced scientists.

# 1.4 Bat Surveyor Qualifications

Range Wide Indiana Bat and Northern Long-Eared Bat Survey Guidelines (USFWS, 2022, hereafter, Federal Protocol) states that acoustic surveys should be conducted by surveyors that, "have either completed one or more of the available bat acoustic courses/workshops (*e.g.*, BCM [Bat Conservation and Management], ERM, Titley/AnaBat, Wildlife Acoustics, USFWS) or be able to show similar on-the-job or academic experience." This habitat assessment and acoustic survey were conducted by Michael S. Fishman, a Certified Wildlife Biologist<sup>®</sup> (CWB) and Qualified Indiana Bat Surveyor with 32 years of experience working with bats in NY. Mr. Fishman held a Bachelor of Science degree in Natural Resources, Wildlife and Aquatic Sciences from Cornell University, and a Master of Science degree in Conservation Biology from the State University of New York College of Environmental Science and Forestry. His thesis study was on habitat selection by Indiana bats, and he has conducted and published additional original research on bats, has developed novel bat survey methods, and has conducted dozens of bat surveys throughout the eastern U.S., as well as in Canada, Mexico, Suriname, and

Belize. He has taken two bat acoustic survey courses from Bat Conservation and Management, one course from Wildlife Acoustics, one course from Vesper Bat Detection Services, and developed and taught ERM's bat acoustic survey method training course, which has been presented across the eastern U.S., and is among the courses specifically listed in the Federal Protocol. Mr. Fishman's qualifications are presented in resume format in *Appendix B*.

# 2. METHODS

The methods used in this habitat assessment and acoustic presence/probable absence survey were based on the methods outlined in Appendices A and C of, *Range Wide Indiana Bat and Northern Long-Eared Bat Survey Guidelines* (USFWS, 2022, hereafter, Federal Protocol). Methods proposed for the bat acoustic presence/probable absence survey were outlined in a study plan that was submitted to the USFWS New York Field Office on 27 July 2021 (*Appendix C*). This proposed study plan was approved by USFWS on 28 July 2021 (*Appendix C*). Methods used in this study are briefly summarized below, including any deviations from the methods proposed in the study plan.

# 2.1 Habitat Assessment

Bat habitat on the Project Site was assessed in a two-step process consisting of desktop data review and field reconnaissance. Desktop data review included reviewing online data sources for information about bat species occurrences on or near the Project Site, and reviewing remote sensing imagery (Google Earth Pro v. 7.3.4.8642, 12 May 2022, Google, LLC, Mountain View, CA, USA) to preliminarily identify habitat types and distribution on the Project Site. Google Earth was also used to identify and measure distances to the nearest public forested lands (parks, wildlife management areas, etc.), and potential forest habitat connective corridors among adjacent habitat areas.

We also reviewed online data resources and prior published records regarding bat occurrences on the Project Site. These included the USFWS's online Information for Planning and Consultation (IPaC) system (*Appendix A-1*), and the New York State Department of Environmental Conservation's (NYSDEC) online Environmental Resource Mapper (*Appendix A-2*).

The desktop data review was followed by field reconnaissance, in which habitats on the Project Site were identified, and classified per Edinger, *et al.* (2014). *Figure 2. Habitat Cover Type Map*, illustrates the spatial distribution and extent of ecological cover types, or habitats on the site. Ground level photographs were taken of representative habitats on the Project Site, as well as habitat features that indicated potential bat habitat resources or conditions on the site that might preclude bat use. Tree species were identified in each ecological community type, and estimates were made of the frequency and size distribution of tree species and of snags. *Appendix D* contains Indiana Bat Habitat characteristics at multiple spatial scales, including vegetation cover types on and adjacent to the Project Site, connective corridors to adjacent and regional habitat patches, wetland and water resources onsite, percent canopy cover, distribution of tree size classes, dominant tree species, and cover density by canopy level. *Appendix D* also includes photographs of representative habitats throughout the Project Site. Based on these observations, Edgewood classified habitats on the Site as either potential bat habitat, or not suitable habitat for bats. *Figure 3. Potential Bat Habitat Map and Photo Location Key*,

illustrates the areas of the site that were designated as potential bat habitat and not suitable habitat, as well as the locations of photos taken to document habitat conditions.

# 2.2 Acoustic Survey

Acoustic surveys were conducted per the 2022 Federal Protocol requirements, and a study plan that was submitted to the USFWS on 27 July 2021 (*Appendix C*). Minor in-field adjustments were made to proposed bat detector locations due to unsuitability of some of the originally proposed sample sites. *Figure 4. Bat Habitat and Acoustic Sampling Map* indicates the actual sampling site locations used in this survey.

The Project Site contained 0.31 km<sup>2</sup> (77 ac) of potential bat habitat (forest cover), and per the Federal Protocol, sites up to 0.5 km<sup>2</sup> required at least 10 detector nights of sampling effort to detect Indiana bats and at least 14 detector nights to detect northern long-eared bats. A detector night was equal to 1 detector recording for at least a 5-hour period starting at sunset each night. We set 5 Song Meter Mini bat detectors (Wildlife Acoustics, LLC, Maynard, MA, USA), running then-current firmware versions, and recording to 64 GB SanDisk SD memory cards (SanDisk, Malpitas, CA, USA), to record for 3 nights, from 31 July through 2 August 2022. All deployed bat detectors functioned properly, and weather conditions complied with the Federal Protocol, yielding 15 detector nights of sampling effort, which slightly exceeded the level of effort required by the Federal Protocol.

Most of the bat detectors were located such that each was at least 200 m from any other bat detector. The exception was that bat detectors 1 and 2 were located +157 m apart, which was considered sufficient spacing in the field. Each bat detector location was plotted with a handheld 12-channel global positioning system (GPS) unit (Garmin eTrex 30, Garmin, Ltd., Olathe, KS, USA). Bat detectors were placed in wetland and upland habitats, along logging roads, along a stream corridor, and in open understory of a mature hardwood forest, as recommended by the Federal Protocol. However, openings and forest edge habitat were limited, so most detectors were placed in areas of open forest understory or along logging roads. Bat detector placements provided a representative variety of sampling conditions in locations that were considered by the surveyor to be potential bat flyways. Bat detector locations are illustrated in *Figure 4. Bat Habitat and Acoustic Sampling Map.* 

Song Meter Mini bat detector microphones are omnidirectional. Bat detectors were mounted on 3 m tall electrical metallic tubing (EMT) poles such that microphones were at the top and thus at least 3 m above ground level. Microphones were oriented in the horizontal plane, at least 3 m from vegetation and other obstructions in all directions, with minimal vegetation/clutter within 10 m in any direction, and roughly parallel to adjacent forest edges (where applicable). Detectors 2, 3, and 4 were located along logging roads through dense understory hemlock-northern hardwood forest, so were closer to clutter than other detectors, but the roads provided open flyways, and all recorders detected bats. No weatherproofing was added to the microphones, as Wildlife Acoustics' microphones are designed to be weather resistant. *Appendix E* contains a summary table of bat detector types and deployment logistics (locations, deployment orientation, and habitat type). *Appendix F* contains Bat Acoustic Survey Data Sheets and photos of bat detector deployments, illustrating set up, reception cone in front of the microphone, and habitat setting. Bat detector settings for all detectors are summarized in Table 2.2-1.

| Ultrasonic Detector Feature | Setting     |  |
|-----------------------------|-------------|--|
| Recording Format            | FS          |  |
| Full Spectrum Sample Rate   | 256 kHz     |  |
| Minimum Trigger Frequency   | 16 kHz      |  |
| Maximum Recording Length    | 15 sec      |  |
| Trigger Window              | 3 sec       |  |
| Save noise files            | no          |  |
| Left channel gain           | 12 dB       |  |
| Time Zone                   | UTC - 04:00 |  |
|                             |             |  |

# Table 2.2-1. Bat detector settings for the Terramor Catskills Project Acoustic Bat Survey Ultrasonic Detector Feature Setting

Proper functioning of each Song Meter Mini bat detector was checked upon set up and take down by using a continuous 40 kHz tone generated by an Ultrasonic Calibrator (Wildlife Acoustics, LLC, Maynard, MA, USA), which provided a linked smartphone (iPhone 7 Plus, Apple, Inc., Cupertino, CA, USA) readout of microphone reception in decibels (dB). Readings greater than -30 dB indicated a properly functioning microphone. Screenshots of each test were saved for documentation, and are included among the photos in *Appendix F*.

Hourly weather conditions for each night of sampling were checked on the Weather Underground website, <u>www.weatherunderground.com</u>, to ensure that acceptable weather conditions occurred throughout the sampling period. Acceptable weather conditions during the first 5 hours of sampling, per the Federal Protocol, included the following:

- Air temperature of at least 10°C (50°F)
- No precipitation for longer than 30 minutes
- No intermittent precipitation
- No sustained wind greater than 4 m/s (9 mph, or ~7.5 knots) for 30 minutes or more

Historic weather readings from the nearest National Weather Service (NWS) weather station came from Stewart Airport in Newburgh, Orange County, NY, about 60 km (37.3 mi) away. There was a brief rain event recorded on 1 August 2022 (Night 1), but it was after the first 5 hours of recording after sunset, so the 3 sample nights (31 July through 3 August) were weather-compliant. *Appendix G* contains summary weather data for each sample night.

# 2.3 Acoustic Analysis

All raw recording files were downloaded from each bat detector and saved as archival files, organized by sampling site. The original raw recordings were then copied to a working folder within each sampling site folder, and recording copies were used for analysis. The copied sound files were first divided up by sampling night, which was defined as sunset to sunrise, or from the earliest evening recording to the latest morning recording on the following calendar date. This allowed analysis of the calls by night for each sample site.

#### 2.3.1 Auto-Classification Software Analysis

Each night's calls for a sample site were then batch-processed through Kaleidoscope Pro v.5.4.7 (Wildlife Acoustics, LLC, Maynard, MA, USA) to auto-classify bat calls using the Bats of North America v. 5.4.0 classifiers, selected by region (New York), and -1 Balanced (More Sensitive). This filtered all auto-classifications to the 9 species of bats that are known to occur in New York. Signal parameter settings used for analyzing all calls are outlined in Table 2.3.1-1.

| Signal Parameter                                                                      | Setting |
|---------------------------------------------------------------------------------------|---------|
| Frequency Range (min – max, kHz)                                                      | 8 - 120 |
| Length of detected pulses (min – max, ms)                                             | 2 - 500 |
| Maximum inter-syllable gap (ms)                                                       | 500     |
| Minimum number of pulses for identification                                           | 2       |
| Enhance with advanced signal processing when zero crossing for conversion or analysis | yes     |
| Input files                                                                           | WAV     |
| Output files                                                                          | WAV     |
| Time Expansion Factor in Output Files                                                 | Auto    |

Table 2.3.1-1. Signal parameter settings for Kaleidoscope Pro

Resulting files were saved as WAV files so they could be visually reviewed as both full spectrum (FS) and zero-crossing (ZC) files. Kaleidoscope Pro converted all FS recordings to ZC for its auto-classification analysis, but FS files provided more visual information about recorded sounds for manual visual analysis.

Output from Kaleidoscope Pro was a spreadsheet that provided an auto-classification of each call to species, along with a variety of measurements of call parameters. Bat classifications followed the standard 6-letter abbreviations for North American bat scientific names as summarized in Table 2.3.1-2, below.

| Table 2.3.1-2. Standard 6-letter bat name abbreviations used by Ka | leidoscope Pro and Vetting. |
|--------------------------------------------------------------------|-----------------------------|
|--------------------------------------------------------------------|-----------------------------|

| 6-Letter Code | Scientific Name           | Common Name       |
|---------------|---------------------------|-------------------|
| EPTFUS        | Eptesicus fuscus          | Big Brown Bat     |
| LASBOR        | Lasiurus borealis         | Eastern Red Bat   |
| LASCIN        | Lasiurus cinereus         | Hoary Bat         |
| LASNOC        | Lasionycteris noctivagans | Silver-haired Bat |

| MYOLEI | Myotis leibii          | Eastern Small-footed Bat |
|--------|------------------------|--------------------------|
| MYOLUC | Myotis lucifugus       | Little Brown Bat         |
| MYOSEP | Myotis septentrionalis | Northern Long-eared Bat  |
| MYOSOD | Myotis sodalis         | Indiana Bat              |
| PERSUB | Perimyotis subflavus   | Tricolored Bat           |

We reviewed resulting bat classification ID summaries in Kaleidoscope Pro for species identified and for maximum likelihood estimator (MLE) p-values for each identified species, which provided an index of confidence in the auto-classifications. If Indiana bats or northern long-eared bats were identified by Kaleidoscope Pro with MLE p-values of <0.05, all of the calls for that site and night were visually vetted to confirm or refute the identifications. If listed species were identified at a sample site with MLE p-values >0.05, we did not manually review the calls. If any species identification adjustments were made, they were noted in the Manual ID column on the identification output spreadsheets in *Appendix H*.

# 2.3.2 Manual Review of Software Output

Visual vetting of bat calls was a qualitative visual reassessment of the FS and ZC sonograms plotted by Kaleidoscope Pro based on visual interpretation of the sonogram's qualitative properties by an experienced observer. As such, it can be considered a subjective and biased process. However, certain standard criteria for visual species identification were used to improve its consistency and reliability to make the process repeatable. These criteria were based on call type (search phase), recording quality (at least 4 fully-formed call pulses), measured call parameters, and consideration of the influence that habitat conditions may have had on call parameters. In addition, qualitative individual species call characteristics were considered to more clearly define species level call sonograms.

Sonograms are visual representations of calls that are graphed as sound frequency in kilohertz (kHz) over time in milliseconds (ms). In this context, a bat call was a series of individual ultrasonic sound pulses that were emitted by a bat as part of its echolocation mechanism. A call may be interpreted as a series of high frequency chirps, or clicks. A pulse, as used herein, was an individual ultrasonic chirp or click that was part of a call. Our visual vetting process was a visual assessment of both ZC and FS sonograms to determine whether bat calls satisfied the following criteria:

- The call had to be a search phase call in order to be identifiable to species. Search phase calls generally have pulses spaced at least 100 ms (1/10<sup>th</sup> of a second) apart. Calls separated by less than 90 ms were not considered search phase calls.
- The quality of the recording, and therefore the clarity of the sonogram had to indicate fully formed call pulses of sufficient amplitude [loud enough] for the sonogram to accurately depict the sound produced by the bat. Sonograms of *Myotis* species bat calls, for example, should show a low-hanging terminal sweep, or "tail", at the lowest frequency part of each pulse. Visible harmonics of a pulse (similar structured sound pulses at octave intervals of the fundamental (original) pulse frequency, in the same time span) were also used as an indicator of a fully formed/depicted pulse.

 The characteristic frequency (Fc) and characteristic slope (Sc) of each call pulse had to fall within the known range of these parameters for the species. Ranges for these parameters were from Szewczak (2011).

Once these criteria were met, special characteristics for particular species were assessed. Whereas Indiana bat and little brown bat call parameters have substantial overlap, there are qualitative observations that can be used to separate them. For example, both species produce calls with Fc circa 40 kHz, but Indiana bat calls tend to be the higher end of the range (*i.e.*, 40-43 kHz), whereas little brown bat calls can be at the lower end of the scale (*i.e.*, 36-40 kHz). Similarly, both species' calls can have Sc between 100-120 o/s, but Sc>120 is more likely to be Indiana bat, whereas Sc<100 is more likely to be little brown bat. Indiana bat calls of longer duration (>4.5 ms) may have a secondary inflection, appearing as a flattened section of the pulse immediately before the tail. Little brown bat pulses may have multiple higher amplitude portions of pulses, making FS plots appear clumpy.

Because visual vetting is a subjective method, Edgewood gathered multiple qualitative cues from each call sequence that was reviewed to support the species classification. The more qualitative cues that were observed, the higher was the confidence in the identification of the species. If most or all of the cues were observed, Edgewood noted that species presence was probable to indicate high confidence in the species identification. If only a few, but not all of the species-indicating cues were observed, Edgewood noted that species presence was possible to indicate limited confidence in species identification.

Standard notations were used to describe bat call qualities and parameters in the comments column on the visual vetting matrices (*Appendix H*). Codes are defined in Table 2.3.2-1, below.

| Code | Abbreviation for         | Meaning/Use                                                                                                                      |
|------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| CF   | Constant Frequency       | Call pulses had a narrow range of frequencies,<br>appearing relatively flat, or having a horizontal<br>aspect to their sonogram  |
| CMT  | Confirmed Myotis Tail    | Myotis tail was visually evident, confirming that the bat was in the genus, <i>Myotis</i> .                                      |
| Fc   | Characteristic Frequency | A measure of the average frequency of a call pulse at the flattest part of the sonogram                                          |
| FM   | Frequency Modulated      | Call pulses had a broad range of frequency from<br>high to low, indicated by a vertical aspect of the<br>sonogram                |
| NSP  | Not Search Phase         | Indicated that the call was not a search phase call and therefore could not be identified to species.                            |
| PQR  | Poor Quality Recording   | Quality of recording was such that fully formed<br>calls were not depicted and call parameters<br>could not be clearly measured. |
| Sc   | Characteristic Slope     | Average slope of the call pulse sonogram, measured in octaves/second                                                             |

Table 2.3.2-1. Codes used to describe bat call parameters and qualities for visual vetting.

VMF Variable Minimum Frequency

Minimum frequency of each call pulse varied up and down, appearing jumpy; typical of eastern red bats (*Lasiurus borealis*).

#### 3. FINDINGS

#### 3.1 Habitat Description and Suitability

Edgewood identified 8 distinct ecological communities on the Project Site: successional northern hardwood forest, red maple-hardwood swamp, hemlock-hardwood swamp, hemlock-northern hardwood forest, rich mesophytic forest, headwater stream, eutrophic pond, and unpaved road/path (Edinger, *et al.*, 2014) on the Project Site. The locations, approximate extents, and classification of these communities are depicted in *Figure 2. Habitat Cover Type Map.* Photographs of representative cover types are contained in *Appendix D*.

Some of these ecological communities provided suitable potential bat habitat, whereas others did not. *Figure 3. Potential Bat Habitat Map and Photo Location Key* illustrates the locations and extent of potential bat habitat and unsuitable habitat for bats on the Project Site.

No caves or subterranean mines were identified on the Project Site, nor were any buildings or ruins of buildings with basements. Therefore, there were no potential hibernacula on the Project Site.

Most of the site consisted of hemlock-northern hardwood forest that consisted of a mix of young and mature growth stands. Due to the growth habit of eastern hemlock (*Tsuga canadensis*), the dominant tree in this habitat type, the understory of this community was highly cluttered with lower branches from ground level up to the canopy. This rendered this cover type unsuited for bat habitat, as bats had no open flyways through which to travel, except where there were cleared roads or paths. Scattered larger trees within this habitat type were not accessible to bats, since bats could not fly below the canopy, so even larger trees were not considered potential roost trees. Interior areas of this habitat type were considered impassable to bats below tree canopy level.

Potential bat habitat did occur in 6 disjunct patches of successional northern hardwood forest and wooded wetland (hemlock-hardwood swamp and red maple-hardwood swamp) habitats on the Site. The largest of these habitat patches was about 8.5 acres in area and was located at the northern corner of the site, where it connected to additional potential habitat offsite to the north and northwest. A large expanse of red maple-hardwood swamp and hemlock-hardwood swamp near the western edge of the Site yielded about 1.7 acres of potential roost, foraging, and transit habitat that connected to additional habitat offsite to the northwest. A smaller patch of hardwood forest about 1.1 acre in area was located in the northeast corner of the Site, but was surrounded by either residential housing, or by dense hemlock-northern hardwood forest, so was likely an isolated habitat patch. About 2.5 acres of mixed red maple-hardwood swamp and rich mesic forest habitat at the entrance to the site from Saugerties-Woodstock Road was also potential roost, foraging and transit habitat, and connected to potential habitat offsite to the south and southwest. A narrow strip of successional northern hardwood forest along the eastern side of the Site was about 1.2 acres in area, and was connected to offsite habitats to the south via similar habitat and by an old logging road. Another patch of potential roost and transit habitat about 1.3 acres in area was located in the south-central portion of the Site, and was surrounded by dense young hemlock-northern hardwood forest, but was connected to other potential habitat areas by the old unpaved roads in the southern half of the Site. The unpaved roads through the

southern half of the site, representing about 1.2 acres, may have also provided potential transit or foraging habitat that might allow bats to move through a portion of the Site that was otherwise impassable. Therefore, these habitat patches provided about 16.3 acres of potential roost, foraging, and transit habitat, and the unpaved roads in the southern half of the Site provided an additional 1.2 acres of potential transit and foraging habitat and a connective corridor that could allow bats to travel among the patches of suitable habitat through unsuitable habitat.

Water resources on the site included 2 woodland pools (eutrophic pond, per Edinger, *et al.*, 2014) a wetland with small open water pockets along the western side of the Site, and a small stream that crossed the entry from Saugerties-Woodstock Road. Other ephemeral or seasonal water sources also exist within the red maple-hardwood swamp and hemlock-hardwood swamp habitat on the site. The 2 woodland pools were not accessible to bats, as they were surrounded by dense, young-growth hemlock-northern hardwood forest, but surface water was available and accessible in the hemlock-hardwood swamp and red maple-hardwood swamp along the western side of the Site and in the small headwater stream near the Site entrance.

Forested public lands within 5 miles of the Project Site may provide potential additional potential habitat for bats and may also provide habitat stepping stones across the landscape. Bats may travel up to 5 miles in foraging bouts, so could use connected forested lands, or bats on those lands could potentially use the Project Site. Therefore, the habitat assessment included a review of aerial photos and maps to identify forested public lands within 5 miles of the Project Site. Such forested lands are summarized in **Table 3.1-1**.

| Public Land Name       | Direction      | Distance (km/mi) |  |  |
|------------------------|----------------|------------------|--|--|
| Indian Head Wilderness | north          | 2.02 km/1.26 mi  |  |  |
| Comeau Property        | west-southwest | 3.7 km/2.3 mi    |  |  |
| Bluestone Wild Forest  | south          | 5.1 km/3.2 mi    |  |  |

Table 3.1-1. Forested public lands proximal to the Terramor Catskills Project Site.

Thus, there was forested habitat on the Project Site to support bats, as well as forested connective corridors across the landscape within 5 miles that bats could use to reach and disperse to or from surrounding forested habitat on public parkland. This indicated that warm season bat habitat exists on and around the Project Site at multiple landscape spatial scales.

#### 3.2 Acoustic Survey

#### 3.2.1 Equipment Function

All deployed bat detectors functioned correctly for the duration of the survey. This was supported by microphone calibration checks that were run at set up and take down, and by the fact that the detectors recorded bat calls from shortly after sundown to shortly before sunrise on every night of the survey. Smartphone screen shots of microphone calibration checks are contained in *Appendix F*.

#### 3.2.2 Weather

Weather data from the nearest NWS weather station at Stewart International Airport, Newburgh, Orange County, NY (*Appendix G*) indicated that weather conditions for 3 nights during the survey period complied with the Federal Protocol. Temperatures throughout the study period

remained above 50°F, winds remained below 9 mph, and no precipitation fell during the first five hours of sampling each night.

#### 3.2.3 Level of Effort

The Federal Protocol required at least 14 detector nights of recording time to detect both Indiana bats and Northern Long-eared Bats on a Project Site of this size, and each detector was required to sample for at least 2 nights. Among the 5 bat detectors deployed on the Project Site, all of them recorded for 3 weather-compliant nights, yielding 15 successful detector nights of survey effort, which slightly exceeded the Federal Protocol.

#### 3.2.4 Software-Based Bat Call Classification

Kaleidoscope Pro auto-classified bat calls from 9 bat species on the Project Site, but calls for only 5 species had MLE p-values <0.05. MLE p-values are an indication of the probability of a false positive detection (a Type 1 Error in statistics), and values <0.05 indicate a low probability of false detection, or that the result is likely to be reliable. However, bat acoustic classification software may not always be entirely reliable, so the Federal Protocol requires manual review of threatened or endangered bat call recordings that are identified by software with a MLE p-value <0.05. Software-confirmed species included Big Brown Bat (*Eptesicus fuscus*), Eastern Red Bat (*Lasiurus borealis*), Little Brown Bat (*M. lucifugus*), Northern Long-eared Bat (*Myotis septentrionalis*), and Indiana Bat (*M. sodalis*).

Frequency distribution of bat call detections by site, night, and species are summarized in **Table 3.2.4-1**, with MLE p-values. MLE p-values >0.05 indicate a likelihood of false positive classification, and a corresponding lower confidence in the classification.

| Site &<br>Night |             | Big<br>Brown | Eastern<br>Red Bat | Hoary<br>Bat | Silver<br>Haired | Eastern<br>Small- | Little<br>Brown | Northern<br>Long- | Indiana<br>Bat | Tricolored<br>Bat |
|-----------------|-------------|--------------|--------------------|--------------|------------------|-------------------|-----------------|-------------------|----------------|-------------------|
| •               |             | Bat          |                    |              | Bat              | footed            | Bat             | Eared             |                |                   |
|                 |             |              |                    |              |                  | Bat               |                 | Bat               |                |                   |
| Site 1          | Bat         | 9            | 6                  |              | 3                | 1                 | 2               |                   |                | 2                 |
|                 | Passess     |              |                    |              |                  |                   |                 |                   |                |                   |
| Night 1         | MLE p-value | 9.4E-06      | 4E-07              | 1            | 0.87417          | 0.0957            | 0.9671          | 1                 | 1              | 0.99625           |
| Site 1          | Bat         | 15           | 2                  |              | 1                |                   | 1               | 1                 |                | 1                 |
|                 | Passess     |              |                    |              |                  |                   |                 |                   |                |                   |
| Night 2         | MLE p-value | 0            | 0.01291            | 1            | 1                | 1                 | 0.87832         | 0.2676            | 1              | 0.92937           |
| Site 1          | Bat         | 2            |                    | 1            | 1                |                   | 1               |                   |                |                   |
|                 | Passess     |              |                    |              |                  |                   |                 |                   |                |                   |
| Night 3         | MLE p-value | 0.12425      | 1                  | 0.46685      | 0.93474          | 1                 | 0.18052         | 1                 | 1              | 1                 |
| Site 2          | Bat         | 28           | 80                 | 1            | 3                |                   | 198             | 16                | 10             | 24                |
|                 | Passess     |              |                    |              |                  |                   |                 |                   |                |                   |
| Night 1         | MLE p-value | 0            | 0                  | 1            | 1                | 1                 | 0               | 1                 | 1              | 1                 |
| Site 2          | Bat         | 18           | 74                 |              | 1                |                   | 222             | 11                | 11             | 18                |
|                 | Passess     |              |                    |              |                  |                   |                 |                   |                |                   |
| Night 2         | MLE p-value | 0            | 0                  | 1            | 1                | 1                 | 0               | 1                 | 1              | 1                 |

# Table 3.2.4-1. Kaleidoscope Pro bat species classifications by sample site and night with MLE p-values.

| Site 2  | Bat         | 6       | 57      | 1       |         |         | 195     | 3       | 12      | 3 |
|---------|-------------|---------|---------|---------|---------|---------|---------|---------|---------|---|
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 3 | MLE p-value | 3.6E-05 | 0       | 0.82577 | 1       | 1       | 0       | 1       | 1       | 1 |
| Site 3  | Bat         | 57      | 1       | 4       | 3       | 2       | 151     | 39      | 37      |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 1 | MLE p-value | 0       | 1       | 1       | 1       | 1       | 0       | 1.3E-06 | 0.07841 | 1 |
| Site 3  | Bat         | 16      | 1       |         |         | 1       | 103     | 50      | 40      |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 2 | MLE p-value | 0       | 1       | 1       | 1       | 1       | 0       | 0       | 0.00029 | 1 |
| Site 3  | Bat         | 25      |         |         | 1       |         | 154     | 21      | 37      |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 3 | MLE p-value | 0       | 1       | 1       | 1       | 1       | 0       | 0.28746 | 0.08206 | 1 |
| Site 4  | Bat         | 8       |         | 2       | 6       |         |         |         |         |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 1 | MLE p-value | 0.00076 | 1       | 0.58385 | 0.1821  | 1       | 1       | 1       | 1       | 1 |
| Site 4  | Bat         | 7       |         |         | 4       |         |         | 3       |         |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 2 | MLE p-value | 0.00068 | 1       | 1       | 0.39977 | 1       | 1       | 0.00048 | 1       | 1 |
| Site 4  | Bat         | 2       | 1       |         | 1       |         |         |         |         |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 3 | MLE p-value | 0.10938 | 0.05459 | 1       | 0.83964 | 1       | 1       | 1       | 1       | 1 |
| Site 5  | Bat         | 108     |         |         | 1       |         | 7       | 3       | 8       | - |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 1 | MLE p-value | 0       | 1       | 1       | 1       | 1       | 5.1E-05 | 0.24652 | 0.00176 | 1 |
| Site 5  | Bat         | 85      |         |         |         |         | 3       | 1       | 6       |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 2 | MLE p-value | 0       | 1       | 1       | 1       | 1       | 0.03928 | 0.81328 | 0.00128 | 1 |
| Site 5  | Bat         | 69      | 1       | 1       |         | 1       | 14      | 4       | 4       |   |
|         | Passess     |         |         |         |         |         |         |         |         |   |
| Night 3 | MLE p-value | 0       | 0.98604 | 1       | 1       | 0.68139 | 0       | 0.24322 | 0.70293 | 1 |

MLE p-values of 0 indicate value much < 0.05 and relatively high confidence in species classification;

MLE p-values >0.05 indicate probable Type I Error and relatively low confidence in species classification.

Highlighted values indicate listed species identified by Kaleidoscope Pro with a MLE p-value <0.05. All bat calls for those sites and those nights were manually reviewed to confirm or refute identifications.

Numbers of bat calls indicated per species in Table 3.2.4-1 are an index of bat activity in an area, but not necessarily an index of bat abundance since one bat passing a point many times may be recorded repeatedly. Therefore, higher numbers of calls are indicative of higher activity of a particular species, but not necessarily higher bat numbers or relative frequency of occurrence.

#### 3.2.5 Manual/Visual Vetting of Bat Calls

Manual vetting of calls was performed for sites and nights on which listed bat species were autoclassified by the Kaleidoscope Pro with MLE p-values <0.05 to confirm or refute these software-based classifications. We manually vetted all calls from Site 3, Nights 1 and 2; Site 4, Night 2; and Site 5, Nights 1 and 2, based on Kaleidoscope Pro identifying northern long-eared bat or Indiana bat, or both with MLE p-values <0.05 for those sites and nights. Our visual vetting

of bat calls determined that none of the calls classified as northern long-eared bats were correctly classified as such, and they were either reclassified as NOID (not identified to species), MYOSPP (*Myotis* species, no specific identification was possible), or as other, non-listed species. Vetting confirmed 3 of 8 calls identified as Indiana Bat at Site 5 on Night 1, and 2 of 6 calls identified as Indiana Bat at Site 5 on Night 2, and reclassified a Little Brown Bat identified by Kaleidscope Pro at Site 5, Night 1 to Indiana Bat for a total of 6 Indiana Bat calls identified on the Project Site. All other calls that Kaleidoscope Pro identified as Indiana Bats were refuted. Confirmed Indiana Bat calls were consistent with Fc and Sc ranges for this species, being at slightly higher ranges in both of these metrics than typical little brown bat calls, with which they overlap.

Table 3.2.5-1, below, summarizes the results of all call vetting for listed species. Details of manual vetting for each of these sites and nights are detailed in call vetting spreadsheets in Appendix H, which includes manual identifications for all species for each site and night.

| Sample<br>Site |             | Indiana Bat    | Vetting Results<br>Comments  | Northern<br>Long-eared<br>Bat | Vetting Results<br>Comments |
|----------------|-------------|----------------|------------------------------|-------------------------------|-----------------------------|
| Site 3         | Bat Calls   |                |                              | 39                            | Vetting refuted all         |
| Night 1        | MLE p-value |                |                              | 1.3E-06                       | software classifications    |
| Site 3         | Bat Calls   | 40             | Vetting refuted all software | 50                            | Vetting refuted all         |
| Night 2        | MLE p-value | 0.00029        | classifications              | 0                             | software classifications    |
| Site 4         | Bat Calls   |                |                              | 3                             | Vetting refuted all         |
| Night 2        | MLE p-value |                |                              | 0.00048                       | software classifications    |
| Site 5         | Bat Calls   | <u>8</u>       | 3 of 8 calls confirmed as    |                               |                             |
| Night 1        | MLE p-value | <u>0.00176</u> | Indiana Bat                  |                               |                             |
| Site 5         | Bat Calls   | 6              | 2 of 6 calls confirmed as    |                               |                             |
| Night 2        | MLE p-value | 0.00128        | Indiana Bat                  |                               |                             |

Table 3.2.5-1. Listed bat species<sup>‡</sup> Kaleidoscope Pro classifications and visual vetting results by sample site with MLE p-values

MLE p-values of 0 indicate value much <0.05 and relatively high confidence in species classification; MLE p-values >0.05 indicate probable Type I Error and relatively low confidence in species classification.

Of 54 calls identified as Indiana Bats by Kaleidoscope Pro, only 5 calls were manually classified as Indiana bats, and all of those calls were recorded at Site 5, which was within successional northern hardwood forest in the northern end of the Project Site. In addition, 1 call from Site 5 that was autoclassified as a Little Brown Bat was reclassified as Indiana Bat by manual vetting. Characteristic frequencies (F<sub>c</sub>) for each of these calls fell between 39 and 43 kHz, and characteristic slopes fell between 128 and 209 OPS. These calls fall well within the parameters used to distinguish Indiana Bat calls from Little Brown Bat (*Myotis lucifugus*), so are considered relatively confident manual identifications and therefore the presence of Indiana Bats was considered probable.

#### 4. CONCLUSIONS

#### 4.1 Bat Habitat Suitability

Edgewood's bat habitat assessment revealed that most of the Terramor Catskills Site was dominated by a hemlock-northern hardwoods ecological community with a dense understory

that was not suited to bat flight, foraging, or roosting. However, there were 6 distinct patches of ecological communities including successional northern hardwoods, red maple-hardwood swamp, and hemlock-hardwood swamp, that were connected by unpaved roads and by offsite habitats that provided about 16.3 acres of potential roost, foraging, and transit habitat, with another 1.2 acres of potential transit habitat in the unpaved roads, for a total of 17.5 acres of potential bat habitat. Water resources were potentially available to bats in the hemlock-hardwood swamp and red maple-hardwood swamp wetlands along the western side of the Site and in the small headwater stream that is located near the entrance to the site from Saugerties-Woodstock Road. Other water resources exist on the Site, but are inaccessible to bats, as they are surrounded by dense understory brush.

#### 4.2 Presence of Listed Species

Multiple calls of northern long-eared bat, a threatened species, and Indiana bat, an endangered species, were auto-classified by Kaleidoscope Pro at multiple sampling sites and nights, with MLE p-values <0.05. Per Federal Protocol requirements, all bat call sonograms for the sampling site and sampling night by which such calls were classified were manually/visually reviewed by an experienced bat call identifier to either confirm or refute the software-based species classification to avoid mis-classifications. Visual vetting refuted the classification of all Northern Long-eared Bat calls, but confirmed 5 Indiana Bat calls from Bat Detector 5, which was located at an edge between mature successional northern hardwood forest and red maple-hardwood swamp at the north end of the Site. The indicators used to manually classify Indiana Bat calls all have ranges that overlap with those of the Little Brown Bat, but the ranges of the calls that were manually vetted from this Site were well within the metrics indicating Indiana Bat, so the manual identifications were considered accurate. It was therefore considered probable that Indiana Bat was present in the north end of this Site. Northern Long-eared Bat occurrence was determined to be unlikely as no calls identified as Northern Long-eared Bat were manually confirmed.

#### 4.3 Management Recommendations

Terramor proposes to develop a camping resort on the Project Site. Based on the spatial distribution of habitat and non-habitat areas for bats, it should be possible to avoid significant adverse impacts to bats by careful site planning to avoid or minimize disturbance within potential bat habitat areas, concentrating development in non-habitat areas, and timing construction activities to avoid or minimize disturbance to bats on the site. Development of the site may actually open up more habitat for bats by creating new access roads, paths, and openings in which bats may forage or traverse current non-habitat areas.

As for site planning, Edgewood understands that access to the site is only available from Saugerties-Woodstock Road or from Cottontail Lane, both of which will require crossing potential bat habitat areas. Disturbance of these habitat areas can be minimized by only having the access road pass through (no other structures or activities), and by minimizing the footprint of the access road. Overall, tree clearing should be minimized and should only be conducted during the bat hibernation season (November through March) to avoid direct take of roosting bats. Further design elements that can avoid or minimize disturbance of bats include:

- Outdoor lighting should be at low level (e.g., bollard lighting, rather than overhead lights).
- Outdoor lighting near edges between cleared areas and remaining forest stands should be motion-sensor lights that do not stay illuminated all night.
- Chemical pesticides must not be used onsite, especially in water bodies.

- Noise should be minimized at night to avoid changing bat behavior within the Site (e.g., night-time quiet hours may be implemented at the campsite at reasonable hours).
- Pets should be kept on leashes when outdoors and not allowed to run free.
- Campfire rings should be spaced away from wooded areas to keep smoke from campfires away from potential roost areas.

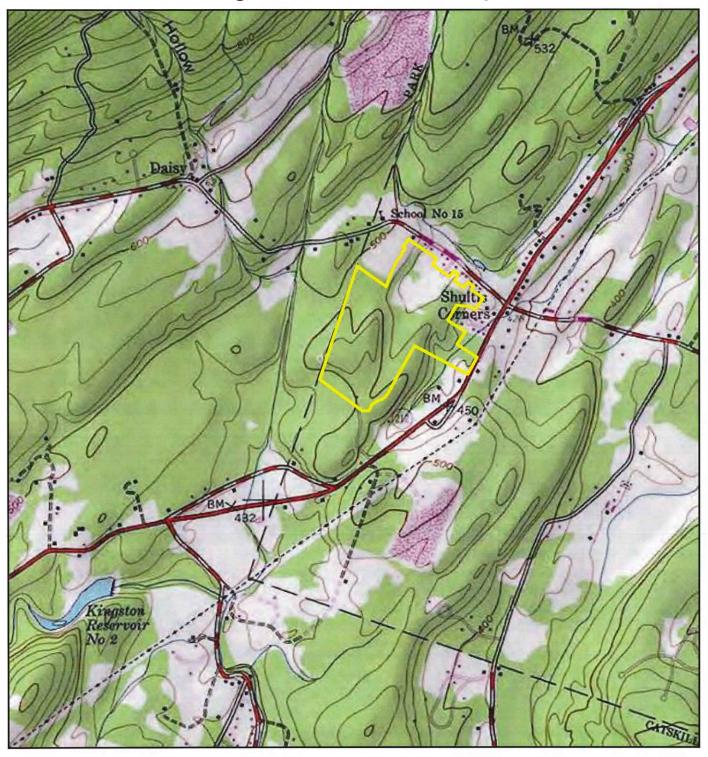
All of these elements are dependent on feasibility and should not be implemented if they may compromise human health and safety.

#### 5. **REFERENCES CITED**

Edinger, G.J., D.J Evans, S. Gebauer, T.G. Howard, D.M. Hunt, and A.M. Olivero (eds.), 2014. Ecological communities of New York State, Second Edition. New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY. 173 pp.

Szewczak, J. 2011. Echolocation call characteristics of eastern U.S. bats. Humboldt State University Bat Lab, March 2011.

USFWS. 2020. Range-wide Indiana bat survey guidelines. U.S. Fish & Wildlife Service, March 2020.


USFWS. 2022. Range-Wide Indiana Bat and Northern Long-eared Bat Survey Guidelines. United States Department of the Interior, U.S. Fish and Wildlife Service. March 2022. 67 pp. FIGURES



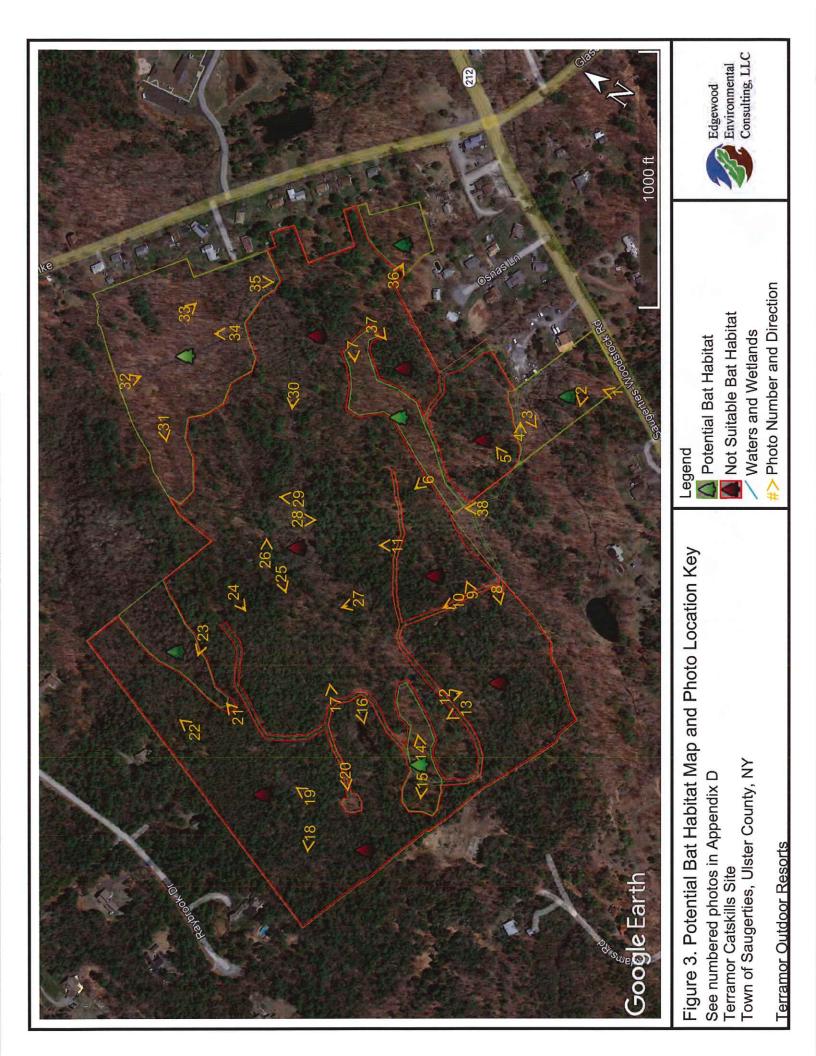
. .

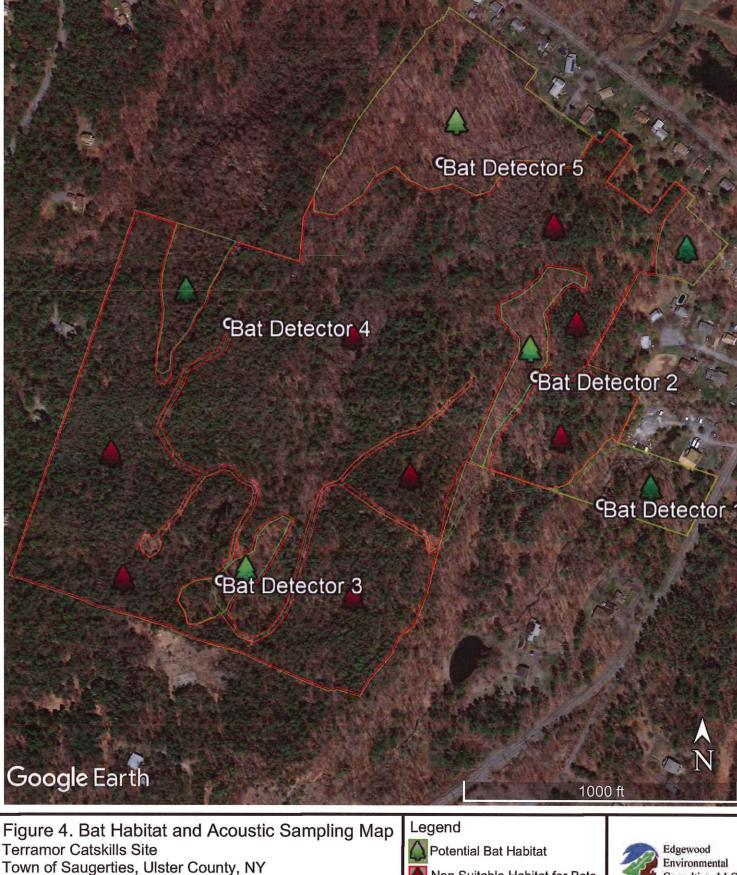
Thinking outside.

Figure 1. Site Location Map



Legend


Project Site Boundary


Terramor Catskills Terramor Outdoor Resorts Saugerties-Woodstock Road Saugerties, Ulster County, NY 42.049596°N, 74.074725°W Copyright:@ 2013 National Geographic Society, i-cubed



Edgewood Environmental Consulting, LLC







**Terramor Outdoor Resorts** 

Non Suitable Habitat for Bats

Bat Detector Location



### APPENDIX A AGENCY BAT LOCATION DATA



Thinking outside.

#### Appendix A-1 USFWS IPaC Letter



## United States Department of the Interior

FISH AND WILDLIFE SERVICE New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 Phone: (607) 753-9334 Fax: (607) 753-9699 Email Address: <u>fw5es\_nyfo@fws.gov</u>



In Reply Refer To: Project Code: 2022-0061692 Project Name: Terramor Catskills July 08, 2022

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)

(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

#### http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

**Migratory Birds**: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/ executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. **Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.** 

2

07/08/2022

## Attachment(s):

Official Species List

# **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 (607) 753-9334

## **Project Summary**

| Project Code:               | 2022-0061692                                                             |
|-----------------------------|--------------------------------------------------------------------------|
| Event Code:                 | None                                                                     |
| Project Name:               | Terramor Catskills                                                       |
| Project Type:               | Commercial Development                                                   |
| <b>Project Description:</b> | The site is a mixed deciduous / coniferous forest approximately 75 acres |
|                             | is size and includes palustrine wetlands and intermittent and perennial  |
|                             | streams.                                                                 |

**Project Location:** 

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@42.04940405,-74.07487204201507,14z</u>



Counties: Ulster County, New York

## **Endangered Species Act Species**

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

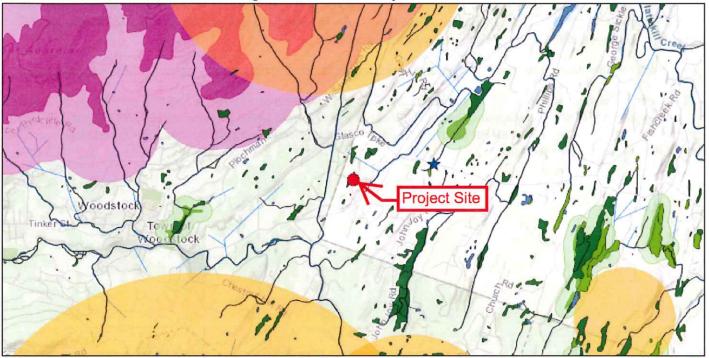
See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### Mammals

| NAME                                                                                                     | STATUS     |
|----------------------------------------------------------------------------------------------------------|------------|
| Indiana Bat Myotis sodalis                                                                               | Endangered |
| There is final critical habitat for this species. The location of the critical habitat is not available. |            |
| Species profile: https://ecos.fws.gov/ecp/species/5949                                                   |            |
|                                                                                                          |            |
| Insects                                                                                                  |            |
| NAME                                                                                                     | STATUS     |
| Monarch Butterfly Danaus plexippus                                                                       | Candidate  |
|                                                                                                          |            |

No critical habitat has been designated for this species. Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>


#### **Critical habitats**

THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.

## **IPaC User Contact Information**

Agency:The LA Group, P.C.Name:Robert FraserAddress:40 Long AlleyCity:Saratoga SpringsState:NYZip:12866Emailrfraser@thelagroup.comPhone:5185878100

# 10/6/22, 9:34 AM Environmental Resource Mapper Information Appendix A-2 Environmental Resource Mapper Terramor Catskills Site, Town of Saugerties, Ulster County, NY



\*Yellow circles indicate records of threatened or endangered species. There are no NYNHP records of threatened or endangered species on the Project Site. Only federal wetlands are indicated on the Site. The coordinates of the point you clicked on are:

| UTM 18             | Easting:   | 576386.9961274376  | Northing: | 4655388.893049199 |
|--------------------|------------|--------------------|-----------|-------------------|
| Longitude/Latitude | Longitude: | -74.07697655610058 | Latitude: | 42.04684808951759 |

The approximate address of the point you clicked on is: 12498, Woodstock, New York

County: Ulster Town: Saugerties USGS Quad: WOODSTOCK

**National Wetands Inventory** 

Attribute: PFO1E Type: Freshwater Forested/Shrub Wetland Acres: 0.408074312

Attribute: PUBF Type: Freshwater Pond Acres: 0.309585372

For more information about the National Wetands Inventory wetlands visit http://www.fws.gov/wetlands/

If your project or action is within or near an area with a rare animal, a permit may be required if the species is listed as endangered or threatened and the department determines the action may be harmful to the species or its habitat.

#### **Environmental Resource Mapper Information**

If your project or action is within or near an area with rare plants and/or significant natural communities, the environmental impacts may need to be addressed.

The presence of a unique geological feature or landform near a project, unto itself, does not trigger a requirement for a NYS DEC permit. Readers are advised, however, that there is the chance that a unique feature may also show in another data layer (ie. a wetland) and thus be subject to permit jurisdiction.

Please refer to the "Need a Permit?" tab for permit information or other authorizations regarding these natural resources.

**Disclaimer:** If you are considering a project or action in, or near, a wetland or a stream, a NYS DEC permit may be required. The Environmental Resources Mapper does not show all natural resources which are regulated by NYS DEC, and for which permits from NYS DEC are required. For example, Regulated Tidal Wetlands, and Wild, Scenic, and Recreational Rivers, are currently not included on the maps.

#### APPENDIX B BAT SURVEYOR QUALIFICATIONS



Thinking outside.

# Michael S. Fishman, CWB

Certified Wildlife Biologist; Professional Wetland Scientist; Regulatory Specialist

Mr. Fishman has 35 years of professional experience in biodiversity and natural resources survey, threatened and endangered species surveys (all taxa, but especially bats and birds), terrestrial, and wetland ecology, environmental impact assessment, environmental permitting, and endangered species management and consultations. He has served as principal investigator on more than 200 biodiversity inventories, each including surveys for birds, mammals, reptiles, amphibians, insects, aquatic invertebrates, and vascular plants, involving a wide variety of observational, photographic, acoustic, and live capture survey techniques. Mr. Fishman has developed original survey protocols for some species. His field work has spanned 26 states in the U.S., as well as Canada, Mexico, Puerto Rico, and Suriname, and his study plan experience has included Dominican Republic and Panama.

His environmental impact assessment experience includes extensive experience with the preparation of environmental impact statements (EIS) and Environmental and Social Impact Assessments (ESIAs) under IFC Performance Standard 6 (Biodiversity). His permitting experience includes local, state, and federal wetlands and waters, endangered species, energy generation and transmission certification, for renewable energy (solar, wind, hydro, bio), oil & gas, mining, industrial/commercial development, municipal water, wastewater, and solid waste, and residential land use.

Experience: 35 years; 2 in academia, 4 in regulatory, 2 in non-profit, and 27 in consulting.

LinkedIn: <u>https://www.linkedin.com/in/michael-fishman-8055379/</u>

Email: mfishman@edgewoodenviro.com

#### Education

- Master of Science, Conservation Biology, State University of New York, College of Environmental Science and Forestry, USA, Thesis Topic: Indiana Bat (*Myotis sodalis*) Habitat Characterization in the Ontario Lake Plain of New York.
- Bachelor of Science, Natural Resources, Wildlife, and Aquatic Sciences, Cornell University, USA



Edgewood Environmental Consulting, LLC



#### **Professional Affiliations & Registrations**

- Certified Wildlife Biologist (CWB)
- Fellow, The Wildlife Society
- Professional Wetland Scientist (PWS)(exp)
- The Wildlife Society (Renewable Energy Working Group Member; Editorial Advisory Board of *The Wildlife Professional*; President, Northeast Section; President and Vice President, New York Chapter)
- Northeast Bat Working Group (Past Chair/President)
- North American Society for Bat Research Secretary and Member, Board of Directors

#### Licenses & Permits

- New York Endangered/Threatened Species/Scientific
- New York Collect & Possess/Scientific
- Former federal licensee Possess/Collect Endangered Bats
- Former federal licensee Migratory Bird Treaty Act
   Collect and Possess

#### Fields of Competence

- Flora and Fauna/Biodiversity Survey & Management
   especially avian and bat species, includes all taxa
- Threatened and Endangered Species Survey
- IFC Performance Standard 6 Biodiversity Survey
- Endangered Species Act Formal Consultation
- Wetland Delineation (Freshwater and Tidal)
- Environmental Due Diligence
- Environmental Impact Assessment/EIS Preparation
- State Environmental Quality Review (SEQR)
- Wetland Regulatory Permitting
- Endangered Species and Wetland Mitigation Planning
- NY State Public Service Law Article VII and Article 10 Review/Certification
- Municipal planning; Landscape/Habitat Management
- Wildlife management planning

#### Languages

English, native speaker; some Spanish

#### **Key Industry Sectors**

- Renewable Energy (Solar, Wind, Hydro, Biofuel)
- Oil & Gas Midstream
- Mining
- Golf Course
- Residential, Commercial, Industrial, and Mixed-Use Development
- Municipal Water, Wastewater, and Solid Waste

#### Honors & Awards

- Organization for Bat Conservation Award, 2011
- 40 Under 40 Award, 2009

#### **Bat Acoustic Training**

Bat Conservation & Management's Bat Acoustic Training Course, 2011

Developed and Taught ERM's Bat Acoustic Training Course, Amherst, MA (2015); Knoxville, TN (2017); Syracuse, NY (2019)

Wildlife Acoustics, LLC's Bat Acoustic Training Course – Kaleidoscope Pro and SMMiniBAT Bat Detector, 2019

Vesper Bat Detection Services Bat Acoustic Training Course – Eastern Bats, 2020

**Recent Bat Projects** 

#### Bat Mist Net Survey, Confidential Client/Project, Essex County, NY, 2022.

Conducted a federal protocol Phase 2 mist net survey for Indiana bats for a proposed access road project.

Bat Acoustic Survey, Confidential Client; Confidential Project, Rockland County, NY, 2022 Completed a Phase 2 acoustic survey for Northern Long-eared Bats on a former golf course site proposed for a multi-use development. Remington Mills Bat Emergence Survey for limited tree clearing, Town of Watertown, Jefferson County, NY, 2022.

Conducted potential roost tree bat emergence surveys at one location to facilitate tree clearing for access to demolish ruins of an old mill along the Black River.

#### Number Three Wind, Bat Emergence Survey for limited tree clearing, Town of Lowville, Lewis County, NY, 2021, 2022

Conducted potential roost tree bat emergence surveys at multiple locations for limited tree clearing activities during the seasonal restriction on tree clearing. No bats were detected emerging from selected trees, so clearing was able to proceed without risk of take, and under state and federal agency approval.

#### Confidential Solar Power Development Bat Acoustic Survey, Town of Cortlandt, Westchester County, NY, 2021

Conducted a Phase 2, Step 5/6/7 Acoustic Survey for Indiana and northern long-eared bats on a  $\pm$ 43-acre property proposed for a solar power facility.

#### Brookhaven National Laboratory Bat Mist Net Surveys, Upton, Town of Brookhaven, Suffolk County, NY, 2021

Conducted mist net surveys to determine potential continued presence of northern long-eared bats, which we detected in previous surveys in 2012, 2014, and 2015.

## Confidential Mixed Use Development Project Bat

Acoustic Survey, Dutchess County, NY, 2021 Conducted a Phase 2, Step 5/6/7 Acoustic Survey for Indiana and northern long-eared bats on a 3,000acre property proposed for a mixed-use development. This was a follow-up survey to a mistnet survey I conducted in 2005 for the same client.

#### Invenergy Number Three Wind Project Bat Potential Roost Tree Survey, Lowville, Lewis County, NY, 2021

Conducted winter survey for potential bat roost trees to enable seasonally restricted clearing of bat roost trees during the winter.

#### Verizon Cellular Tower Bat Habitat and Impact Assessment, Wappingers Falls, Dutchess County, NY, 2020

Assessed proposed site of a new cellular phone tower for threatened and endangered bat habitat. Determined that although the site was mature forest, no suitable potential roost trees would be cut. USFWS concurred with our findings thereby clearing the project to proceed.

The Wetland Trust Overlook Property, Bat Acoustic Survey, LaGrange, Dutchess County, NY, 2020 Conducted federal protocol acoustic surveys for Indiana and northern long-eared bats on conservation lands to explore feasibility of establishing a bat habitat mitigation bank.

#### Endangered Bat Habitat Assessment and Tree Management Plan, Trammell Crow – Amazon Warehouse Facility, Liverpool, NY, 2019-20 Conducted Indiana bat habitat assessment and documented management recommendations, and completed seasonal tree clearing compliance inspections for a proposed 4 million square foot warehouse facility on an existing golf course.

Bird and Bat Impact Assessment, Delphos International – Wind Farm Siruai, Kenya, 2019-20 Assisted with design and oversight of baseline field studies for bird and bat biodiversity in compliance with IFC Performance Standard 6 Guidelines for Wind Development; next phase is to assess potential impacts to birds and bats, including 2 critically endangered species of vulture. Draft bird and bat section of the Environmental and Social Impact Assessment.

#### Avian and Bat Field Study Protocol for Proposed Wind Energy Project (Confidential), Dominican Republic, 2019.

Drafted IFC PS6-compliant avian and bat study protocol for proposed second phase of a wind energy development project in Dominican Republic.

#### Biodiversity Due Diligence Review for Proposed Mine Reactivation, Nucor Steel – Project 200, Clifton, NY, 2019

Led natural resources inventory baseline studies, for feasibility study for re-opening an iron mine in the Adirondack Park Preserve. Included identifying baseline environmental resources and required permitting. Next phase will include designing and overseeing field studies for baseline data, coordinating environmental impact assessment, impact avoidance/minimization design guidance, assessing impacts to wetlands, wildlife, and habitats, and preparing environmental permit applications.

#### Endangered Bat Surveys, Waymart II Wind Farm, NextEra Energy, Northeastern Pennsylvania, USA, 2018

Oversaw and conducted endangered bat presence/absence surveys for a proposed wind energy facility of 20+ turbines.

#### Endangered Species and Wetland Impact Assessment and Permitting for Multiuse Development, BRH Land – LaGrange Town Center Development, Poughkeepsie, NY, USA 2010-21

Completed federal and state wetland permitting and endangered species permitting/formal consultation for Indiana bat and Blanding's turtle on a proposed multi-use commercial/residential development. Included developing mitigation and management plans for Indiana bat and Blanding's turtles.

#### Avian and Bat Impact Assessment, Medline Distribution Center EIS, Goshen, NY, USA 2018-20

Completed the wetlands and flora and fauna sections of a DEIS for a proposed 1.3 million square foot medical equipment distribution facility. Issues addressed included avoidance and mitigation of potential impacts to grassland birds, including several state-listed species, and endangered bats.

#### Biodiversity Due Diligence, Impact Assessment and Permitting for Solar PV Arrays, Duke Energy Renewables, Multiple sites, NY, USA, 2018-20 Conducted environmental due diligence, local permitting, and helped to coordinated NYSERDA bid for 3 ca. 20-MW solar farms in central and western NY.

#### Biodiversity Due Diligence, Impact Assessment and Permitting for Solar PV Arrays, Cypress Creek Renewables, LLC, 8 sites in New York, USA; 2016 - 2020

Conducted environmental due diligence (Phase 1 ESA, wetlands, T&E species, cultural resources), environmental impact assessment under SEQRA, and prepared local, state, and federal permitting applications for 8 local community generated solar power facilities. Included wetland mitigation planning, watercourse crossings, and conservation plans for bog turtle, Blanding's turtle, and Indiana bat.

#### Bat and Arboreal Mammal Survey and ESIA, IAMGOLD Saramacca Concession, Brokopondo and Sipilawini Districts, Suriname; 2017 - 2018 Conducted field capture, acoustic, and camera surveys for bats and arboreal mammals to establish baseline data for terrestrial wildlife, and prepared wildlife impacts section of an environmental and social impact assessment (ESIA) for a proposed

gold mine expansion in remote Suriname tropical forest.

# Bat Hibernaculum Survey, Chevron – Kitimat LNG Site, Kitimat BC, Canada, 2017

Conducted visual and acoustic survey for bats roosting in abandoned pulp and paper mill slated for demolition for a proposed LNG plant.

#### Endangered Bat Surveys, Atlantic Coast Pipeline, West Virginia, Virginia, and North Carolina, USA, 2015 - 2018

Led a team of bat biologists to develop and conduct survey protocols for 4 listed bat species and potential roost trees and hibernacula along a proposed ±660 mile gas pipeline project that crossed 4 states. Negotiated conservation measures with state and federal agencies, and led team to conduct construction monitoring for compliance with conservation measures.

#### Endangered Bat Surveys, Virginia Department of Transportation (VDOT), 9 sites throughout Virginia, USA, 2015

Coordinated acoustic bat surveys on 9 proposed bridge replacement sites in various locations around Virginia and provided final report and conservation recommendations.

# Endangered Bat Survey, DeWitt Community Library, DeWitt, New York, USA. 2016.

Conducted acoustic bat survey on greenfield site proposed for construction of a new community library. Included preparing study plan approved by USFWS, deploying acoustic detectors, identifying bat calls, and preparing final report.

#### Threatened Bat Habitat Assessment, Amazon Distribution Facility, Fall River, Massachusetts, USA, 2016

Assessed site proposed for Amazon distribution facility for potential Northern Long-eared Bat (*Myotis* 

*septentrionalis*) habitat. Obtained concurrence from USFWS that site was not suitable habitat, which allowed the development to proceed.

#### Endangered Bat Surveys, Algonquin Incremental Market Pipeline Project, Various locations in NY, CT, RI, and MA, USA, 2014

Coordinated large-scale acoustic bat survey for proposed gas pipeline expansion project across New England region. Developed study plan approved by USFWS, coordinated field crews and conducted surveys, prepared final report and coordinated with state and federal wildlife agencies for approvals.

# Long Island Century Bat Survey, Long Island, New York, USA, 2012-2013

Obtained grant from the National Parks Foundation to conduct the largest bat survey on Long Island in more than 100 years. Survey included 4 U.S. National Park properties, Brookhaven National Laboratory, and Wertheim National Wildlife Refuge, and was performed in cooperation with the NYSDEC, USFWS, USNPS, Brookhaven National Laboratory, and numerous private volunteers.

#### Endangered Indiana Bat Survey Ultra Resources Marshlands Gas Play, Tioga and Potter Counties, Pennsylvania, USA, 2010

Served as principal investigator for mist net surveys of more than 200 sites in north-central Pennsylvania for a proposed gas play expansion. Recruited surveyors, coordinated staff, collated data, and produced report.

#### Biodiversity Inventory, Environmental Impact Statement, and Wetland and Endangered Species Permitting, Hudson River Valley Resort Development, Rosendale, New York, USA, 2006-2012

Conducted 4-year natural resource inventory and completed wetlands and wildlife sections of a DEIS and FEIS for a 900-acre proposed resort development. Developed original protocols for vernal pool ecosystem services assessment and threatened Northern Cricket Frog (*Acris crepitans*) surveys that were approved by state wildlife agency, and developed conservation plan for the 2<sup>nd</sup> largest Indiana bat (*Myotis sodalis*) hibernaculum in the Northeast U.S.

#### Endangered Bat Survey, West Point Military Reservation, Town of Highland, New York, USA, 2008

Principal investigator for the survey of the 50,000+ acre U.S. Military Academy and Reservation, including mist net and acoustic surveys, preparation of reports, and follow-up guidance to Natural Resources Department personnel on bat management.

**Bat-Related Publications** 

- Fishman, M.S. In Prep. Bats of New York.
   Commissioned book.
- Fishman, M.S. and R. Allen. In Prep. Filling the gap in the range map of *Micronycteris schmidtorum*; a capture in Suriname.
- Fishman, M.S. 2017. Indiana Bat Selection of Day Roosts in the Ontario Lake Plain of New York.
   Master's Degree Thesis, State University of New York College of Environmental Science and Forestry, New York, USA.
- Fishman, M.S. 2016. Indiana Bat Selection of Day Roosts in the Ontario Lake Plain of New York. Chapter 11 *in* Sociality in Bats, Jorge Ortega (ed.). Springer.
- Fishman, M.S. 2005. Saving your project from the endangered species list. New York State Real Property Law Journal, 33(3), Summer, 2005.
- Fishman, M.S. 1995. A selective cut above. Wildlife in the News 7(1).
- Fishman, M.S. 1994. A rose by any other name.
   Wildlife in the News 6(4).
- Fishman, M.S. 1994. Wastelands to wetlands.
   Wildlife in the News 6(3).

 Fishman, M.S. and M.S. Scheibel. 1990. Osprey productivity on Long Island 1978-1987: a decade of stabilization. Kingbird 40(1).

**Bat-Related Professional Presentations** 

- Preliminary acoustic bat survey of the boreal peatlands of central Ontario. Poster presentation with James Rettie (coauthor) at the 49<sup>th</sup> Annual North American Symposium on Bat Research, Kalamazoo, MI.
- Resilience of Northern Long-eared Bats in Coastal Plains. Invited presentation at the White Nose Syndrome Symposium, Rosendale, NY. April 2017.
- The Long Island Century Bat Survey. Invited presentation at Westfield State University, Westfield, MA. February 2017
- Final Threatened Listing and §4(d) Rule for Northern Long-eared Bats. Invited presentation at the Southern Gas Association's 2016 Annual Meeting, Savannah, GA, February 2016.
- Bats at the Beach: Northern Long-eared Bats Are Alive and Well in Northeastern Coastal Communities. Presentation at the 45<sup>th</sup> Annual American Symposium on Bat Research, Monterey, CA, October, 2015.
- "The Northern Long-eared Bat Threatened Species Listing and Interim 4(d) Rule: How Do They Affect Right-of-Way Work?", invited presentation at the 11<sup>th</sup> Annual Environmental Concerns in Right-of-Way Management Symposium, Halifax, NS, September 2015.
- "Remnant Populations of Northern Long-Eared Bat in Northeastern Coastal Communities". Presentation at the Northeast Natural History Conference, Springfield, MA, April 2015.
- "Bats of Long Island and the Long Island Century Bat Survey", Invited presentation to the Seatuck Environmental Association's annual Bats and Brews Conference, October, 2015.
- "Remnant Populations of Northern Long-Eared Bat in Northeastern Coastal Communities". Cooperative presentation with the USFWS, NYSDEC, and

BiodiversityWorks at the Northeast Bat Working Group Meeting, Portland, ME, January, 2015.

- "Reviewing for Endangered Species", invited presentation for the Lorman Seminar, Wetland Regulation, scheduled for December 4, 2014, Albany, NY.
- "Male and Female Indiana bats Select Different Roost Trees in the Ontario Lake Plain of Central New York", poster accepted for presentation at the North American Symposium on Bat Research, Albany, NY, October 2014.
- "Indiana bat day roost selection and characteristics in the Ontario Lake plain of New York", poster accepted for exhibit at The Wildlife Society 2014 Annual Meeting, Pittsburgh, PA, October 2014.
- "Habitat Modeling for Indiana Bats in Central New York" – Presentation at the Northeast Bat Working Group 2014 Annual Meeting, Clinton, NJ, January 2014.
- "Long Island's Bats" Invited presentation at the 2<sup>nd</sup> Annual Long Island Natural History Conference, Long Island, NY, December 2013
- "Bats of the Barrens" Invited presentation at the 18<sup>th</sup> Annual Long Island Pine Barrens Research Forum, Long Island, NY, October 2013

#### APPENDIX C BAT ACOUSTIC SURVEY STUDY PLAN AND APPROVAL



Thinking outside.



5 Edgewood Parkway Fayetteville, NY 13066 +1 (315) 456-8731

26 July 2022

Noelle Rayman-Metcalf Fish & Wildlife Biologist U.S. Fish & Wildlife Service, New York Field Office 3817 Luker Road Cortland, NY 13045

 Re: Proposed Bat Acoustic Survey Study Plan for the Proposed Terramor Catskills Development W/s NY State Rte. 212 (Saugerties-Woodstock Road), S/o Glasco Turnpike Town of Saugerties, Ulster County, New York 42.049143°N, 74.075251°W

Dear Ms. Rayman-Metcalf:

Kampgrounds of America, Inc., d/b/a Terramor Outdoor Resorts (Terramor) is proposing the Terramor Catskills Outdoor Resort (Project) on a ±75-acre wooded site located on the west side of New York State Route 212 (Saugerties-Woodstock Road), and south of Glasco Turnpike, in the Town of Saugerties, Ulster County, New York (Project Site; see Location Map, *Figure 1*, and Aerial Orthophoto, *Figure 2*). The U.S. Fish & Wildlife Service's (USFWS) online Information for Planning and Consultation (IPaC) system (see *Attachment A*) indicates that the site falls within the range of the endangered Indiana bat (*Myotis sodalis*), and candidate species, Monarch Butterfly (*Danaus plexippus*). New York State Department of Environmental Conservation's (NYSDEC) online Environmental Resource Mapper (ERM) tool (*Attachment B*) indicates no known records of threatened or endangered species on or near the Project Site, and NYSDEC's Northern Long-eared Bat Occurrences by Town (2018) (*Attachment C*) indicates that there are no known occurrences of the threatened Northern Long-eared Bat (*Myotis septentrionalis*) within the Town of Saugerties, or closer than the Town of Kingston.

Permitting of the proposed development may require U.S. Army Corps of Engineers' (USACE) authorization for wetland crossings or discharges. General Condition #18 of the Clean Water Act (CWA) Section 404 Nationwide General Permits (NWPs) requires that, "Non-federal permittees must submit a preconstruction notification to the district engineer if any listed species or designated critical habitat might be affected or is in the vicinity of the activity...and shall not begin work on the activity until notified by the district engineer that the requirements of the [Endangered Species Act] have been satisfied and that the activity is authorized." Therefore, Edgewood Environmental Consulting, LLC (Edgewood) has been retained by Terramor to assess the site for potential Indiana bats (*Myotis sodalis*) by acoustic presence/probable absence survey on the Project Site. Whereas Northern Long-eared bats are not known from within the Town of Saugerties, they were once considered virtually ubiquitous. They are proposed for relisting later this year, and could be relisted as an endangered species, so survey efforts for this site will

include effort to detect Northern Long-eared Bat, too.

This letter is submitted as our proposed study plan for a field-based acoustic presence/probable absence survey, per the requirements outlined in Appendix C of the *Range-Wide Indiana Bat and Northern Long-eared Bat Survey Guidelines* (USFWS, March 2022; hereinafter, Federal Protocol).

#### **Site Description**

The proposed Terramor Catskills Project Site is entirely forested with mixed hardwoods, evergreen/hardwood, and forested wetland cover types. Reference is made to the aerial orthophoto of the Site in *Figure 2*. The Site slopes down from the southwest corner to the northeast and east, ranging from circa 530 feet down to about 442 feet elevation above mean sea level.

The Site is undeveloped, although a dirt road snakes partially across the property from Saugerties-Woodstock Road (see *Figure 2*), and there is a storm sewer easement that extends onto the Site from Cottontail Lane, to the north. The Site also contains palustrine wooded wetlands that generally drain to the northeast, and which contain stream flows that also drain to the north-northeast.

Residential and commercial developments occur on lands to the north, east, and south of the Site, but are interspersed among large patches of successional northern hardwood forest that provides connective forested habitat corridors to surrounding forestlands in the region. The presence of large patches of mature hardwood forest, forested wetlands, and abundant connective habitat corridors to adjacent forested habitat make the Site a potential habitat that could support Indiana bats.

#### **Proposed Methods**

The federal protocol Phase 1, Step 2 field-based habitat survey will include a pedestrian visual survey of the Site, during which Edgewood will identify and photograph ecological cover types, including hardwood forests that may contain potentially suitable roost trees, foraging habitat, or commuting habitat for bats. Using existing aquatic resource delineation mapping for the site, Edgewood will document the extent of streams, ponds, and wetlands that may be used for foraging or commuting, as well as connective forest corridors that may provide commuting or distribution flight paths for bats to adjacent habitat areas. Documented metrics of forest cover will also include dominant tree species, range and distribution of tree diameters at breast height (DBH), canopy closure, and observations of trees with exfoliating bark or crevices that may be suitable for bat roosting. Findings of this habitat evaluation will be documented in a report that will include Northern Long-eared Bat/Indiana Bat Habitat Assessment Data Sheets from Appendix A of the federal protocol, as well as narrative description of the Site, photographs of Site conditions and features, and maps illustrating approximate locations of photographs and habitat types.



Thinking Outside.

Phase 2, Step 5 acoustic surveys of the Site will follow the habitat assessment. Per the federal protocol, 14 detector nights of sampling effort are required per 0.5 km<sup>2</sup> (123 acres) of habitat to detect both Indiana Bats and Northern Long-eared Bats in non-linear project sites. This Site contains  $\pm$ 75 acres of forested habitat, which is 0.30 km<sup>2</sup>, so should require the minimum 14 detector nights of sampling effort. Therefore, Edgewood proposes to deploy 5 Song Meter MiniBAT Bat Detectors (Wildlife Acoustics, LLC, Maynard, MA) for at least 3 calendar nights in likely bat flyways distributed across the Site. *Figure 2* illustrates proposed tentative locations for the 5 bat detectors. Edgewood reserves the right to locate bat detectors at other locations, if such locations are found to be better potential sampling locations than the locations indicated in *Figure 2*. Any deviations from the proposed bat detector locations will be noted with justification in the study report. Five bat detectors deployed for at least 3 calendar nights will yield a sampling effort of 15 detector nights for 75 acres/0.30 km<sup>2</sup> of potentially suitable habitat, which slightly exceeds the minimum requirement of the Federal Protocol.

Bat detectors will be deployed at least 656 feet (200 m) apart, along likely bat flyways such as streams, cleared paths through wooded habitats, or along forest edges. Microphones will be oriented horizontally, at least 10 feet (3 m) above ground level, and will be placed at least 33 feet (10 m) from vegetation or other solid obstructions, parallel to woodland edges, and at least 49 feet (15 m) from any known roost structures (there are no known roost structures on the Project Site). Actual locations of each detector will be plotted with a hand-held 12-channel global positioning system (GPS) unit and documented in the study report. Each bat detector will be photographed in the field to document conditions of the set up and surrounding sample space. Upon set-up and take-down of bat detectors, their function will be noted in the study report.

Weather conditions for each night will be reviewed, based on the nearest available National Weather Service data, to confirm compliance with federal protocol-required weather conditions. Weather for sampling nights will be considered in compliance with federal protocol if the following conditions are met for the first 5 hours of sampling in each sample night:

- Air temperature of at least 50°F (10°C)
- No precipitation for longer than 30 minutes
- No intermittent precipitation
- Sustained wind not greater than 9 mph (~7.5 knots; 4 m/s) for 30 minutes or more

If weather conditions during the first 5 hours of any sampling night fail to meet the required conditions, then sampling will be extended until all such conditions are met for at least 3 calendar nights.

Upon completion of acoustic sampling, raw acoustic recordings will be archived, per requirements of the federal protocol. A copy of these recordings will then be analyzed through the current USFWS approved version of the program "Kaleidoscope Pro" (Wildlife Acoustics, LLC, Maynard, MA), to auto-identify/classify each call file to species. If auto-classifiers do not identify any Indiana bats, then no further analysis will be performed. Per the federal protocol,



Thinking Outside.

Phase 2, Steps 6 and 7, if auto-classifiers identify Indiana bats or northern long-eared bats (maximum likelihood estimator [MLE] level p < 0.05) at a site, all high frequency calls for that site for that night will be manually assessed by a qualified bat biologist with extensive experience in acoustic call analysis (see attached qualifications, *Attachment D*) to confirm or correct auto-identified classifications, and to determine whether unidentified calls can be appropriately classified. Printed Kaleidoscope Pro classification output with manual confirmations/corrections will be appended to the study report as supporting documentation.

Results of the survey will be documented in a study report, as well as on the standard USFWS spreadsheets available on the USFWS Indiana Bat Summer Survey Guidance webpage. Edgewood anticipates reporting results of the surveys to the USFWS on the standard spreadsheets within 14 days of the completion of the acoustic surveys. The more detailed study report is proposed for completion within 45-60 days of completion of the call vetting. The more detailed study report will include the following information required in the federal protocol:

- Habitat Assessment description with supporting photographs and data sheets
- Explanation of any modifications to survey methods proposed herein
- Names and resumes of all personnel conducting acoustic surveys and conducting qualitative analysis
- Description of each acoustic sampling site
- Dates and duration of survey, weather conditions, and summary of findings
- Summary table outlining detector GPS coordinates, survey dates, survey hours
- Map identifying actual acoustic detector locations with arrows indicating direction of each microphone deployment, with corresponding table of GPS coordinates
- Photographs documenting the location of each detector, the orientation of the detector, and the intended sampling area. The detector and an object indicating scale will be included in each photograph. Poles used to mount detectors/microphones will be graduated in 1 m increments.
- Description of each detector type and microphone (brand/model) used, use of weatherproofing (if any), equipment settings (e.g., sensitivity, audio division ratios), deployment data (i.e., deployment site, habitat, date, time started, time stopped, orientation), and call analysis method used
- Description of how proper functioning of bat detector was determined
- Discussion of program used for analysis, including settings
- Acoustic detector log files renamed by site identifier
- Acoustic analysis software program output/summary results by site, by night (i.e., number of calls detected, species composition, MLE results, settings files)
- Discussion of any nights with zero bat calls recorded (if any)



Thinking Outside.

- Discussion of what keys were used for manual vetting
- Discussion of manual vetting results that alter/correct any auto-identification of listed bat species.

Please advise if USFWS requests any additional information in the final study report.

Given the limited amount of time remaining in the allowable bat survey season and prior commitments between August 7th and 15th, Edgewood proposes to conduct this survey during the week of August 1-6, weather permitting. This should allow ample time to complete the survey before the end of the bat survey season on August 15. Please contact me directly at (315) 456-8731, or at <u>mfishman@edgewoodenviro.com</u>, if you have any questions or require additional information. If this study plan is approved as is, or can be approved with recommended minor changes, please note any changes, sign, and return a copy of the following authorization page to me at your earliest convenience.

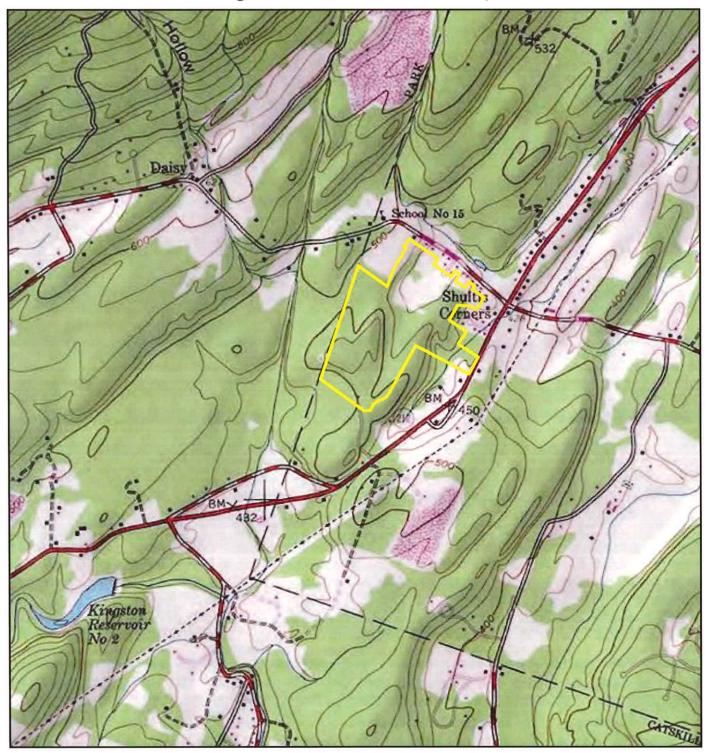
Thank you for your review of this plan, and I look forward to hearing from you.

Yours sincerely,

Michael Jishman\_

Michael S. Fishman Certified Wildlife Biologist

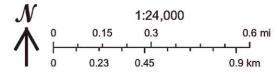
Attachments: Figure 1. Site Location Map Figure 2. Site Aerial Photo and Proposed Bat Detector Locations Attachment A: IPaC Data Attachment B: NYSDEC ERM Data Attachment C: NYNHP Data Report Attachment D: Qualified Bat Biologist Resume


cc: Kimberly White, Terramor Outdoor Resorts Kevin Franke, LA Group



FIGURES




## Figure 1. Site Location Map



#### Legend

Project Site Boundary

Terramor Catskills Terramor Outdoor Resorts Saugerties-Woodstock Road Saugerties, Ulster County, NY 42.049596°N, 74.074725°W



Copyright: @ 2013 National Geographic Society, i-cubed



Edgewood Environmental Consulting, LLC

## Figure 2. Aerial Orthophoto and Proposed Bat Detector Locations

Terramor Catskills Bat Acoustic Survey Saugerties-Woodstock Road, Town of Saugerties, Ulster County, NY 42.049596°N, 74.074725°W, WGS84 datum, NY Plane Projection

Glasco Turnpike

## <sup>c</sup>Bat Detector 5

## <sup>c</sup>Bat Detector 4

Osnas Lane

<sup>c</sup>Bat Detector 2

Bat Detector 1

# <sup>c</sup>Bat Detector 3

#### Legend

Raybrook Dr

Bat Detector

Google Earth

- Project Site Boundary
- lerramor Catskills Road

NYS Rte 212



Edgewood Environmental Consulting, LLC

1000 ft

N

#### ATTACHMENT A IPaC DATA REPORT





## United States Department of the Interior

FISH AND WILDLIFE SERVICE New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 Phone: (607) 753-9334 Fax: (607) 753-9699 Email Address: <u>fw5es\_nyfo@fws.gov</u>



July 08, 2022

In Reply Refer To: Project Code: 2022-0061692 Project Name: Terramor Catskills

Subject: List of threatened and endangered species that may occur in your proposed project location or may be affected by your proposed project

To Whom It May Concern:

The enclosed species list identifies threatened, endangered, proposed and candidate species, as well as proposed and final designated critical habitat, that may occur within the boundary of your proposed project and/or may be affected by your proposed project. The species list fulfills the requirements of the U.S. Fish and Wildlife Service (Service) under section 7(c) of the Endangered Species Act (Act) of 1973, as amended (16 U.S.C. 1531 *et seq.*).

New information based on updated surveys, changes in the abundance and distribution of species, changed habitat conditions, or other factors could change this list. Please feel free to contact us if you need more current information or assistance regarding the potential impacts to federally proposed, listed, and candidate species and federally designated and proposed critical habitat. Please note that under 50 CFR 402.12(e) of the regulations implementing section 7 of the Act, the accuracy of this species list should be verified after 90 days. This verification can be completed formally or informally as desired. The Service recommends that verification be completed by visiting the ECOS-IPaC website at regular intervals during project planning and implementation for updates to species lists and information. An updated list may be requested through the ECOS-IPaC system by completing the same process used to receive the enclosed list.

The purpose of the Act is to provide a means whereby threatened and endangered species and the ecosystems upon which they depend may be conserved. Under sections 7(a)(1) and 7(a)(2) of the Act and its implementing regulations (50 CFR 402 *et seq.*), Federal agencies are required to utilize their authorities to carry out programs for the conservation of threatened and endangered species and to determine whether projects may affect threatened and endangered species and/or designated critical habitat.

A Biological Assessment is required for construction projects (or other undertakings having similar physical impacts) that are major Federal actions significantly affecting the quality of the human environment as defined in the National Environmental Policy Act (42 U.S.C. 4332(2)

(c)). For projects other than major construction activities, the Service suggests that a biological evaluation similar to a Biological Assessment be prepared to determine whether the project may affect listed or proposed species and/or designated or proposed critical habitat. Recommended contents of a Biological Assessment are described at 50 CFR 402.12.

If a Federal agency determines, based on the Biological Assessment or biological evaluation, that listed species and/or designated critical habitat may be affected by the proposed project, the agency is required to consult with the Service pursuant to 50 CFR 402. In addition, the Service recommends that candidate species, proposed species and proposed critical habitat be addressed within the consultation. More information on the regulations and procedures for section 7 consultation, including the role of permit or license applicants, can be found in the "Endangered Species Consultation Handbook" at:

#### http://www.fws.gov/endangered/esa-library/pdf/TOC-GLOS.PDF

**Migratory Birds**: In addition to responsibilities to protect threatened and endangered species under the Endangered Species Act (ESA), there are additional responsibilities under the Migratory Bird Treaty Act (MBTA) and the Bald and Golden Eagle Protection Act (BGEPA) to protect native birds from project-related impacts. Any activity, intentional or unintentional, resulting in take of migratory birds, including eagles, is prohibited unless otherwise permitted by the U.S. Fish and Wildlife Service (50 C.F.R. Sec. 10.12 and 16 U.S.C. Sec. 668(a)). For more information regarding these Acts see https://www.fws.gov/birds/policies-and-regulations.php.

The MBTA has no provision for allowing take of migratory birds that may be unintentionally killed or injured by otherwise lawful activities. It is the responsibility of the project proponent to comply with these Acts by identifying potential impacts to migratory birds and eagles within applicable NEPA documents (when there is a federal nexus) or a Bird/Eagle Conservation Plan (when there is no federal nexus). Proponents should implement conservation measures to avoid or minimize the production of project-related stressors or minimize the exposure of birds and their resources to the project-related stressors. For more information on avian stressors and recommended conservation measures see https://www.fws.gov/birds/bird-enthusiasts/threats-to-birds.php.

In addition to MBTA and BGEPA, Executive Order 13186: *Responsibilities of Federal Agencies to Protect Migratory Birds*, obligates all Federal agencies that engage in or authorize activities that might affect migratory birds, to minimize those effects and encourage conservation measures that will improve bird populations. Executive Order 13186 provides for the protection of both migratory birds and migratory bird habitat. For information regarding the implementation of Executive Order 13186, please visit https://www.fws.gov/birds/policies-and-regulations/ executive-orders/e0-13186.php.

We appreciate your concern for threatened and endangered species. The Service encourages Federal agencies to include conservation of threatened and endangered species into their project planning to further the purposes of the Act. **Please include the Consultation Code in the header of this letter with any request for consultation or correspondence about your project that you submit to our office.**  07/08/2022

#### Attachment(s):

Official Species List

## **Official Species List**

This list is provided pursuant to Section 7 of the Endangered Species Act, and fulfills the requirement for Federal agencies to "request of the Secretary of the Interior information whether any species which is listed or proposed to be listed may be present in the area of a proposed action".

This species list is provided by:

New York Ecological Services Field Office 3817 Luker Road Cortland, NY 13045-9385 (607) 753-9334

## **Project Summary**

| Project Code:        | 2022-0061692                                                             |
|----------------------|--------------------------------------------------------------------------|
| Event Code:          | None                                                                     |
| Project Name:        | Terramor Catskills                                                       |
| Project Type:        | Commercial Development                                                   |
| Project Description: | The site is a mixed deciduous / coniferous forest approximately 75 acres |
|                      | is size and includes palustrine wetlands and intermittent and perennial  |
|                      | streams.                                                                 |

**Project Location:** 

Approximate location of the project can be viewed in Google Maps: <u>https://www.google.com/maps/@42.04940405,-74.07487204201507,14z</u>



Counties: Ulster County, New York

#### **Endangered Species Act Species**

There is a total of 2 threatened, endangered, or candidate species on this species list.

Species on this list should be considered in an effects analysis for your project and could include species that exist in another geographic area. For example, certain fish may appear on the species list because a project could affect downstream species.

IPaC does not display listed species or critical habitats under the sole jurisdiction of NOAA Fisheries<sup>1</sup>, as USFWS does not have the authority to speak on behalf of NOAA and the Department of Commerce.

See the "Critical habitats" section below for those critical habitats that lie wholly or partially within your project area under this office's jurisdiction. Please contact the designated FWS office if you have questions.

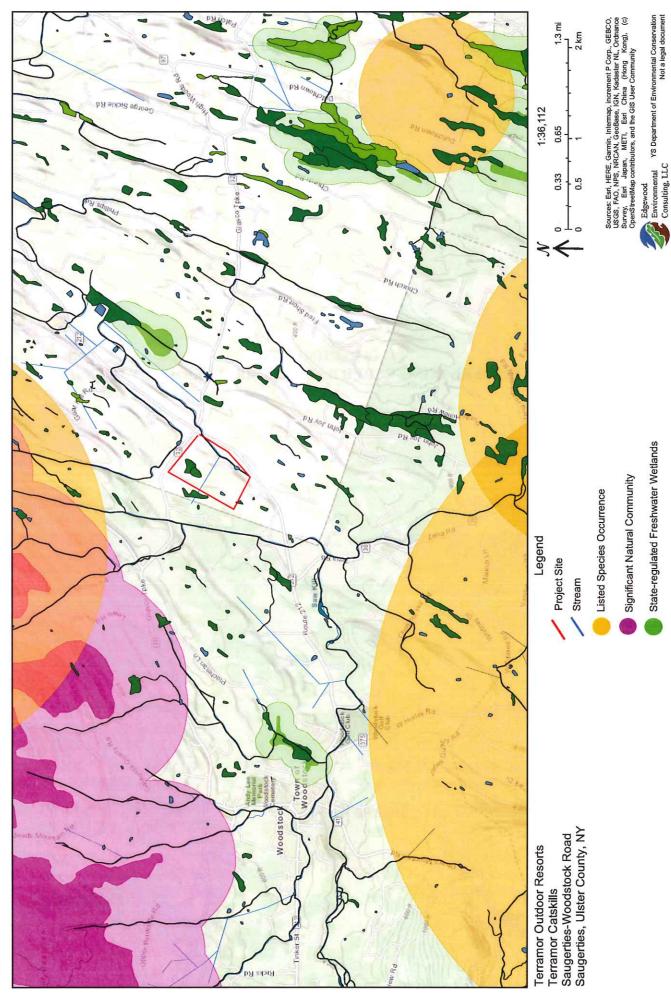
1. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

#### Mammals

| NAME                                                                                                                                                                                                                  | STATUS     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Indiana Bat <i>Myotis sodalis</i><br>There is <b>final</b> critical habitat for this species. The location of the critical habitat is not available.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/5949</u> | Endangered |
| Insects<br>NAME                                                                                                                                                                                                       | STATUS     |
| Monarch Butterfly Danaus plexippus<br>No critical habitat has been designated for this species.<br>Species profile: <u>https://ecos.fws.gov/ecp/species/9743</u>                                                      | Candidate  |

#### **Critical habitats**

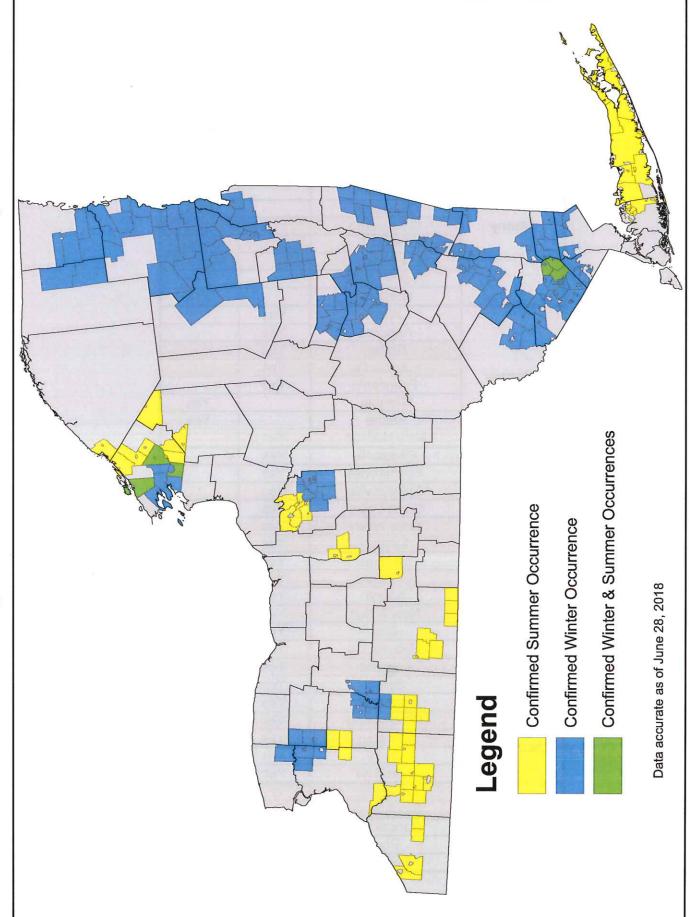
THERE ARE NO CRITICAL HABITATS WITHIN YOUR PROJECT AREA UNDER THIS OFFICE'S JURISDICTION.


### **IPaC User Contact Information**

Agency:The LA Group, P.C.Name:Robert FraserAddress:40 Long AlleyCity:Saratoga SpringsState:NYZip:12866Emailrfraser@thelagroup.comPhone:5185878100

#### ATTACHMENT B NYSDEC ERM DATA REPORT




# NYSDEC Enviro Resource Mapper



#### ATTACHMENT C NYSDEC'S NORTHERN LONG-EARED BAT OCCURRENCES BY TOWN (2018)







## Northern Long-eared Bat Occurrences by Town

\*if your town is highlighted in yellow, please contact <u>NYNHP</u> to see whether your project site is within 0.25 miles of a hibernacula, or 150 feet of a summer occurrence.

| County       |               | Occur  | Occurrence |  |  |
|--------------|---------------|--------|------------|--|--|
| County       | Name          | Summer | Winter     |  |  |
|              | Altamont      |        | Yes        |  |  |
| [            | Berne         |        | Yes        |  |  |
|              | Bethlehem     |        | Yes        |  |  |
|              | Coeymans      |        | Yes        |  |  |
| Albany       | Guilderland   |        | Yes        |  |  |
|              | Knox          | 1000   | Yes        |  |  |
|              | New Scotland  |        | Yes        |  |  |
| [            | Voorheesville |        | Yes        |  |  |
|              | Westerlo      |        | Yes        |  |  |
|              | Allen         | Yes    |            |  |  |
|              | Angelica      | Yes    |            |  |  |
|              | Belfast       | Yes    |            |  |  |
| A.11         | Caneadea      | Yes    |            |  |  |
| Allegany     | Friendship    | Yes    |            |  |  |
|              | Granger       |        | Yes        |  |  |
|              | Hume          |        | Yes        |  |  |
|              | New Hudson    | Yes    |            |  |  |
|              | Ellicottville | Yes    |            |  |  |
| ſ            | Farmersville  | Yes    |            |  |  |
|              | Franklinville | Yes    |            |  |  |
| 1            | Great Valley  | Yes    |            |  |  |
|              | Little Valley | Yes    |            |  |  |
| 0-11-        | Lyndon        | Yes    |            |  |  |
| Cattaraugus  | Machias       | Yes    |            |  |  |
|              | Mansfield     | Yes    |            |  |  |
| Ĩ            | Napoli        | Yes    |            |  |  |
|              | New Albion    | Yes    |            |  |  |
| 1            | Otto          | Yes    |            |  |  |
|              | Salamanca     | Yes    |            |  |  |
|              | Ledyard       | Yes    |            |  |  |
| Cayuga       | Scipio        | Yes    |            |  |  |
|              | Springport    | Yes    |            |  |  |
|              | Chautauqua    | Yes    |            |  |  |
| <b>a</b>     | Ellington     | Yes    |            |  |  |
| Chautauqua · | Gerry         | Yes    |            |  |  |
|              | Westfield     | Yes    |            |  |  |
|              | Ausable       |        | Yes        |  |  |
|              | Black Brook   |        | Yes        |  |  |
| Clinton      | Dannemora     |        |            |  |  |
|              | Peru          |        | Yes<br>Yes |  |  |
|              | Saranac       |        | Yes        |  |  |

Note: not all portions of listed towns are covered by a buffer. If your town is listed, contact <u>NYNHP</u> or your <u>regional DEC office</u> to see whether your project site falls within known occupied habitat.

|          |                         | Occurrence         |            |  |
|----------|-------------------------|--------------------|------------|--|
| County   | Name                    | Summer             | Winter     |  |
|          | Ancram                  |                    | Yes        |  |
|          | Austerlitz              |                    | Yes        |  |
|          | Canaan                  | -B10-00-41         | Yes        |  |
|          | Chatham                 |                    | Yes        |  |
| Columbia | Copake                  |                    | Yes        |  |
| Columbia | Germantown              |                    | Yes        |  |
|          | Greenport               |                    | Yes        |  |
|          | Hudson                  |                    | Yes        |  |
|          | Livingston              |                    | Yes        |  |
|          | New Lebanon             |                    | Yes        |  |
|          | East Fishkill           |                    | Yes        |  |
|          | Fishkill                |                    | Yes        |  |
|          | Hyde Park               |                    | Yes        |  |
| Dutchess | Millerton               |                    | Yes        |  |
|          | Northeast               |                    | Yes        |  |
|          | Pine Plains<br>Red Hook |                    | Yes        |  |
|          | Red Hook                |                    | Yes<br>Yes |  |
| -        | Akron                   |                    | Yes        |  |
|          | Alden                   |                    | Yes        |  |
|          | Clarence                |                    | Yes        |  |
| Erie     | Collins                 | Yes                | 165        |  |
|          | Newstead                | 163                | Yes        |  |
|          | Wales                   | Yes                | 105        |  |
|          | Chesterfield            | 100                | Yes        |  |
|          | Crown Point             |                    | Yes        |  |
|          | Elizabethtown           |                    | Yes        |  |
|          | Essex                   |                    | Yes        |  |
|          | Jay                     |                    | Yes        |  |
|          | Lewis                   |                    | Yes        |  |
| Frank    | Minerva                 | GRADE STOLL        | Yes        |  |
| Essex    | Moriah                  | and the particular | Yes        |  |
|          | Newcomb                 |                    | Yes        |  |
|          | North Hudson            |                    | Yes        |  |
|          | Schroon                 |                    | Yes        |  |
|          | Ticonderoga             |                    | Yes        |  |
|          | Westport                | Ten len st         | Yes        |  |
|          | Wilmington              |                    | Yes        |  |
| Franklin | Bellmont                |                    | Yes        |  |
|          | Franklin                |                    | Yes        |  |
|          | Alabama                 |                    | Yes        |  |
| Genesee  | Corfu                   |                    | Yes        |  |
| Genesee  | Darien                  |                    | Yes        |  |
|          | Pembroke                |                    | Yes        |  |

| Country    | Name -           | Occurrence |        |  |
|------------|------------------|------------|--------|--|
| County     | Name             | Summer     | Winter |  |
|            | Athens           |            | Yes    |  |
| Creana     | Cairo            |            | Yes    |  |
| Greene     | Catskill         |            | Yes    |  |
|            | Coxsackie        |            | Yes    |  |
| Unaniltan  | Indian Lake      |            | Yes    |  |
| Hamilton   | Wells            |            | Yes    |  |
|            | Alexandria       | Yes        |        |  |
|            | Black River      | Yes        |        |  |
|            | Brownville       |            | Yes    |  |
|            | Champion         | Yes        |        |  |
|            | Chaumont         |            | Yes    |  |
|            | Clayton          | Yes        | Yes    |  |
|            | Dexter           |            | Yes    |  |
|            | Evans Mills      | Yes        |        |  |
| Jefferson  | Glen Park        |            | Yes    |  |
|            | Hounsfield       |            | Yes    |  |
|            | Le Ray           | Yes        | Yes    |  |
|            | Lyme             |            | Yes    |  |
|            | Pamelia          |            | Yes    |  |
|            | Philadelphia     | Yes        |        |  |
|            | Rutland          | Yes        |        |  |
|            | Theresa          | Yes        |        |  |
|            | Watertown        | Yes        | Yes    |  |
|            | Copenhagen       | Yes        |        |  |
| Lewis      | Denmark          | Yes        |        |  |
|            | Diana            | Yes        |        |  |
|            | Mount Morris     |            | Yes    |  |
| Livingston | Nunda            |            | Yes    |  |
| •          | Portage          |            | Yes    |  |
|            | Ames             |            | Yes    |  |
|            | Canajoharie      |            | Yes    |  |
|            | Charleston       |            | Yes    |  |
|            | Glen             |            | Yes    |  |
| Montgomery | Mohawk           |            | Yes    |  |
|            | Nelliston        |            | Yes    |  |
|            | Palatine         |            | Yes    |  |
|            | Palatine Bridge  |            | Yes    |  |
|            | Root             |            | Yes    |  |
|            | Brookville       | Yes        |        |  |
|            | Muttontown       | Yes        |        |  |
| Nassau     | Oyster Bay       | Yes        |        |  |
|            | Oyster Bay Cove  | Yes        |        |  |
|            | Upper Brookville | Yes        |        |  |
| Niagara    | Royalton         | Yes        |        |  |

| Country   | News                 | Occurrence           |          |  |
|-----------|----------------------|----------------------|----------|--|
| County    | Name                 | Summer               | Winter   |  |
|           | Camillus             | Yes                  |          |  |
|           | Clay                 | Yes                  |          |  |
|           | De Witt              | In the second second | Yes      |  |
|           | East Syracuse        |                      | Yes      |  |
|           | Fayetteville         |                      | Yes      |  |
|           | Geddes               | Yes                  |          |  |
|           | La Fayette           |                      | Yes      |  |
| Onondaga  | Liverpool            | Yes                  |          |  |
| Onondaga  | Lysander             | Yes                  | 1 Carlos |  |
|           | Manlius              |                      | Yes      |  |
|           | Minoa                |                      | Yes      |  |
|           | Onondaga             |                      | Yes      |  |
|           | Pompey               |                      | Yes      |  |
|           | Salina               | Yes                  |          |  |
|           | Syracuse             |                      | Yes      |  |
|           | Van Buren            | Yes                  |          |  |
|           | Blooming Grove       |                      | Yes      |  |
|           | Chester              |                      | Yes      |  |
|           | Cornwall             | Yes                  | Yes      |  |
|           | Cornwall-on-Hudson   |                      | Yes      |  |
|           | Crawford             |                      | Yes      |  |
| 2         | Deerpark             |                      | Yes      |  |
|           | Goshen               |                      | Yes      |  |
|           | Greenwood Lake       |                      | Yes      |  |
|           | Hamptonburgh         |                      | Yes      |  |
|           | Harriman             |                      | Yes      |  |
|           | Highland Falls       |                      | Yes      |  |
| Orange    | Highlands            | Yes                  | Yes      |  |
|           | Kiryas Joel          |                      | Yes      |  |
|           | Monroe               |                      | Yes      |  |
|           | Mount Hope           |                      | Yes      |  |
|           | Otisville            |                      | Yes      |  |
|           | South Blooming Grove |                      | Yes      |  |
|           | Tuxedo               | Constant Th          | Yes      |  |
|           | Tuxedo Park          |                      | Yes      |  |
|           | Wallkill             |                      | Yes      |  |
|           | Warwick              |                      | Yes      |  |
|           | Washingtonville      |                      | Yes      |  |
|           | Woodbury             | Yes                  | Yes      |  |
|           | Brewster             |                      | Yes      |  |
|           | Carmel               |                      | Yes      |  |
|           | Cold Spring          |                      | Yes      |  |
| Destances | Kent                 |                      | Yes      |  |
| Putnam    | Nelsonville          |                      | Yes      |  |
|           | Philipstown          |                      | Yes      |  |
|           | Putnam Valley        |                      | Yes      |  |
|           | Southeast            |                      | Yes      |  |

Note: not all portions of listed towns are covered by a buffer. If your town is listed, contact <u>NYNHP</u> or your <u>regional DEC office</u> to see whether your project site falls within known occupied habitat.

| Country     | News          | Occurrence |        |  |
|-------------|---------------|------------|--------|--|
| County      | Name          | Summer     | Winter |  |
|             | Berlin        |            | Yes    |  |
|             | Grafton       |            | Yes    |  |
| Rensselaer  | Petersburgh   |            | Yes    |  |
| Kensselder  | Poestenkill   |            | Yes    |  |
|             | Sand Lake     |            | Yes    |  |
|             | Stephentown   |            | Yes    |  |
|             | Haverstraw    |            | Yes    |  |
|             | Hillburn      |            | Yes    |  |
| Rockland    | Pomona        |            | Yes    |  |
| ROCKIAIIU   | Ramapo        |            | Yes    |  |
|             | Sloatsburg    |            | Yes    |  |
|             | Stony Point   |            | Yes    |  |
|             | Corinth       |            | Yes    |  |
|             | Edinburg      |            | Yes    |  |
| Saratoga    | Galway        |            | Yes    |  |
| Saratoya    | Greenfield    |            | Yes    |  |
|             | Milton        |            | Yes    |  |
|             | Providence    |            | Yes    |  |
|             | Delanson      |            | Yes    |  |
| Schenectady | Duanesburg    |            | Yes    |  |
|             | Princetown    |            | Yes    |  |
|             | Carlisle      | - /        | Yes    |  |
|             | Cobleskill    |            | Yes    |  |
|             | Esperance     |            | Yes    |  |
|             | Esperance     |            | Yes    |  |
| <i>.</i>    | Fulton        |            | Yes    |  |
| Schoharie   | Middleburgh   |            | Yes    |  |
|             | Schoharie     |            | Yes    |  |
|             | Seward        |            | Yes    |  |
|             | Sharon        |            | Yes    |  |
|             | Wright        |            | Yes    |  |
| Schuyler    | Hector        | Yes        |        |  |
| St Lawrence | Hammond       | Yes        |        |  |
|             | Cameron       | Yes        |        |  |
|             | Canisteo      | Yes        |        |  |
|             | Caton         | Yes        |        |  |
| Steuben     | Jasper        | Yes        |        |  |
|             | Lindley       | Yes        |        |  |
|             | Tuscarora     | Yes        |        |  |
|             | Brookhaven    | Yes        |        |  |
|             | Dering Harbor | Yes        |        |  |
|             | East Hampton  | Yes        |        |  |
|             | Huntington    | Yes        |        |  |
| Suffolk     | Islandia      | Yes        |        |  |
|             | Islip         | Yes        |        |  |
|             | Lloyd Harbor  | Yes        |        |  |
|             | Mastic Beach  | Yes        |        |  |
|             | Muotio Dedoli | 100        |        |  |

Note: not all portions of listed towns are covered by a buffer. If your town is listed, contact <u>NYNHP</u> or your <u>regional DEC office</u> to see whether your project site falls within known occupied habitat.

| 0                  |                       | Occurrence      |                                          |  |
|--------------------|-----------------------|-----------------|------------------------------------------|--|
| County             | Name                  | Summer          | Winter                                   |  |
|                    | Riverhead             | Yes             |                                          |  |
|                    | Sag Harbor            | Yes             |                                          |  |
|                    | Shelter Island        | Yes             |                                          |  |
| Cuffells (contial) | Shoreham              | Yes             |                                          |  |
| Suffolk (cont'd)   | Smithtown             | Yes             |                                          |  |
|                    | Southampton           | Yes             |                                          |  |
|                    | Southold              | Yes             |                                          |  |
|                    | Village of the Branch | Yes             |                                          |  |
|                    | Bloomingburg          |                 | Yes                                      |  |
|                    | Forestburgh           |                 | Yes                                      |  |
| Sullivan           | Mamakating            |                 | Yes                                      |  |
|                    | Thompson              |                 | Yes                                      |  |
|                    | Wurtsboro             |                 | Yes                                      |  |
|                    | Esopus                |                 | Yes                                      |  |
|                    | Hurley                |                 | Yes                                      |  |
|                    | Kingston              |                 | Yes                                      |  |
|                    | Marbletown            |                 | Yes                                      |  |
|                    | New Paltz             |                 | Yes                                      |  |
| Ulster             | Rochester             |                 | Yes                                      |  |
|                    | Rosendale             |                 | Yes                                      |  |
|                    | Shawangunk            |                 | Yes                                      |  |
|                    | Ulster                |                 | Yes                                      |  |
|                    | Wawarsing             |                 | Yes                                      |  |
|                    | Bolton                |                 | Yes                                      |  |
|                    | Chester               |                 | Yes                                      |  |
|                    | Hague                 |                 | Yes                                      |  |
| Warren             | Horicon               |                 | Yes                                      |  |
|                    | Johnsburg             |                 | Yes                                      |  |
|                    | Lake George           |                 | Yes                                      |  |
|                    | Queensbury            |                 | Yes                                      |  |
|                    | Dresden               |                 | Yes                                      |  |
|                    | Fort Ann              | har har the set | Yes                                      |  |
| Washington         | Putnam                |                 | Yes                                      |  |
|                    | Whitehall             | 1               | Yes                                      |  |
|                    | Cortlandt             |                 | Yes                                      |  |
|                    | Lewisboro             |                 | Yes                                      |  |
| Westchester        | North Salem           |                 | Yes                                      |  |
|                    | Somers                |                 | Yes                                      |  |
|                    | Bennington            | Yes             |                                          |  |
|                    | Castile               |                 | Yes                                      |  |
|                    | Gainesville           |                 | Yes                                      |  |
| Wyoming            | Genesee Falls         |                 | Yes                                      |  |
|                    | Pike                  |                 | Yes                                      |  |
|                    | Sheldon               | Yes             |                                          |  |
|                    | Sneidon               | res             | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |  |

#### ATTACHMENT D BAT ACOUSTIC ANALYST QUALIFICATIONS



## Michael S. Fishman, CWB

Conservation Biologist; Environmental Regulatory Specialist; Partner

Mr. Fishman has 35 years of professional experience in biodiversity and natural resources survey, threatened and endangered species surveys (all taxa, but especially bats and birds), terrestrial, and wetland ecology, environmental impact assessment, environmental permitting, and endangered species management and consultations. He has served as principal investigator on more than 200 biodiversity inventories, each including surveys for birds, mammals, reptiles, amphibians, insects, aquatic invertebrates, and vascular plants, involving a wide variety of observational, photographic, acoustic, and live capture survey techniques. Mr. Fishman has developed original survey protocols for some species. His field work has spanned 26 states in the U.S., as well as Canada, Mexico, Puerto Rico, and Suriname, and his study plan experience has included Dominican Republic and Panama.

His environmental impact assessment experience includes extensive experience with the preparation of environmental impact statements (EIS) and Environmental and Social Impact Assessments (ESIAs) under IFC Performance Standard 6 (Biodiversity). His permitting experience includes local, state, and federal wetlands and waters, endangered species, energy generation and transmission certification, for renewable energy (solar, wind, hydro, bio), oil & gas, mining, industrial/commercial development, municipal water, wastewater, and solid waste, and residential land use.

**Experience:** 35 years; 2 in academia, 4 in regulatory, 2 in non-profit, and 27 in consulting.

LinkedIn: https://www.linkedin.com/in/michael-fishman-8055379/

Email: mfishman@edgewoodenviro.com

#### Education

- Master of Science, Conservation Biology, State University of New York, College of Environmental Science and Forestry, USA, Thesis Topic: Indiana Bat (*Myotis sodalis*) Habitat Characterization in the Ontario Lake Plain of New York.
- Bachelor of Science, Natural Resources, Wildlife, and Aquatic Sciences, Cornell University, USA



Edgewood Environmental Consulting, LLC



#### **Professional Affiliations & Registrations**

- Certified Wildlife Biologist (CWB)
- Professional Wetland Scientist (PWS)(exp)
- The Wildlife Society (Renewable Energy Working Group Member; Editorial Advisory Board of *The Wildlife Professional*; President, Northeast Section; President and Vice President, New York Chapter)
- Northeast Bat Working Group (Past Chair/President)
- North American Society for Bat Research

#### Licenses & Permits

- New York Endangered/Threatened Species/Scientific
- New York Collect & Possess/Scientific
- Former federal licensee Possess/Collect Endangered Bats
- Former federal licensee Migratory Bird Treaty Act
   Collect and Possess

#### **Fields of Competence**

- Flora and Fauna/Biodiversity Survey & Management
   especially avian and bat species, includes all taxa
- Threatened and Endangered Species Survey
- IFC Performance Standard 6 Biodiversity Survey
- Endangered Species Act Formal Consultation
- Wetland Delineation (Freshwater and Tidal)
- Environmental Due Diligence
- Environmental Impact Assessment/EIS Preparation
- State Environmental Quality Review (SEQR)
- Wetland Regulatory Permitting
- Endangered Species and Wetland Mitigation
   Planning
- NY State Public Service Law Article VII and Article 10 Review/Certification
- Municipal planning; Landscape/Habitat Management
- Wildlife management planning

#### Languages

English, native speaker; some Spanish

#### **Key Industry Sectors**

- Renewable Energy (Solar, Wind, Hydro, Biofuel)
- Oil & Gas Midstream
- Mining
- Golf Course
- Residential, Commercial, Industrial, and Mixed-Use Development
- Municipal Water, Wastewater, and Solid Waste

#### **Honors & Awards**

- Organization for Bat Conservation Award, 2011
- 40 Under 40 Award, 2009

#### **Bat Acoustic Training**

Bat Conservation & Management's Bat Acoustic Training Course, 2011

Developed and Taught ERM's Bat Acoustic Training Course, Amherst, MA (2015); Knoxville, TN (2017); Syracuse, NY (2019)

Wildlife Acoustics, LLC's Bat Acoustic Training Course – Kaleidoscope Pro and SMMiniBAT Bat Detector, 2019

Vesper Bat Detection Services Bat Acoustic Training Course – Eastern Bats, 2020

**Recent Bat Projects** 

#### Number Three Wind, Bat Emergence Survey for limited tree clearing, Town of Lowville, Lewis County, NY, 2021

Conducted potential roost tree bat emergence surveys at multiple locations for limited tree clearing activities during the seasonal restriction on tree clearing. No bats were detected emerging from selected trees, so clearing was able to proceed without risk of take, and under state and federal agency approval.

#### Confidential Solar Power Development Bat Acoustic Survey, Town of Cortlandt, Westchester County, NY, 2021

Conducted a Phase 2, Step 5/6/7 Acoustic Survey for Indiana and northern long-eared bats on a  $\pm$ 43-acre property proposed for a solar power facility.

#### Brookhaven National Laboratory Bat Mist Net Surveys, Upton, Town of Brookhaven, Suffolk County, NY, 2021

Conducted mist net surveys to determine potential continued presence of northern long-eared bats, which we detected in previous surveys in 2012, 2014, and 2015.

#### Confidential Mixed Use Development Project Bat Acoustic Survey, Dutchess County, NY, 2021

Conducted a Phase 2, Step 5/6/7 Acoustic Survey for Indiana and northern long-eared bats on a 3,000acre property proposed for a mixed-use development. This was a follow-up survey to a mistnet survey I conducted in 2005 for the same client.

#### Invenergy Number Three Wind Project Bat Potential Roost Tree Survey, Lowville, Lewis County, NY, 2021

Conducted winter survey for potential bat roost trees to enable seasonally restricted clearing of bat roost trees during the winter.

#### Verizon Cellular Tower Bat Habitat and Impact Assessment, Wappingers Falls, Dutchess County, NY, 2020

Assessed proposed site of a new cellular phone tower for threatened and endangered bat habitat. Determined that although the site was mature forest, no suitable potential roost trees would be cut. USFWS concurred with our findings thereby clearing the project to proceed.

#### The Wetland Trust Overlook Property, Bat Acoustic Survey, LaGrange, Dutchess County, NY, 2020 Conducted federal protocol acoustic surveys for Indiana and northern long-eared bats on conservation lands to explore feasibility of establishing a bat habitat mitigation bank.

Endangered Bat Habitat Assessment and Tree Management Plan, Trammell Crow – Amazon Warehouse Facility, Liverpool, NY, 2019-20 Conducted Indiana bat habitat assessment and documented management recommendations, and completed seasonal tree clearing compliance inspections for a proposed 4 million square foot warehouse facility on an existing golf course.

#### Bird and Bat Impact Assessment, Delphos

International – Wind Farm Siruai, Kenya, 2019-20 Assisted with design and oversight of baseline field studies for bird and bat biodiversity in compliance with IFC Performance Standard 6 Guidelines for Wind Development; next phase is to assess potential impacts to birds and bats, including 2 critically endangered species of vulture. Draft bird and bat section of the Environmental and Social Impact Assessment.

#### Avian and Bat Field Study Protocol for Proposed Wind Energy Project (Confidential), Dominican Republic, 2019.

Drafted IFC PS6-compliant avian and bat study protocol for proposed second phase of a wind energy development project in Dominican Republic.

#### Biodiversity Due Diligence Review for Proposed Mine Reactivation, Nucor Steel – Project 200, Clifton, NY, 2019

Led natural resources inventory baseline studies, for feasibility study for re-opening an iron mine in the Adirondack Park Preserve. Included identifying baseline environmental resources and required permitting. Next phase will include designing and overseeing field studies for baseline data, coordinating environmental impact assessment, impact avoidance/minimization design guidance, assessing impacts to wetlands, wildlife, and habitats, and preparing environmental permit applications.

#### Endangered Bat Surveys, Waymart II Wind Farm, NextEra Energy, Northeastern Pennsylvania, USA, 2018

Oversaw and conducted endangered bat presence/absence surveys for a proposed wind energy facility of 20+ turbines.

#### Endangered Species and Wetland Impact Assessment and Permitting for Multiuse Development, BRH Land – LaGrange Town Center Development, Poughkeepsie, NY, USA 2010-21

Completed federal and state wetland permitting and endangered species permitting/formal consultation for Indiana bat and Blanding's turtle on a proposed multi-use commercial/residential development. Included developing mitigation and management plans for Indiana bat and Blanding's turtles.

#### Avian and Bat Impact Assessment, Medline Distribution Center EIS, Goshen, NY, USA 2018-20

Completed the wetlands and flora and fauna sections of a DEIS for a proposed 1.3 million square foot medical equipment distribution facility. Issues addressed included avoidance and mitigation of potential impacts to grassland birds, including several state-listed species, and endangered bats.

#### Biodiversity Due Diligence, Impact Assessment and Permitting for Solar PV Arrays, Duke Energy Renewables, Multiple sites, NY, USA, 2018-20 Conducted environmental due diligence, local permitting, and helped to coordinated NYSERDA bid

for 3 ca. 20-MW solar farms in central and western NY.

#### Biodiversity Due Diligence, Impact Assessment and Permitting for Solar PV Arrays, Cypress Creek Renewables, LLC, 8 sites in New York, USA; 2016 - 2020

Conducted environmental due diligence (Phase 1 ESA, wetlands, T&E species, cultural resources), environmental impact assessment under SEQRA, and prepared local, state, and federal permitting applications for 8 local community generated solar power facilities. Included wetland mitigation planning, watercourse crossings, and conservation plans for bog turtle, Blanding's turtle, and Indiana bat.

#### Bat and Arboreal Mammal Survey and ESIA,

IAMGOLD Saramacca Concession, Brokopondo and Sipilawini Districts, Suriname; 2017 - 2018 Conducted field capture, acoustic, and camera surveys for bats and arboreal mammals to establish baseline data for terrestrial wildlife, and prepared wildlife impacts section of an environmental and social impact assessment (ESIA) for a proposed gold mine expansion in remote Suriname tropical forest.

# Bat Hibernaculum Survey, Chevron – Kitimat LNG Site, Kitimat BC, Canada, 2017

Conducted visual and acoustic survey for bats roosting in abandoned pulp and paper mill slated for demolition for a proposed LNG plant.

#### Endangered Bat Surveys, Atlantic Coast Pipeline, West Virginia, Virginia, and North Carolina, USA, 2015 - 2018

Led a team of bat biologists to develop and conduct survey protocols for 4 listed bat species and potential roost trees and hibernacula along a proposed ±660 mile gas pipeline project that crossed 4 states. Negotiated conservation measures with state and federal agencies, and led team to conduct construction monitoring for compliance with conservation measures.

#### Endangered Bat Surveys, Virginia Department of Transportation (VDOT), 9 sites throughout Virginia, USA, 2015

Coordinated acoustic bat surveys on 9 proposed bridge replacement sites in various locations around Virginia and provided final report and conservation recommendations.

# Endangered Bat Survey, DeWitt Community Library, DeWitt, New York, USA. 2016.

Conducted acoustic bat survey on greenfield site proposed for construction of a new community library. Included preparing study plan approved by USFWS, deploying acoustic detectors, identifying bat calls, and preparing final report.

#### Threatened Bat Habitat Assessment, Amazon Distribution Facility, Fall River, Massachusetts, USA, 2016

Assessed site proposed for Amazon distribution facility for potential Northern Long-eared Bat (*Myotis septentrionalis*) habitat. Obtained concurrence from USFWS that site was not suitable habitat, which allowed the development to proceed.

#### Endangered Bat Surveys, Algonquin Incremental Market Pipeline Project, Various locations in NY, CT, RI, and MA, USA, 2014

Coordinated large-scale acoustic bat survey for proposed gas pipeline expansion project across New England region. Developed study plan approved by USFWS, coordinated field crews and conducted surveys, prepared final report and coordinated with state and federal wildlife agencies for approvals.

# Long Island Century Bat Survey, Long Island, New York, USA, 2012-2013

Obtained grant from the National Parks Foundation to conduct the largest bat survey on Long Island in

more than 100 years. Survey included 4 U.S. National Park properties, Brookhaven National Laboratory, and Wertheim National Wildlife Refuge, and was performed in cooperation with the NYSDEC, USFWS, USNPS, Brookhaven National Laboratory, and numerous private volunteers.

#### Endangered Indiana Bat Survey Ultra Resources Marshlands Gas Play, Tioga and Potter Counties, Pennsylvania, USA, 2010

Served as principal investigator for mist net surveys of more than 200 sites in north-central Pennsylvania for a proposed gas play expansion. Recruited surveyors, coordinated staff, collated data, and produced report.

#### Biodiversity Inventory, Environmental Impact Statement, and Wetland and Endangered Species Permitting, Hudson River Valley Resort Development, Rosendale, New York, USA, 2006-2012

Conducted 4-year natural resource inventory and completed wetlands and wildlife sections of a DEIS and FEIS for a 900-acre proposed resort development. Developed original protocols for vernal pool ecosystem services assessment and threatened Northern Cricket Frog (*Acris crepitans*) surveys that were approved by state wildlife agency, and developed conservation plan for the 2<sup>nd</sup> largest Indiana bat (*Myotis sodalis*) hibernaculum in the Northeast U.S.

#### Endangered Bat Survey, West Point Military Reservation, Town of Highland, New York, USA, 2008

Principal investigator for the survey of the 50,000+ acre U.S. Military Academy and Reservation, including mist net and acoustic surveys, preparation of reports, and follow-up guidance to Natural Resources Department personnel on bat management.

#### **Bat-Related Publications**

- Fishman, M.S. In Prep. Bats of New York. Commissioned book.
- Fishman, M.S. and R. Allen. In Prep. Filling the gap in the range map of *Micronycteris schmidtorum*; a capture in Suriname.
- Fishman, M.S. 2017. Indiana Bat Selection of Day Roosts in the Ontario Lake Plain of New York.
   Master's Degree Thesis, State University of New York College of Environmental Science and Forestry, New York, USA.
- Fishman, M.S. 2016. Indiana Bat Selection of Day Roosts in the Ontario Lake Plain of New York.
   Chapter 11 *in* Sociality in Bats, Jorge Ortega (ed.).
   Springer.
- Fishman, M.S. 2005. Saving your project from the endangered species list. New York State Real Property Law Journal, 33(3), Summer, 2005.
- Fishman, M.S. 1995. A selective cut above. Wildlife in the News 7(1).
- Fishman, M.S. 1994. A rose by any other name.
   Wildlife in the News 6(4).
- Fishman, M.S. 1994. Wastelands to wetlands.
   Wildlife in the News 6(3).
- Fishman, M.S. and M.S. Scheibel. 1990. Osprey productivity on Long Island 1978-1987: a decade of stabilization. Kingbird 40(1).

#### **Bat-Related Professional Presentations**

- Preliminary acoustic bat survey of the boreal peatlands of central Ontario. Poster presentation with James Rettie (coauthor) at the 49<sup>th</sup> Annual North American Symposium on Bat Research, Kalamazoo, MI.
- Resilience of Northern Long-eared Bats in Coastal Plains. Invited presentation at the White Nose Syndrome Symposium, Rosendale, NY. April 2017.
- The Long Island Century Bat Survey. Invited presentation at Westfield State University, Westfield, MA. February 2017
- Final Threatened Listing and §4(d) Rule for Northern Long-eared Bats. Invited presentation at the

Southern Gas Association's 2016 Annual Meeting, Savannah, GA, February 2016.

- Bats at the Beach: Northern Long-eared Bats Are Alive and Well in Northeastern Coastal Communities. Presentation at the 45<sup>th</sup> Annual American Symposium on Bat Research, Monterey, CA, October, 2015.
- The Northern Long-eared Bat Threatened Species Listing and Interim 4(d) Rule: How Do They Affect Right-of-Way Work?", invited presentation at the 11<sup>th</sup> Annual Environmental Concerns in Right-of-Way Management Symposium, Halifax, NS, September 2015.
- "Remnant Populations of Northern Long-Eared Bat in Northeastern Coastal Communities". Presentation at the Northeast Natural History Conference, Springfield, MA, April 2015.
- "Bats of Long Island and the Long Island Century Bat Survey", Invited presentation to the Seatuck Environmental Association's annual Bats and Brews Conference, October, 2015.
- "Remnant Populations of Northern Long-Eared Bat in Northeastern Coastal Communities". Cooperative presentation with the USFWS, NYSDEC, and BiodiversityWorks at the Northeast Bat Working Group Meeting, Portland, ME, January, 2015.
- "Reviewing for Endangered Species", invited presentation for the Lorman Seminar, Wetland Regulation, scheduled for December 4, 2014, Albany, NY.
- "Male and Female Indiana bats Select Different Roost Trees in the Ontario Lake Plain of Central New York", poster accepted for presentation at the North American Symposium on Bat Research, Albany, NY, October 2014.
- "Indiana bat day roost selection and characteristics in the Ontario Lake plain of New York", poster accepted for exhibit at The Wildlife Society 2014 Annual Meeting, Pittsburgh, PA, October 2014.
- "Habitat Modeling for Indiana Bats in Central New York" – Presentation at the Northeast Bat Working

Group 2014 Annual Meeting, Clinton, NJ, January 2014.

- "Long Island's Bats" Invited presentation at the 2<sup>nd</sup> Annual Long Island Natural History Conference, Long Island, NY, December 2013
- "Bats of the Barrens" Invited presentation at the 18<sup>th</sup> Annual Long Island Pine Barrens Research Forum, Long Island, NY, October 2013



Michael Fishman <mfishman@edgewoodenviro.com>

#### Fw: [EXTERNAL] URGENT: Late Request for Bat Acoustic Study Plan Review; START DATE 31 July 2022 - APPROVED

1 message

Rayman, Noelle <noelle\_rayman@fws.gov> To: Michael Fishman <mfishman@edgewoodenviro.com> Cc: "Doran, Sandra" <Sandra\_Doran@fws.gov> Thu, Jul 28, 2022 at 9:05 AM

Hi Mike - your survey plan for this project is approved. Please let us know if you run into any issues.

Noelle L. Rayman-Metcalf Endangered Species Biologist U.S. Fish and Wildlife Service New York Field Office 3817 Luker Rd. Cortland, NY 13045 607-753-9334 noelle\_rayman@fws.gov http://www.fws.gov/northeast/nyfo

#### Please Note:

We are currently experiencing a high demand for Endangered Species Act project reviews. To ensure that your project review packages are able to be reviewed as efficiently as possible, please include an Official Species List from the Information for Planning and Consultation (IPaC) website and all relevant project information. In addition, please use our Project Review website (<u>New York Project Reviews | U.S. Fish & Wildlife Service (fws.gov</u>)) and use our project review checklist (<u>Project submittal checklist | U.S. Fish & Wildlife Service (fws.gov</u>)) to make sure your project review request is complete.

Due to current staff shortages, a large workload for project reviews, and our work to conserve federally listed and at-risk species with our partners, current project review times can vary, possibly 60 days or more for large projects. Every project review is important to us; we will do our very best to address project reviews in a timely fashion. Your patience is appreciated.

From: Rayman, Noelle <noelle\_rayman@fws.gov> Sent: Thursday, July 28, 2022 9:02 AM To: Doran, Sandra <Sandra\_Doran@fws.gov> Subject: Re: [EXTERNAL] URGENT: Late Request for Bat Acoustic Study Plan Review; START DATE 31 July 2022

I think this study proposal looks good and can quickly respond to Mike.

Noelle L. Rayman-Metcalf Endangered Species Biologist U.S. Fish and Wildlife Service New York Field Office 3817 Luker Rd. Cortland, NY 13045 607-753-9334 noelle\_rayman@fws.gov http://www.fws.gov/northeast/nyfo

#### Please Note:

We are currently experiencing a high demand for Endangered Species Act project reviews. To ensure that your project review packages are able to be reviewed as efficiently as possible, please include an Official Species List from the Information for Planning and Consultation (IPaC) website and all relevant project information. In addition, please use our Project Review website (<u>New York Project Reviews</u> <u>U.S. Fish &</u> <u>Wildlife Service (fws.gov)</u>) and use our project review checklist (<u>Project submittal checklist</u> <u>U.S. Fish</u> <u>& Wildlife Service (fws.gov</u>)) to make sure your project review request is complete.

Due to current staff shortages, a large workload for project reviews, and our work to conserve federally listed and at-risk species with our partners, current project review times can vary, possibly 60 days or more for large projects. Every project review is important to us; we will do our very best to address project reviews in a timely fashion. Your patience is appreciated.

From: Doran, Sandra <Sandra\_Doran@fws.gov> Sent: Wednesday, July 27, 2022 2:24 PM To: Rayman, Noelle <<u>noelle\_rayman@fws.gov></u> Subject: Fw: [EXTERNAL] URGENT: Late Request for Bat Acoustic Study Plan Review; START DATE 31 July 2022

Can you fit this in?

Sandie Doran U.S. Fish and Wildlife Service 3817 Luker Road Cortland, NY 13045 Office Phone: 607-753-9334 Email: sandra\_doran@fws.gov

From: Michael Fishman <mfishman@edgewoodenviro.com> Sent: Wednesday, July 27, 2022 11:55 AM To: Rayman, Noelle <noelle\_rayman@fws.gov>; Doran, Sandra <Sandra\_Doran@fws.gov>; Sullivan, Tim R <tim\_r\_sullivan@fws.gov> Cc: Kimberly White <kwhite@koa.net>; Kevin Franke <kfranke@thelagroup.com>; Ahmed Helmi <ahelmi@koa.net> Subject: [EXTERNAL] URGENT: Late Request for Bat Acoustic Study Plan Review; START DATE 31 July 2022

This email has been received from outside of DOI - Use caution before clicking on links, opening attachments

Noelle, Sandy, and Tim,

We've had a late request for a bat acoustic survey on a 75-acre site in Saugerties, NY. I can only fit this in next week, deploying on Sunday, 31 July.

Sorry for the last minute request, but could you please review the attached study plan and let me know if it is approved for implementation?

Thank you very much!

#### Michael S. Fishman, CWB

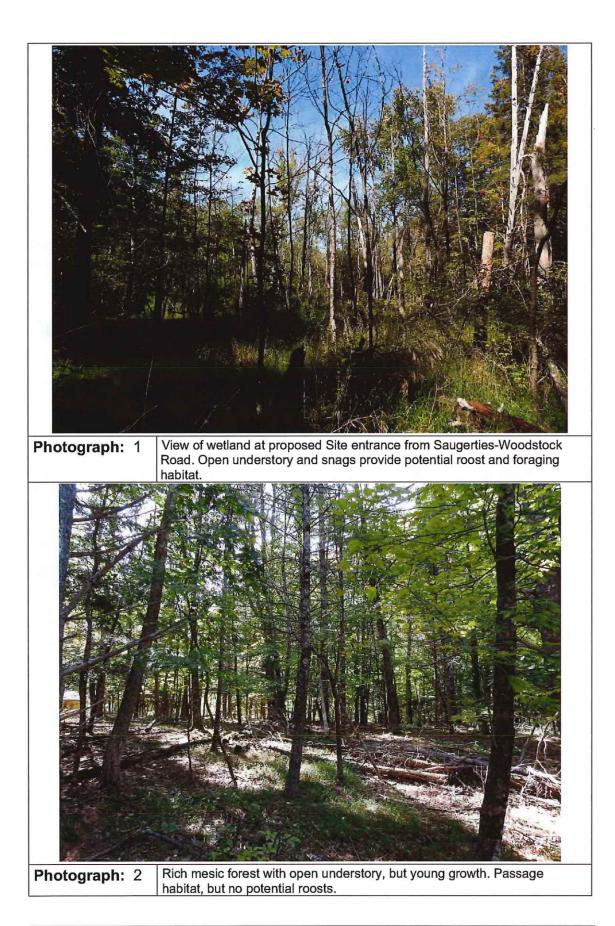
Wildlife Biologist, Wetland Scientist, Regulatory Specialist

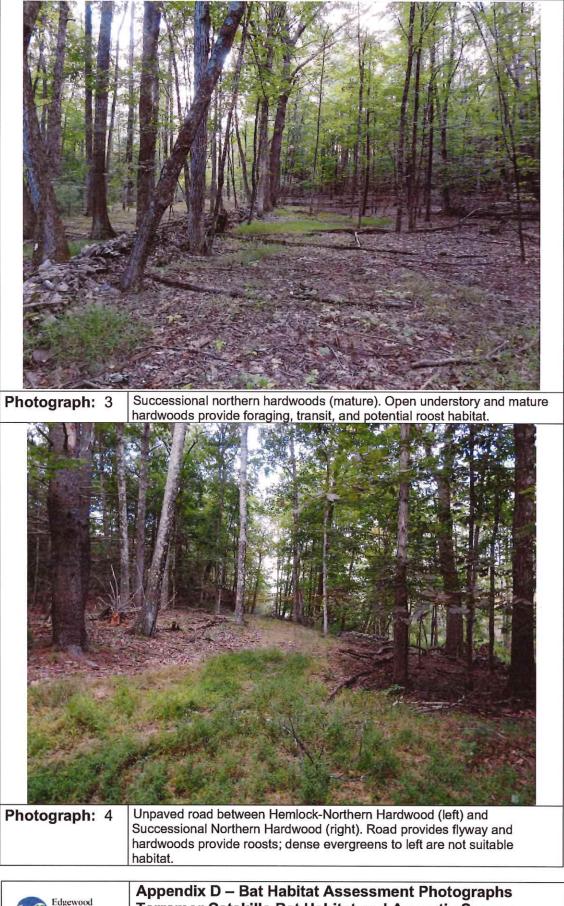


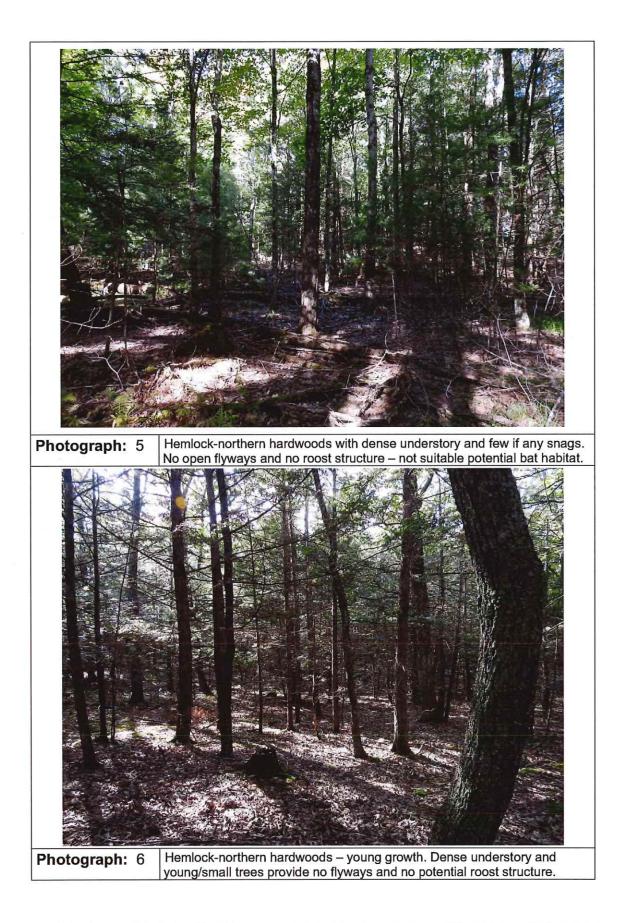
Edgewood Environmental Consulting, LLC 5 Edgewood Parkway, Fayetteville, NY 13066 +1 (315) 456-8731 mfishman@edgewoodenviro.com

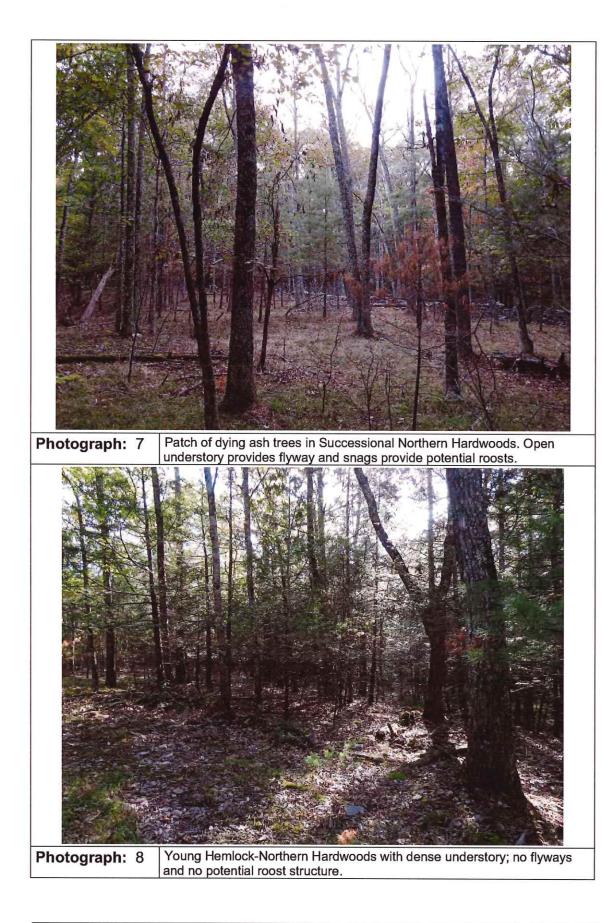
APPENDIX D BAT HABITAT ASSESSMENT DATA SHEETS AND PHOTOS

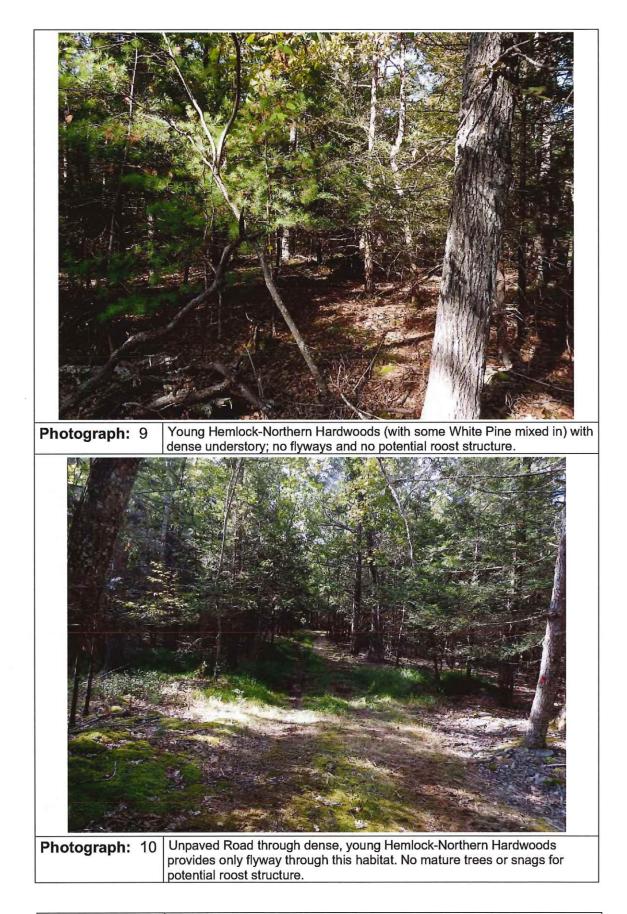
| 2022JOURNAL<br>Summer Habitat Assessment<br>Project Name Terrawav Curts k<br>wood Scutaing<br>Durst<br>Muite Rive<br>Wuite Ach                                                                                                                                                                                                                                                  | 0 m circle: $20^{\circ}$ b Trees w/Ex<br>mopy (>20m); $20^{\circ}$ Midstory (<br>ire Trees (%):<br>1: $20^{\circ}$ Medium (20-40 cm<br>1): $20^{\circ}$ (8-16 in<br>n): $20^{\circ}$ (8-16 in<br>n). $20^{\circ}$ (8-16 in<br>creas at Sample Site: Width ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ads: Area (ac) V<br>ads: Area (ac) V<br>adally suitable for Indiana/North                                                                                                                                                                                          | 11 11                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.S. Fishman 2022 JOURNAL Page<br>Indiana Bat Phase I Summer Habitat Assessment Page 1 of 2<br>Date: J. Stophenker<br>Project Name Accation: Time In: (400 Out: 600 EST<br>Project Name Accation: A Content of All The Most All All All Source thes - Whod<br>Shuk Id, The Source thes W/S Source thes - Whod<br>Source in the Source of All All All All All All All All All Al | Project Area Total Acres: 77       Forested Acres: 77       Open Acres: 7         Proposed Trees (ac) Cleared:       Partially Cleared:       Preserved:         Landscape Within 5 Mile Radius:       N       N       E         Contains Councetive Forested Corridors?       N       N       E         Direction(s) of Corridors (circle all that apply): (N) NE       E       S       S         Adjacent Land Uses (circle all that apply):       N       E       S       S       W       W         Undeveloped: Forested       Shrubland       Open/Sericultural       Water       Water       Mater | Developed: Residential Commercial Industrial Parkland Road Other<br>Other (describe):<br>Proximity to Forested Public Land or Preserve<br>Indian Head Wild Lurwess 1:26 (1) (NS E W<br>Correau Property 2:3 NG E (1)<br>Bluestone Wild Brest 3.18 NS E W<br>NS E W | Sample Site Description: Near Errtrance Form Snugerthes-<br>Words both Road, mostly red-maple-hardrungod<br>Swalling, with Errne Mch mesic forest 1J/ Plines<br>Photos: edge interior understory canopy snags live roosts water bodies<br>Reminator. 1121 |


| M.S. Fishman 2022JOURNAL Page 83<br>Indiana Bat Phase I Summer Habitat Assessment Page 2 of 2<br>Date: Date: Project Name Assessment Page 2 of 2<br>Comin Od AUG. Textamov Cafit 1   Site # 2<br>Vegetation Cover Types:<br>Mathyre Successional in ortharm hand wood Forest<br>Forest Resources at Samole Site:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pointinant Species of Mature Trees,<br>Sundar M(1) (e. ), RCA Maple.)       Red     Oak       # of Trees in 30 m circle:     % Trees w/Exfoliating Bark:     # of Snags: 2       Clutter/     Canopy (>20m):     20-100       % Closure:     % Closure: | (%):<br>Medium (20-40 cm): <u>50/1</u> Large (40+cm):<br>(8-16 in): <u>50/1</u> (>16 in):<br><u>aple Site:</u> Width (m) Intermit/Perennial Bat<br>Stream 0.6 Intermit/Perennial Bat<br>Area (ac) Vernal/Perennial Bat                                                                                                                                               | I 1000 plann was land the for Indiana/Northern Long Eared Bats? (V) N<br>Roosting Habitat: Endor and dead livinbs Shadrark<br>Foraging Habitat: 1000 was voads, open winderstory<br>Transit Habitat: 1000 was voads, open winderstory                    | Additional Comments:<br>PENSE Windows by in acreas TUFS. Heinlock                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.S. Fishman 2022JOURNAL Page 82<br>Indiana Bat Phase I Summer Habitat Assessment Page 1 of 2<br>Date: Od AUGUST Time In: 14:50 Out; 650 EST<br>Project Name/Location:<br>Project Name/Project Name/P | tion: PROPOSED CAMPIN<br>cres: 77 Forested Acres: 77<br>Cleared: Partially Cleared:<br>Mile Radius:                                                                                                                                                     | Contains Connective Forested Corridors? (V N IS See Aerial Photo<br>Direction(s) of Corridors (circle all that apply) (WNEESB SWWW)<br>Adjacent Land Uses (circle all that apply) (WNEESB SWWW)<br>Undeveloped Forested Shrubland Open/Successional Open/Agricultural Water<br>Developed: Residential Commercial Industrial Parkland Road Other<br>Other (describe): | Proximity to Forested Public Land or Preserve Distance (mi) (No. E. W. Name<br>Indian Head WilderNess [1.26 (No. E. W. Conveau Property 2.3 No. E. W. Bluestane Wild Forcit 3.18 NO. E. W. Sample Site Description: Easter in Slope of Site Description: | Diuff ührd Storle Wall-Mahure Surcessional<br>hardwordd forest fisme hund ouc wixed in<br>2008 wer 2009 and 1000 water bodies<br>Photos: Ledge Linterior Lunderstory canopy Isnags _live roosts _water bodies<br>Revised 07.1121 |


.


| M.S. Fishman 2022 JOURNAL Page 85<br>Indiana Bat Phase 1 Summer Habitat Assessment Page 2 of 2<br>Date:<br>Comrit Cover Types:<br>Vegetation Cover Types:<br>Hewnlock - howdwood forest                                                                                                                                                                                                                                                                                                                                                                             | Foreit Resources at Sample Site:<br>Dominant Species of Mature Trees:<br>Eastern Hewnlott<br>Red Oak<br># of Trees in 30 m circle: % Trees w/Exfoliating Bark: # of Snags: | Clutter/ Canopy (>20m): Midstory (7-20m): Understory (<7m):<br>% Closure: <u>20-(00</u><br>% Closure: <u>20-(00</u><br>Size Dist. of Live Trees (%):<br>Small (8-20cm): <u>65</u> + (8-16 in): <u>30</u> Large (40+cm): $\angle 5$<br>(3-8 in): <u>65</u> + (8-16 in): <u>30</u> [alf in): $\angle 5$ | Water Resources at Sample Site: Width (m) Intermit/Perennial Bat Accessible<br>Streams: N/A<br>Area (ac) Vernal/Perennial Bat Accessible<br>Pools/Ponds/Wetlands: 1/A                                            |                                                                                                                                                                             | Hibernaculum: N/A. J.                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.S. Fishman 2022 JOURNAL Page 84<br>Indiana Bat Phase 1 Summer Habitat Assessment Page 1 of 2<br>Date: 04 AUCULST Time In: (455 Out: 1650 Ent<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location:<br>Project Name/Location: (450 Out: 1650 Ent<br>Position: 42. 04747 E 74, 07604 Co. AN<br>Position: 42. 04747 E 74, 07604 Co. AN<br>Position: 42. 04747 E 74, 07604 Co. AN | Brief Project Description:<br>Project Area Total Acres: 77 Project Area: 77 Open Acres:                                                                                    | Plv): N                                                                                                                                                                                                                                                                                               | Adjacent Land Uses (circle all that apply):<br>Undeveloped Forested Shrubhand Open/Successional Open/Agricultural Water<br>Developed: Residential Commercial Industrial Parkland Road Other<br>Other (describe): | Prosimity to Forested Public Land or Preserve Distance (mi) N S E W Name Name Name N S E W N S E W N S E W N S E W N S E W N S E W N S E W N S E W Sample Site Description: | There interior understard no flyways except<br>for clearcd MV travid Durans except<br>Photos: cedge Interior Lunderstory _ canopy _ snags _ live roosts _ water bodies<br>Revised 07,11,21 |


| 2022JOURNAL Page<br>Summer Habitat Assessment Page 2 of 2<br>Project Name<br>Fevramor Catheriti 4<br>Mern Hardwood 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ources at Sample Site:<br>Species of Marure Trees:<br>SPAN Hrwn (b.C.K.<br>O.M.L.<br>in 30 m circle: 50,4 % Trees w/Extoliating Bark: 0 # of Snags: 0<br>in 30 m circle: 50,4 % Trees w/Extoliating Bark: 0 # of Snags: 0<br>Canopy (>20m); 50,4 % Midstory (7-20m); 50, Understory (<7m); 50, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.40 cm):                                                                                                                                                                                                     | Area (ac) Vernal/Perennial Bat Accessible<br>W of tru's location yea<br>diana/Northern Long Eared Bats? Y (N)                                                                                                      | travil                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| M.S. Fishman 2022.JC<br>Indiana Bat Phase 1 Summer<br>Date:<br>Cont 4) 21 St filew bey Project Na<br>Vegetation Cover Types;<br>Vegetation Cover Types;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Forcet Resources at Sample Site:<br>Dominant Species of Mature Trees:<br>EaSterry H.M. (0.14<br>Red O.M.<br># of Trees in 30 m circle: 50+ % Trees w<br>Clutter' Canopy (>20m): 6-100 Midutor<br>% Clourse:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Size Dist. of Live Trees (%):<br>Small (8-20cm): Medium (20-40 cm):<br>(3-8 in): (65 (in): 204<br>Water Resources at Sample Site: Width (m) Interm<br>Streams: N/A                                            | Area (ac) Vermal/Perennial Bat Aco<br>forested westlands:<br>forested westland ± 100 m W of trus location<br>Is this habitat potentially suitable for Indiana/Northern Long Eared Bats? Y<br>Roosting Habitat: N/A | Foraging Habitat: A CMA 60.0114<br>Transit Habitat: A ONA AND AND<br>Hibernaculum: N/A<br>Additional Comments:                    |
| oʻ0 [   4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Preserved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N EvSee Aerial Photo<br>(E) () () () () () () () () () () () () ()                                                                                                                                            | Distance (mi)<br>NSEW<br>NSEW<br>NSEW                                                                                                                                                                              | ern Handwoods<br>Wern Handwoods<br>S _ live roosts _ water bodies                                                                 |
| 2022JOURN<br>P I Summer Habitat<br>Time In:<br>Ime In: | Detry The Source of the Source of Elevation of the Source of the Source of the Source of Source of Source of Source of Source of Sources of the Source of Sources of the Source of Sources of the Source of So | Ply) N                                                                                                                                                                                                        |                                                                                                                                                                                                                    | Northe<br>LNorth<br>Trad I                                                                                                        |
| M.S. Fishman<br>Indiana Bat Phase 1<br>Date: 21 September<br>Project Name/Location: 1<br>Project Name/Location: 1<br>Prosteda: 42 DVIG-20 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lonc: TL-1147 TU T. T.<br>Obseryers:<br>Brief Project Description:<br>Project Area Total Acres: 77<br>Proposed Trees (ac) Cleared:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Contains Connective Forested Corridors?<br>Direction(s) of Corridors (circle all that apply):<br>Adjacent Land Uses (circle all that apply):<br>Undeveloped: Forested Shrubland Open<br>Developed: Residentia | Other (describe):<br>Proximity to Forested Public Land or Preserve<br>Name                                                                                                                                         | Sample Site Description: LLM/DCK<br>Traushim to Successiona<br>along a lagarue (ATV<br>Phones: edge Interior Indension, car<br>Re |

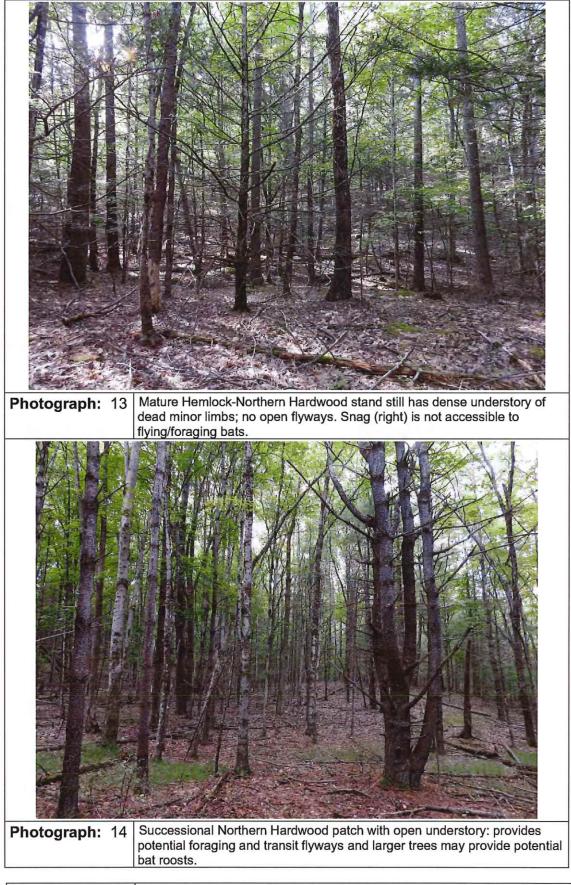

| M.S. Fishman 2022JOURNAL Page 86<br>Indiana Bat Phase 1 Summer Habitat Assessment Page 1 of 2<br>Date: 04 Angust Time In: (450 Out: (650 EST<br>Project Name Indation: 444-1115, W/S Sungerthes-(Wondsthat<br>Food 56 61956 7 pte, Sangerthes (MISterle, NY<br>Position: 42, 05139 E 74, 07378 N Elevation | res: MSF<br>roject Description: Ropoxed can<br>area Total Acres: 75 Forested Acr<br>are Within 5 Mile Radius:<br>as Connective Forested Corridors? (<br>as Connective Forested Corridors? (<br>as (s) of Corridors (circle all that apply);(                                                                                                                                                                                                                                                                                                                                                                                                                              | Adjacent Land Uses (circle all that apply):<br>Undeveloped: Forested Shrubland Open/Successional Open/Agricultural Water<br>Developed: Residential Commercial Industrial Parkland Road Other<br>Other (describe):<br>Proximity to Forested Public Land or Preserve Distance (mi) | e Erite I)<br>esite Description:<br>lature successional hardwood<br>e of ted maple hardwood swi<br>edge interior understory canoov stratery.                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.S. Fishman 2022 JOURNAL Page 87 -<br>Indiana Bat Phase I Summer Habitat Assessment Page 2 of 2<br>Date:<br>Convertyoes<br>Vegetation Cover Types<br>Marture Juccessibured Vorduurbods<br>Rod Maple Uniderlood Swamp                                                                                      | Forest Resources at Sample Site:         Dominant Species of Mature Trees:         (AJ/A/Le P/A.e. S. Mard but Vk. His, E. 0000         # of Trees in 30 m circle:       60 Trees w/Extoliating Bark:       # of Snags:         # of Trees in 30 m circle:       60 Trees w/Extoliating Bark:       # of Snags:       2         Clutter/       Canopy (>20m):       Midstory (7-20m):       Understory (<7m): | Water Resources at Sample Site: Width (m) InfermityPerennial Bat Accessible<br>Streams:                                                                                                                                                                                          | Is this habitat potentially suitable for Indiana/Northern Long Eared Bass (V) N<br>Roosting Habitat: IN SNAAS and SMAAba & Mickcord<br>Foreging Habitat: al true Usering voods and pretky<br>Transit Habitat: NA<br>Hibernaculum: N/A<br>Hibernaculum: N/A<br>Additional Comments: More Open Lunder Story Escher |

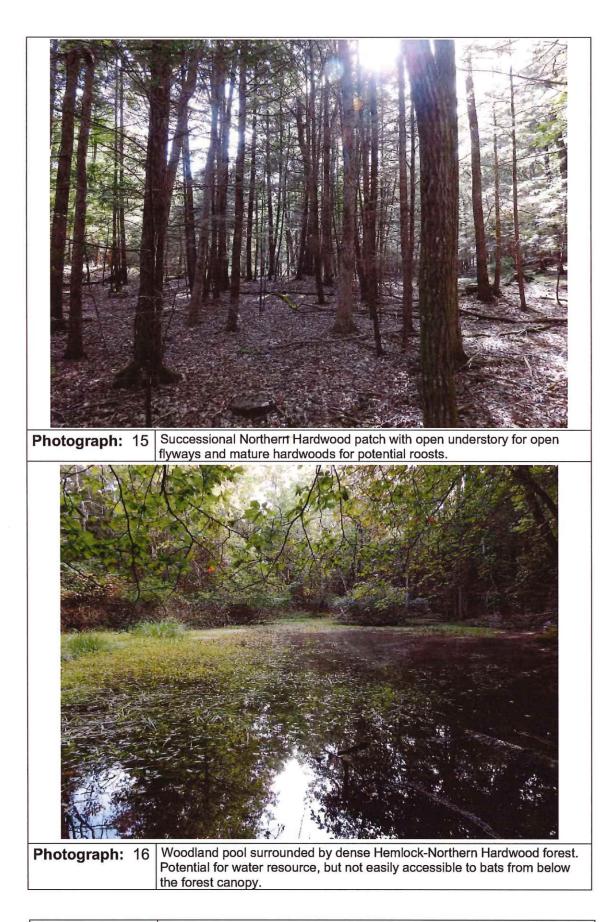




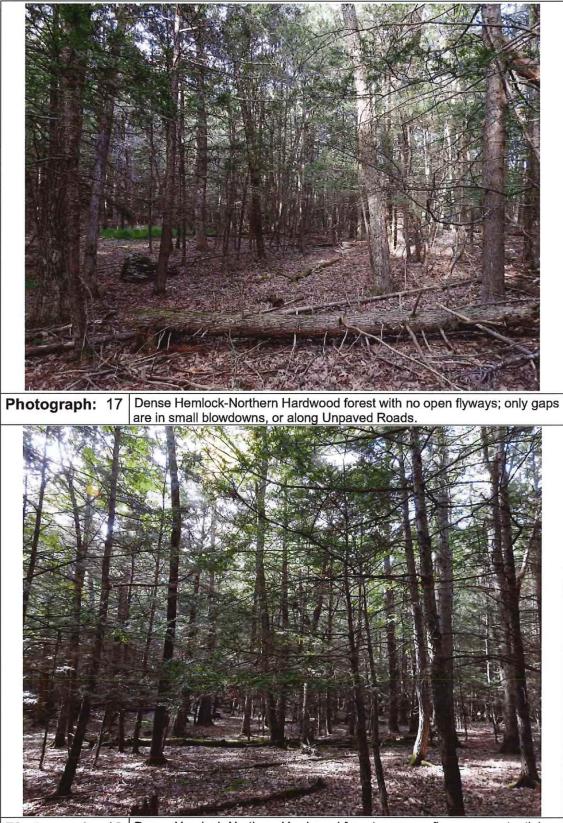






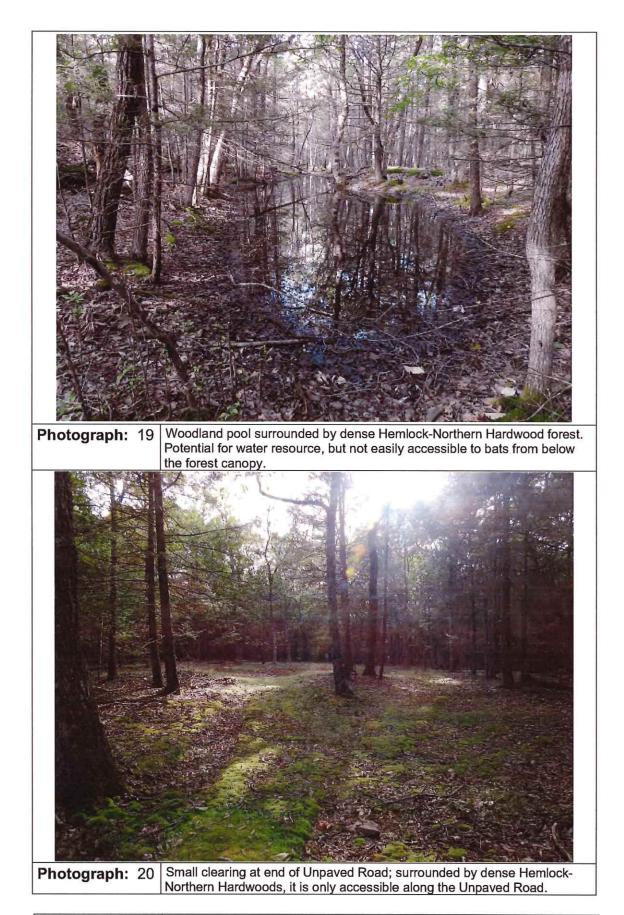



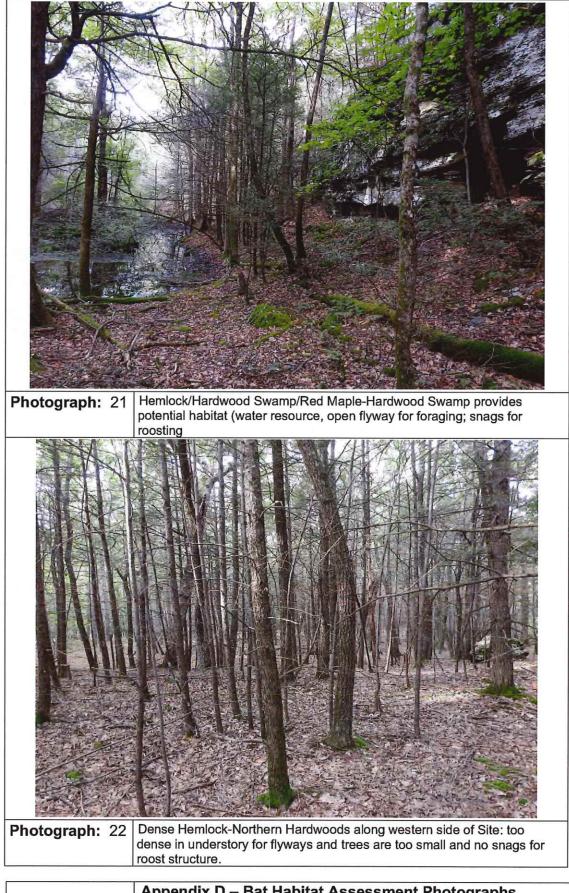

Appendix D – Bat Ha

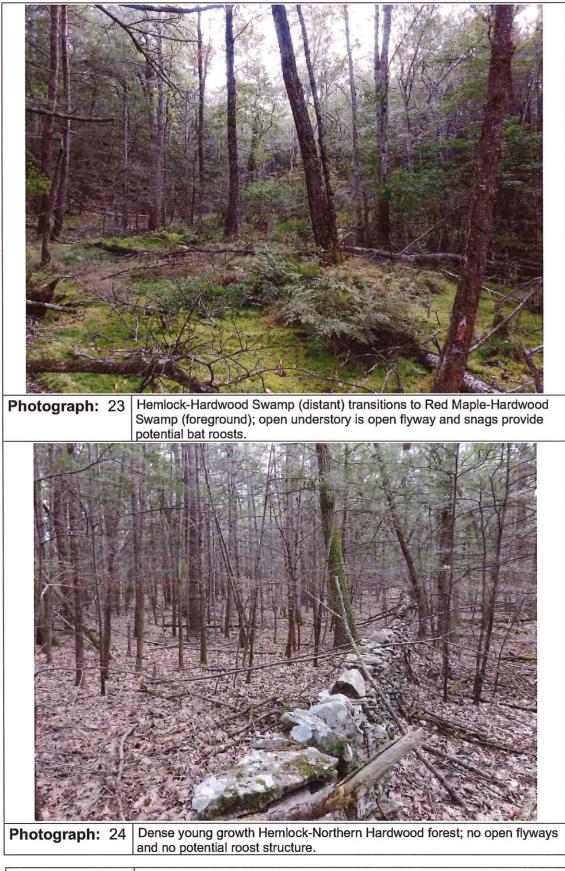

Environmental

Consulting, LLC

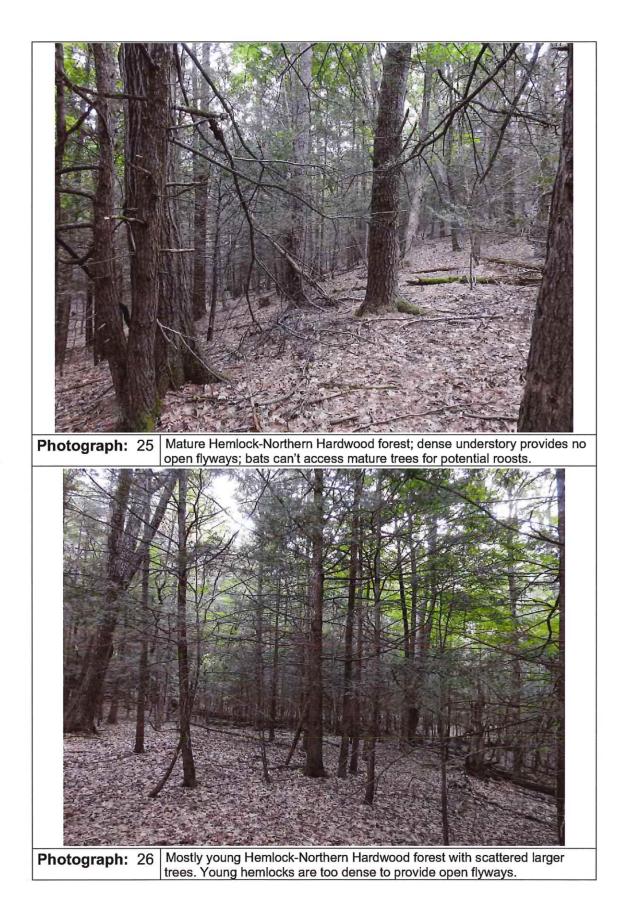


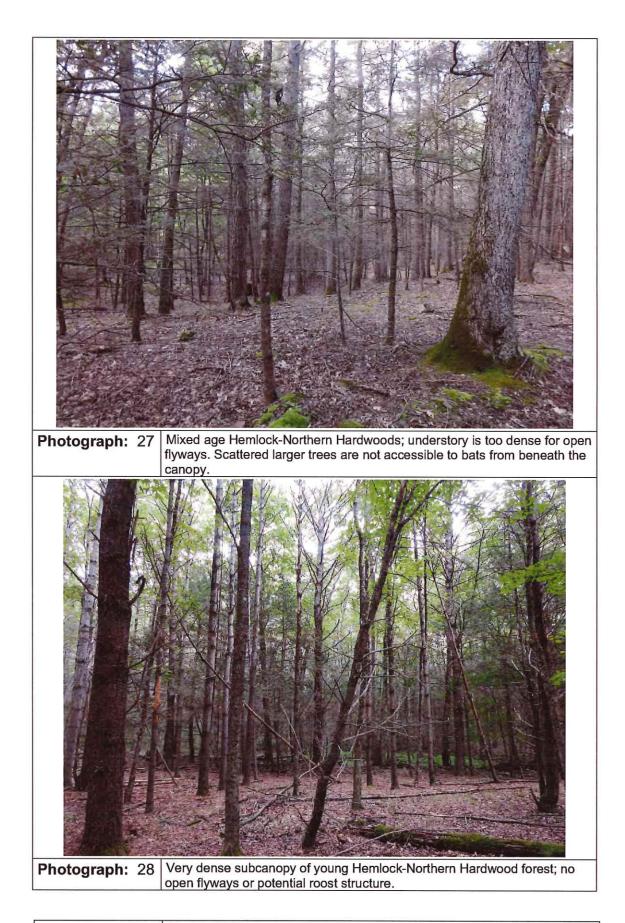



Photograph: 18 Dense Hemlock-Northern Hardwood forest; no open flyways or potential roost structure.





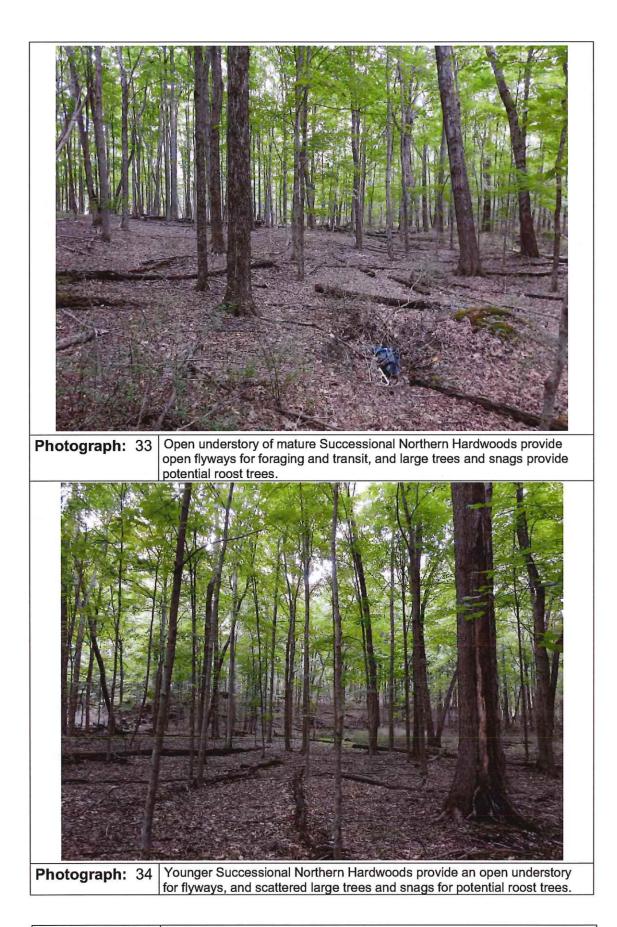


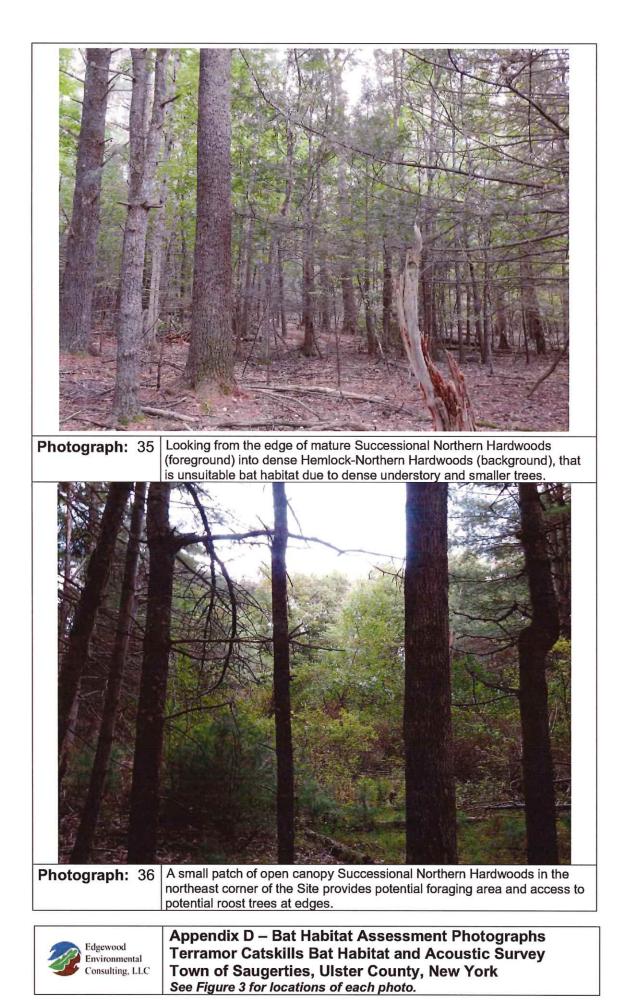


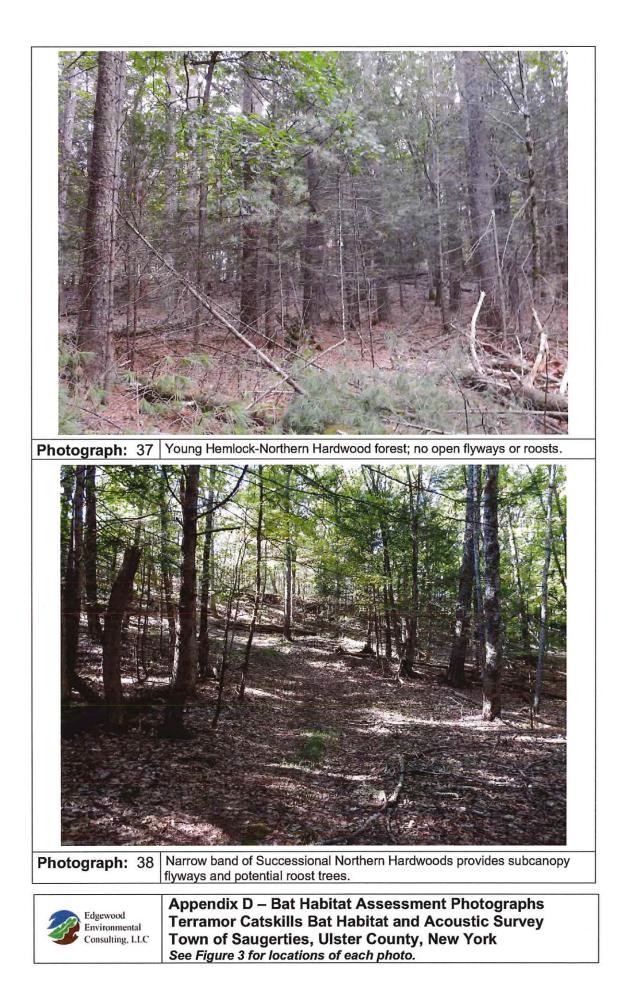








Photograph: 29 Young Hemlock-Northern Hardwood forest with dense understory; no flyways for bat transit or foraging and no snags for potential roosts.





Photograph: 30 Young Hemlock-Northern Hardwood forest; too dense to provide subcanopy flyways or access to potential roost trees, of which there are few.











## APPENDIX E SUMMARY OF BAT DETECTOR TYPES AND DEPLOYMENTS



Thinking outside.

**Terramor Catskills Bat Phase 2 Acoustic Survey** 

Appendix E

## **Bat Detector Deployment Summary**

| Sample | Bat Detector | Bat Detector | Latitude <sup>o</sup> N | Sample   Bat Detector   Bat Detector   Latitude <sup>o</sup> N   Longitude <sup>o</sup> W   Height   Orientation*   Distance to   Sample | Height | Orientation*                                                | Distance to | Sample |                                                                                        |
|--------|--------------|--------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------|-------------|--------|----------------------------------------------------------------------------------------|
| Site   | Type         | No.          | (DD, WGS84)             | (DD, WGS84) (DD, WGS84)                                                                                                                  |        | (m) (Azimuth <sup>o</sup> ) Clutter (m) Nights Habitat Type | Clutter (m) | Nights | Habitat Type                                                                           |
| -      | SMMini       | 1544         | 42.04804                | 74.07175                                                                                                                                 | 3      | 246°                                                        | 15          | m      | Open understory of Red Maple Hardwood Swamp,<br>along narrow (1 m) stream.             |
| 6      | SMMini       | 1618         | 47 04913                | 74 07756                                                                                                                                 | ~      | οUb                                                         | 10          | ~      | Open understory of mature Successional Northern<br>Hardwood forest along logeing road. |
|        |              |              |                         |                                                                                                                                          |        |                                                             |             |        | Along logging road through dense Hemlock-Northern                                      |
| m      | SMMini       | 1631         | 42.04723                | 74.07673                                                                                                                                 | m      | 15°                                                         | 20+         | m      | Hardwood forest                                                                        |
|        |              |              |                         |                                                                                                                                          |        | _                                                           |             |        | Along logging road through dense Hemlock-Northern                                      |
| 4      | SMMini       | 1645         | 42.04978                | 74.07662                                                                                                                                 | 3      | 212 <sup>0</sup>                                            | 15          | e      | Hardwood forest                                                                        |
|        |              |              |                         |                                                                                                                                          |        |                                                             |             |        | Northern Hardwoods and Red Maple-Hardwood                                              |
| 5      | SMMini       | 1649         | 42.05138                | 74.07378                                                                                                                                 | 3      | 42 <sup>0</sup>                                             | 20          | 3      | Swamp                                                                                  |
|        | •            |              |                         |                                                                                                                                          |        |                                                             |             |        |                                                                                        |

\*All microphones were mounted horizontally.

Edgewood Environmental Consulting, LLC

Page 1

APPENDIX F BAT ACOUSTIC SURVEY DATA SHEETS AND PHOTOS

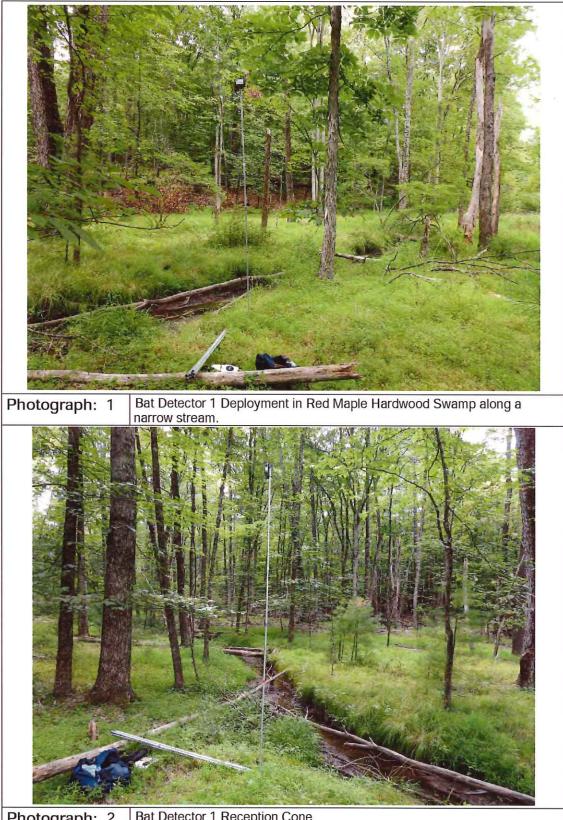


Thinking outside.

.

| M.S. Fishman 2022JOURNAL Page <u>30</u> | BAT ACOUSTIC SURVEY DATA<br>I JULY PICK UP: 04 AUGUST<br>VAMOR (LASKI) (Sample SIC:<br>VAMOR (LASKI) (Sample SIC:<br>VAMOR (2015) N 24,0725) W Datu<br>14913 74,07250 W Datu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Habitat:<br>Habitat:<br>(a) Forest Canopy Opening (b) Near/Over Still Water (c) Wooded Hedgerow<br>(d) Recently Logged Forest (c) Road Stream Corridor (f) Woodland Edge<br>(d) Recently Logged Forest (c) Road Stream Corridor (f) Woodland Edge<br>Equipment:                                                                          | Wildlife Acoustics SM4BAT w/SMM-U1 Microphone w/directional cone #                                                           | Mic.angle 0 ° to horiz Orientation 90 ° Ht. 3 m Dist to Clutter 10 m<br>Photos: Set Up: 365 ORCCeption Cone: 306 J Test Screen Start. Finish: //<br>Program: Sunset to Sunrise Other: Other: 0 20/F 30 M                                                      | We at her Night OK?: Night 1 $\checkmark$ 2 $\checkmark$ 3 $\checkmark$ 4 $5$ 6<br>Resulting Data: $\boxed{2.00 \text{ GB}}$ $\boxed{2591}$ Recordings                    | Notes: |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 2022JOURNAL Page 29                     | BAT ACOUSTIC SURVEY DATA<br>Deployment: 31 JULY Pick UP: Of AMGLAST<br>Project Name<br>Project Name<br>Proje | <ul> <li>(a) Forest Canopy Opening (b) Near/Over Still Water (c) Wooded Hedgerow</li> <li>(d) Recently Logged Forest (e) Road Stream Lorridor (f) Woodland Edge</li> <li>(d) Recently Logged Forest (e) Road Stream Lorridor (f) woodland Edge</li> <li>(d) Recently Logged Forest (e) Road Stream Lorridor (f) woodland Edge</li> </ul> | Wildlife Acoustics SM4BAT w/SMM-UI Microphone w/directional cone #<br>/ Wildlife Acoustics SM MiniBAT Unit # 1544-7C1 Other. | Mic.angle D ° to horiz Orientation 24/6° Ht. 7 m Dist to Clutter 15 m<br>PQCD<br>PdCD<br>Photos: Set Up: 2058Reception Cone. 3051 Test Screen Start. Finish:<br>Program: Sunset to Sunrise Other<br>sunset: 2025EDT Sunrise: 0547EDT Moon Phase: 19 20/F 30 N | Weather Night OK?: Night 1 $\sqrt{2}$ $\sqrt{3}$ $\sqrt{4}$ $5$ $6$<br>Resulting Data: $\frac{ \frac{1}{4}, 2}{2}$ GB $\frac{2}{4}$ , $\frac{4}{20}$ Recordings<br>Notes: |        |

............

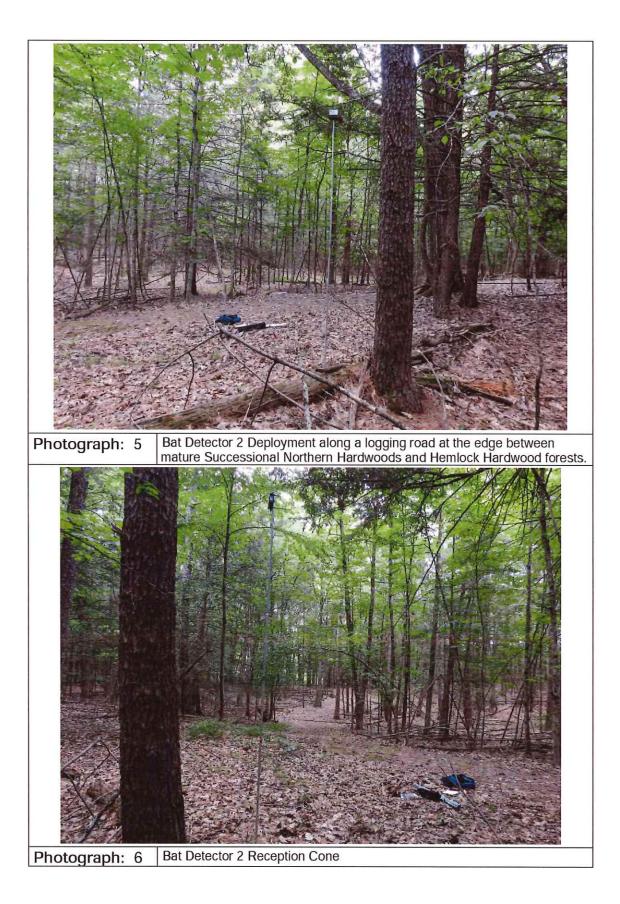

| M.S. Fishman 2022JOURNAL Page 92                             | COUSTIC SURVEY DA'<br>Pick Up: <u>OH AUG</u><br><u>Catskills</u><br><sup>ow</sup><br>74.07662 | Location: West side of Safe along ATV +YRA<br>Habitat:<br>(a) Forest Canopy Opening (b) Near/Over Still Water (c) Wooded Hedgerow<br>(d) Recently Logged Fores (e) Road Stream Corridor (a) Woodland Edge        | Closed Canopy Parallel to wooded edge<br>Equipment:<br>Wildlife Acoustics SM4BAT w/SMM-UI Microphone w/directional cone # | Other                                                                                                                                                                                                                                       | Program: Sunset to Sunrise: Other: Other:                     | Resulting Data: 23.81 GB 3,820 Recordings<br>Notes: Alow ATV travil + In sugl E. hemlock-<br>hardwelod forest; den sel understow |            |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------|
| M.S. Fishman 2022JOURNAL Page 91<br>BAT ACOUSTIC SURVEY DATA | Name: 31<br>Name:<br>12/047<br>"50/ 20                                                        | Habitat:<br>(a) Forest Canopy Opening (b) Near/Over Still Water (c) Wooded Hedgerow<br>(d) Recently Logged Forest (6) Road Stream Corridon (1) Woodiand Edge<br>Equipment: Closed Canopy Parallel to wooded edge | Wildlife Acoustics SM4BAT w/SMM-U1 Microphone w/directional cone #                                                        | Mic.angle <u>0</u> • to horiz Orientation <u>5</u> • Ht. <del>3</del> m Dist to Clutter 20 <sup>t</sup> m<br>Photos: Set Up: <u>3064</u> Reception Cone: <u>306</u> Stest Screen Start: <u>Finish</u> .<br>Program: Sunset to Sunrise Other | We ather Night OK?: Night 1 $2 \sqrt{3}$ GB $6515$ Recordings | Notes:<br>NISNA ATV trait threads herrivels-<br>hard wood forest; dense understony                                               | Rev.080121 |

•

-----

.....

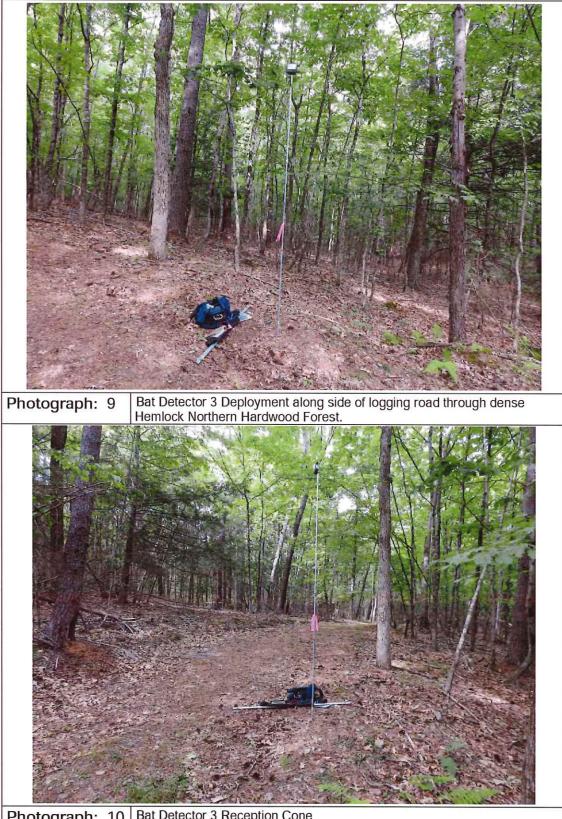
Sunset: 2023EDT Sunrise: 0547EDT Moon Phase: 10 201F 30 (N) Location: N end of Site - old divt road (durused Mic.angle 0 ° to horiz Orientation +2 ° Ht. 3 m Dist to Clutter 20 m Page 93 \*W Datum: MG 5 84 Finish: 🗸 (a) Forest Canopy Opening (b) Near/Over Still Water (c) Wooded Hedgerow Wildlife Acoustics SM4BAT w/SMM-UI Microphone w/directional cone #\_ Mattive Edicessional havawiood for est between mature hardwoods and swamp. at edge of red maple hundroed shores. (d) Recently Logged Forest () Road Stream Corridor (f) Woodland Edge Open Wider Story; old frail along office Pick Up: 04 AUGUST Sample Site: 🗕 3,084 Recordings Photos: Set Up: 2060 Reception Cone: 306 Hest Screen Start: / **BAT ACOUSTIC SURVEY DATA** 'n ✓Closed Canopy Parallel to wooded edge Wildlife Acoustics SM MiniBAT Unit # 1649-705 Weather Night OK?: Night I 2 2 3 4 20 22JOURNAL 74.07378 Catskills 15.67 GB Program: (Sunset to Sunrise) Other:\_ Project Name Dates: Deployment: 31 JULY Position: 42, 05/38 M.S. Fishman Resulting Data: Equipment: Way Other: Habitat: Rev.080121 Notes: -...




Bat Detector 1 Reception Cone Photograph: 2



|                                        | 11 Verizon LTE 14:56 0 100%                                                                                    |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------|
|                                        | < SMU01544-TCT (MINI BAT) 📩 🔲 💷                                                                                |
|                                        | Load Save Utilities                                                                                            |
|                                        | RECORDER NAME<br>(Also used as the filenama prefix. May include up to 12                                       |
|                                        | characters containing capital letters, numbers and<br>bysnens)                                                 |
|                                        | SMU01544-TC1                                                                                                   |
|                                        |                                                                                                                |
|                                        |                                                                                                                |
|                                        | SETTINGS                                                                                                       |
|                                        | Ult Test micronhone                                                                                            |
|                                        | Off Test microphone                                                                                            |
|                                        | Left microphone                                                                                                |
|                                        |                                                                                                                |
|                                        | -22.77 dB relative to full scale                                                                               |
|                                        |                                                                                                                |
|                                        | Terroret                                                                                                       |
|                                        | Transect >                                                                                                     |
|                                        |                                                                                                                |
|                                        | Delay start Off >                                                                                              |
|                                        |                                                                                                                |
|                                        | Send Bluetooth beacons?                                                                                        |
|                                        |                                                                                                                |
|                                        | SCHEDULE Estimate battery                                                                                      |
| Photograph: 3                          | Bat Detector 1 Function Test at Installation. Values greater than -30 dB                                       |
| · ···································· | (less negative) indicate proper functioning.                                                                   |
|                                        | . Verizon LTE 16:36 29.94%                                                                                     |
|                                        | SMU01544-TC1 (MINI BAT)<br>Louid Save Utilities. :=                                                            |
|                                        | RECORDER NAME                                                                                                  |
|                                        | (Also used as the filemanie prefix. May include up to 12<br>characters containing capital letters, numbers and |
|                                        | hyphens)                                                                                                       |
|                                        | SMU01544-TC1                                                                                                   |
|                                        |                                                                                                                |
|                                        | SETTINGS                                                                                                       |
|                                        | Ult Test microphone                                                                                            |
|                                        | Test microphone                                                                                                |
|                                        | Left microphone                                                                                                |
|                                        |                                                                                                                |
|                                        | -27.99 dB relative to full scale                                                                               |
|                                        |                                                                                                                |
|                                        | Transect                                                                                                       |
|                                        | in ansect                                                                                                      |
|                                        | Delay start Off >                                                                                              |
|                                        | Delay start                                                                                                    |
|                                        | Send Bluetooth beacons?                                                                                        |
|                                        |                                                                                                                |
|                                        |                                                                                                                |
|                                        | SCHEDULE Estimate battery                                                                                      |
| Photograph: 4                          | Bat Detector 1 Function Test at Retrieval. Values greater than -30 dB (less                                    |
|                                        | negative) indicate proper functioning.                                                                         |

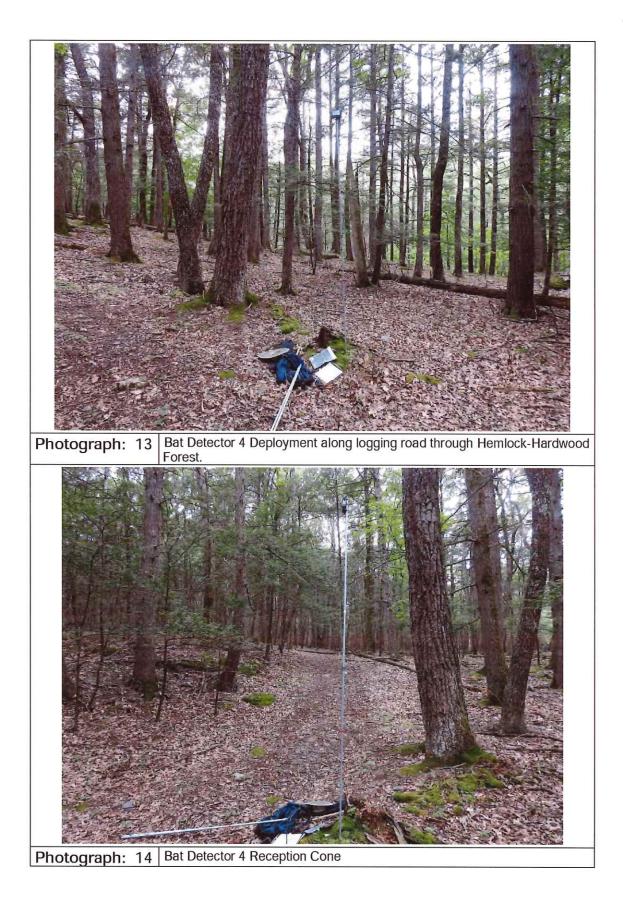






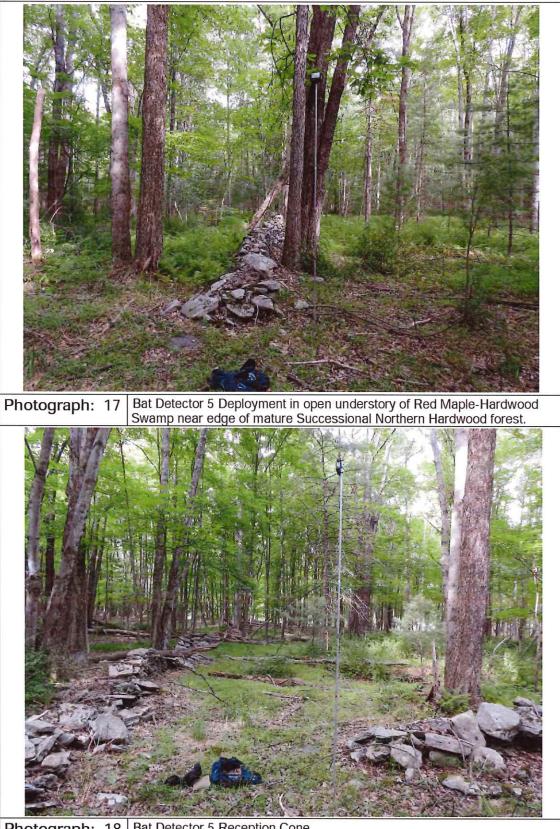

|               | 1 Verizon LTE 15:14 Ø 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | 🖌 SAMONGER, TC2 MAINE BATT 📩 🔞 📧                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Load Save Utilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | RECORDER NAME (Also used as the filename prefix, May include up to 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | characters containing capital letters, numbers and<br>hypnens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | 5MU01618-TC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | SETTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Ult Test microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | Left microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | -21.44 dB relative to full scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Transect >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Delay start Off >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Send Bluetooth beacons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | SCHEDULE Estimate battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Photograph: 7 | Bat Detector 2 Function Test at Installation. Values greater than -30 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | (less negative) indicate proper functioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               | SMU01618-TC2 (MINI BATI Load Save Uppties     Sa |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | RECORDER NAME<br>(Also used as the filename prafix. May include up to 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | characters containing capital letters, numbers and<br>hyphens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | SMU01618-TC2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | SETTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | Ult Test microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Left microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | -22.32 dB relative to full scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | Loc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Transect >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | Delay start Off >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | Send Bluetooth beacons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               | SCHEDULE Estimate battery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Photograph: 8 | Bat Detector 2 Function Test at Retrieval. Values greater than -30 dB (less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | negative) indicate proper functioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |






Photograph: 10 Bat Detector 3 Reception Cone




|                                       | 🔐 Verizon LTE 16:10 🛛 196% 📟                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | < SMU01631-TC3 (MINI BAT) 上 🔟 😑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Land Save Utilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | RECORDER NAME<br>(Also used as the filename prefix. May include up to 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | characters containing capital lefters, numbers and<br>hyphans)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | SMU01631-TC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | SETTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Ult Test microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Left microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | -18.86 dB relative to full scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       | Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 은 그는 것 같은 것 같이 가지 않는 것 같아요.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                       | Delay start Off >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Send Bluetooth beacons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | SCHEDULE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Photograph: 11                        | Bat Detector 3 Function Test at Installation. Values greater than -30 dB<br>(less negative) indicate proper functioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | 11 Verizon LTE 16:09 2 96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                       | SMU01631-TC3 (MINI BAT)<br>Load Save Utilities     Save Ut |
|                                       | RECORDER NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | (Also used as the filename prafix. May include up to 12<br>characters containing capital letters, numbers and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       | hyphens)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | SMU01631-TC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | SETTINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       | Ult Test microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Off Test microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Left microphone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | -18.03 dB relative to full scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2 C                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Transect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Delay start Off >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | Send Bluetooth beacons?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | SCHEDULE Estimate battery Show an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Dhataarrah 40                         | Bat Detector 3 Function Test at Retrieval. Values greater than -30 dB (less                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Photograph: 12                        | negative) indicate proper functioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





|                | 🖬 Verizon LTE 15:54 📴 96% 📟)                                                                                               |
|----------------|----------------------------------------------------------------------------------------------------------------------------|
|                |                                                                                                                            |
|                | RECORDER NAME                                                                                                              |
|                | (Also used as the filename prefix, May include up to 12<br>characters containing capital letters, numbers and              |
|                | hypnens)<br>SMU01645-TC4                                                                                                   |
|                |                                                                                                                            |
|                | SETTINGS                                                                                                                   |
|                | Ult Test microphone                                                                                                        |
|                | Left microphone                                                                                                            |
|                | -25.51 dB relative to full scale                                                                                           |
|                | Transect >                                                                                                                 |
|                | Delay start Off >                                                                                                          |
|                | Cond Diveloptin Instances                                                                                                  |
|                | Send Bluetooth beacons?                                                                                                    |
|                | SCHEDULE Estimate battery Chick on categoria                                                                               |
| Photograph: 15 | Bat Detector 4 Function Test at Installation. Values greater than -30 dB                                                   |
|                | (less negative) indicate proper functioning.                                                                               |
|                | SMU01645-TC4 (MINI BAT)                                                                                                    |
|                | RECORDER NAME                                                                                                              |
|                | (Also used as the filtename prefix. May include up to 12<br>characters containing capital letters, numbers and<br>hyphens) |
|                | SMU01645-TC4 🕜                                                                                                             |
|                |                                                                                                                            |
|                | SETTINGS                                                                                                                   |
|                | Ult Test microphone                                                                                                        |
|                | Left microphone                                                                                                            |
|                | -22.87 dB relative to full scale                                                                                           |
|                | Loc                                                                                                                        |
|                | Transect                                                                                                                   |
|                |                                                                                                                            |
|                | Delay start Off >                                                                                                          |
|                | Send Bluetooth beacons?                                                                                                    |
|                |                                                                                                                            |
|                | SCHEDULE Estimate battery CSecy on<br>and card life Calendar                                                               |
| Photograph: 16 | Bat Detector 4 Function Test at Retrieval. Values greater than -30 dB (less negative) indicate proper functioning.         |





Photograph: 18 Bat Detector 5 Reception Cone



|               | att Verizon LTE 16:36 2 91%                                                                                |
|---------------|------------------------------------------------------------------------------------------------------------|
|               | SMU01649-TC5 (MINI BAT)                                                                                    |
|               |                                                                                                            |
|               | RECORDER NAME<br>(Also used as the filenama prefix, May include up to 12                                   |
|               | characters containing capital letters, numbers and<br>hypnens)                                             |
|               | SMU01649-TC5                                                                                               |
|               |                                                                                                            |
|               | SETTINGS                                                                                                   |
|               | Set finda                                                                                                  |
|               | Ult Test microphone                                                                                        |
|               | Left microshow                                                                                             |
|               | Left microphone                                                                                            |
|               | -23.16 dB relative to full scale                                                                           |
|               | Loc                                                                                                        |
|               |                                                                                                            |
|               | Transect >                                                                                                 |
|               |                                                                                                            |
|               | Delay start Off >                                                                                          |
|               |                                                                                                            |
|               | Send Bluetooth beacons?                                                                                    |
|               |                                                                                                            |
|               | SCHEDULE Estimate battery Show on calendar                                                                 |
| Photograph:   |                                                                                                            |
| i notograpii. | (less negative) indicate proper functioning.                                                               |
|               | 1 Verizon LTE 15:33 199%                                                                                   |
|               | SMU01649-TC5 (MINI BAT)                                                                                    |
|               | RECORDER NAME                                                                                              |
|               | (Also used as the illename prefix. May include up to 12 characters containing capital letters, numbers and |
|               | hyphens)                                                                                                   |
|               | SMU01649-TC5                                                                                               |
|               |                                                                                                            |
|               | SETTINGS                                                                                                   |
|               |                                                                                                            |
|               | Ult Test microphone                                                                                        |
|               | Left microphone                                                                                            |
|               |                                                                                                            |
|               | -24.78 dB relative to full scale                                                                           |
|               |                                                                                                            |
|               | Transect                                                                                                   |
|               | Transect.                                                                                                  |
|               | Delay start Off >                                                                                          |
|               |                                                                                                            |
|               | Send Bluetooth beacons?                                                                                    |
|               |                                                                                                            |
|               |                                                                                                            |
|               | SCHEDULE Estimate battery Show on calendar                                                                 |
| Photograph:   | 20 Bat Detector 5 Function Test at Retrieval. Values greater than -30 dB (less                             |
|               | negative) indicate proper functioning.                                                                     |



Appendix F – Bat Acoustic Survey Photos Terramor Catskills Bat Habitat and Acoustic Survey Town of Saugerties, Ulster County, New York Project Number 2022-026 APPENDIX G WEATHER DATA



Thinking outside.

| Detector |           |          |               |        |          |          |          |          |          |        |               |
|----------|-----------|----------|---------------|--------|----------|----------|----------|----------|----------|--------|---------------|
| Night    | Date      | Time     | Temperature   | Dew Pt | Humidity | Wind Dir | Wind Spd | Gust Spd | Pressure | Precip | Condition     |
|          | 7/31/2022 | 8:45 PM  | 79 °F         | 57 °F  | 47 %     | SW       | 6 mph    | 0 mph    | 29.55 in | 0.0 in | Cloudy        |
|          | 7/31/2022 | 9:45 PM  | 79 °F         | 61 °F  | 54 %     | SW       | 6 mph    | 0 mph    | 29.55 in | 0.0 in | Cloudy        |
|          | 7/31/2022 | 11:56 PM | 79 °F         | 61 °F  | 54 %     | SW       | 6 mph    | 0 mph    | 29.55 in | 0.0 in | Cloudy        |
| 1        | 8/1/2022  | 12:45 AM | 72 <b>°</b> F | 66 °F  | 83 %     | CALM     | 0 mph    | 0 mph    | 29.53 in | 0.0 in | Light Rain    |
|          | 8/1/2022  | 3:45 AM  | 68 "F         | 68 °F  | 100 %    | WNW      | 6 mph    | 0 mph    | 29.53 in | 0.0 in | Light Rain    |
|          | 8/1/2022  | 4:45 AM  | 68 °F         | 66 *F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.51 in | 0.0 in | Cloudy        |
|          | 8/1/2022  | 5:45 AM  | 68 °F         | 66 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.51 in | 0.0 in | Cloudy        |
|          | 8/1/2022  | 8:45 PM  | 73 °F         | 64 °F  | 73 %     | WSW      | 6 mph    | 0 mph    | 29.33 in | 0.0 in | Fair          |
|          | 8/1/2022  | 9:45 PM  | 72 °F         | 66 °F  | 83 %     | wsw      | 6 mph    | 0 mph    | 29.34 in | 0.0 in | Fair          |
| 2        | 8/1/2022  | 10:45 PM | 70 °F         | 66 °F  | 88 %     | wsw      | 6 mph    | 0 mph    | 29.33 in | 0.0 in | Fair          |
|          | 8/1/2022  | 11:45 PM | 70 °F         | 66 °F  | 88 %     | wsw      | 6 mph    | 0 mph    | 29.33 in | 0.0 in | Fair          |
|          | 8/2/2022  | 1:49 AM  | 68 °F         | 66 °F  | 94 %     | VAR      | 6 mph    | 0 mph    | 29.31 in | 0.0 in | Fair          |
|          | 8/2/2022  | 2:45 AM  | 68 °F         | 66 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.30 in | 0.0 in | Fair          |
|          | 8/2/2022  | 3:45 AM  | 68 °F         | 66 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.30 in | 0.0 in | Fair          |
|          | 8/2/2022  | 4:45 AM  | 68 *F         | 66 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.29 in | 0.0 in | Cloudy        |
|          | 8/2/2022  | 5:45 AM  | 68 °F         | 66 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.29 in | 0.0 in | Partly Cloudy |
|          | 8/2/2022  | 8:45 PM  | 79 °F         | 68 °F  | 69 %     | VAR      | 5 mph    | 0 mph    | 29.31 in | 0.0 in | Mostly Cloudy |
|          | 8/2/2022  | 9:45 PM  | 79 °F         | 68 °F  | 69 %     | N        | 5 mph    | 0 mph    | 29.35 in | 0.0 in | Mostly Cloudy |
|          | 8/2/2022  | 10:45 PM | 75 °F         | 66 °F  | 73 %     | N        | 5 mph    | 0 mph    | 29.37 in | 0.0 in | Mostly Cloudy |
|          | 8/2/2022  | 11:45 PM | 73 °F         | 66 °F  | 78 %     | VAR      | 6 mph    | 0 mph    | 29.39 in | 0.0 in | Fair          |
| 2        | 8/3/2022  | 12:45 AM | 72 °F         | 66 °F  | 83 %     | VAR      | 6 mph    | 0 mph    | 29.41 in | 0.0 in | Fair          |
| 3        | 8/3/2022  | 1:45 AM  | 72 °F         | 66 °F  | 83 %     | VAR      | 6 mph    | 0 mph    | 29.41 in | 0.0 in | Fair          |
|          | 8/3/2022  | 2:45 AM  | 70 °F         | 64 °F  | 83 %     | VAR      | 6 mph    | 0 mph    | 29.41 in | 0.0 in | Fair          |
|          | 8/3/2022  | 3:45 AM  | 68 °F         | 64 °F  | 88 %     | WNW      | 7 mph    | 0 mph    | 29.43 in | 0.0 in | Fair          |
|          | 8/3/2022  | 4:45 AM  | 66 °F         | 63 "F  | 88 %     | WNW      | 7 mph    | 0 mph    | 29.45 in | 0.0 in | Fair          |
|          | 8/3/2022  | 5:45 AM  | 64 °F         | 63 °F  | 94 %     | CALM     | 0 mph    | 0 mph    | 29.45 in | 0.0 in | Fair          |

Weather Data from Weather Underground:

https://www.wunderground.com/history/daily/us/ny/newburgh/KSWF/date/, Accessed 04 August 2022. Weather data source: Stewart International Airport, Newburgh, NY

APPENDIX H BAT CALL VETTING RESULTS



Terramor Catskills Bat Detector 3, Night 1

PQR - faint and too few pulses to measure Fc=low 30s; FM call Fcelow 30s; FM call Fc=low 30s; FM call Fc=low 30s; FM call c=low 30s; FM call celow 30s; FM call Comments NSP MANUAL ID 34.833 EPTFUS 32.544 EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS 32.253 EPTFUS 34.27 EPTFUS 35.387 EPTFUS 32.152 EPTFUS 31.787 EPTFUS 31.998 EPTFUS 36.732 EPTFUS 33.729 EPTFUS 36.058 EPTFUS 34.779 EPTFUS 32.69 EPTFUS 32.102 EPTFUS 32.399 EPTFUS 32.658 EPTFUS 32.115 EPTFUS 32.333 EPTFUS 32.666 EPTFUS 32.767 EPTFUS 31.552 EPTFUS 33.875 EPTFUS 31.593 EPTFUS 30.981 EPTFUS 31.854 EPTFUS 32.393 EPTFUS 32.625 EPTFUS 34.203 EPTFUS 32.102 EPTFUS 32.877 EPTFUS EPTFUS 35.436 EPTFUS 32.674 EPTFUS 32.624 EPTFUS 33.958 EPTFUS 35.309 EPTFUS 33.889 EPTFUS EPTFUS 35.228 EPTFUS 31.813 EPTFUS 34.34 NOID 35.044 NOID 37.445 E 30.7491 34,476 31,885 35.422 35.322 Fmin 54.186 64.434 61.019 58.206 60.809 58.779 68.602 72.038 70.862 67,894 68.572 67.343 59.269 67.261 65.725 56.975 58.382 66.372 63.861 64.836 54.526 65.25 56.037 65.948 66.773 63.504 68.607 75.687 62.533 64.456 65.963 66.098 66.548 55.941 67.388 63.947 65.045 67.147 67.889 66.366 66.385 58.168 68.919 55.121 64.735 63.125 Fmax 144.33 160.94 142.16 133.9 149.75 172.14 169.52 145.58 128.11 161.83 148.26 166.99 149.45 155.52 100.79 145.6 123.74 145.51 170.64 144.22 224.97 166.09 164.23 122.99 140.47 122.7 181.57 126.2 122.29 154.02 166.03 155.93 170.73 179.93 167.86 169.21 167.57 195.61 118.73 145.39 184.52 98.03 170.12 202.37 148.58 162.46 S 35.794 32.715 32.331 35.228 36.618 34,208 33.472 31.896 32,905 33.034 38.294 37.758 34.611 35.743 33.994 33.744 33.834 33.949 33.117 35.062 33.47 33.21 36.194 33.182 36.726 35.49 35.473 18 35 36.078 32.701 35.388 32.517 33.998 35.589 33.128 33.113 36.596 33.663 32.176 36.446 33.743 35,836 34.224 32.818 35.674 37.942 36.321 ę 23 26 27 48 11 13 13 13 20 21 3 5 31 46 17 32 24 26 19 25 9 9 15 18 30 31 4 8 13 24 19 25 14 29 11 21 883136 2026 23339 3 7 8 8 4 10 10 10 11 14 17 29 39 21 45 21 25 27 44 9 10 17 18 ø Ħ o, 16 2 ø 9 4 7 16 10 11 PULSES MATCH N യ 6 6 ទ ្ព m ч Ц ~ 2 00 R 31 18 თ 36 36 39 AUTO ID\* EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS 7/31/2022 21:28:22 EPTFUS EPTFUS 22:30:18 EPTFUS 21:38:42 EPTFUS EPTFUS 21:39:13 EPTFUS 21:39:23 EPTFUS 21:40:08 EPTFUS 21:40:24 EPTFUS 21:41:56 EPTFUS 21:42:11 EPTFUS 21:43:42 EPTFUS EPTFUS 22:24:27 EPTFUS EPTFUS EPTFUS 22:27:16 EPTFUS EPTFUS 22:53:26 EPTFUS 22:53:41 EPTFUS 22:54:29 EPTFUS 22:59:52 EPTFUS 23:04:43 EPTFUS 21:28:35 21:28:52 21:29:24 21:30:04 21:30:34 21:30:49 21:31:04 21:31:19 21:33:12 21:33:23 21:33:38 21:34:46 21:35:17 21:35:32 21:35:47 21:36:03 21:36:46 21:37:09 21:37:41 21:38:10 21:38:57 22:12:51 22:27:01 22:27:28 21:29:33 21:30:19 21:32:05 21:32:25 22:24:57 7/31/2022 7/31/2022 /31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 //31/2022 7/31/2022 7/31/2022 //31/2022 7/31/2022 7/31/2022 7/31/2022 /31/2022 /31/2022 /31/2022 /31/2022 /31/2022 /31/2022 //31/2022 /31/2022 /31/2022 //31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 /31/2022 7/31/2022 /31/2022 /31/2022 /31/2022 //31/2022 7/31/2022 /31/2022 //31/2022 //31/2022 1/31/2022 7/31/2022 7/31/2022 7/31/2022 DATE SMU01631-TC3\_20220731\_213517\_000.wav SMU01631-TC3\_20220731\_213913\_000.wav SMU01631-TC3\_20220731\_212822\_000.wav 5MU01631-TC3\_20220731\_212835\_000.wav 5MU01631-TC3\_20220731\_212852\_000.wav SMU01631-TC3\_20220731\_213004\_000.wav SMU01631-TC3\_20220731\_213034\_000.wav SMU01631-TC3\_20220731\_213049\_000.wav 5MU01631-TC3\_20220731\_213104\_000.wav 5MU01631-TC3 20220731 213119 000.wav 5MU01631-TC3\_20220731\_213225\_000.wav 5MU01631-TC3\_20220731\_213312\_000.wav SMU01631-TC3\_20220731\_213323\_000.wav SMU01631-TC3 20220731 213338 000.wav SMU01631-TC3\_20220731\_213446\_000.wav SMU01631-TC3\_20220731\_213532\_000.wav 5MU01631-TC3\_20220731\_213547\_000.wav SMU01631-TC3\_20220731\_213603\_000,wav SMU01631-TC3\_20220731\_213646\_000.wav SMU01631-TC3\_20220731\_213709\_000.wav SMU01631-TC3\_20220731\_213741\_000.wav 5MU01631-TC3\_20220731\_213810\_000.wav SMU01631-TC3\_20220731\_213842\_000.wav SMU01631-TC3\_20220731\_213857\_000.wav SMU01631-TC3\_20220731\_213923\_000.wav SMU01631-TC3\_20220731\_214008\_000.wav SMU01631-TC3\_20220731\_214024\_000.wav SMU01631-TC3\_20220731\_214156\_000.wav SMU01631-TC3\_20220731\_214211\_000.wav SMU01631-TC3\_20220731\_214342\_000.wav SMU01631-TC3\_20220731\_221251\_000.wav SMU01631-TC3\_20220731\_222427\_000.wav SMU01631-TC3\_20220731\_222457\_000.wav SMU01631-TC3\_20220731\_222701\_000.wav SMU01631-TC3\_20220731\_222716\_000.wav SMU01631-TC3\_20220731\_225952\_000.wav SMU01631-TC3\_20220731\_212924\_000.wav SMU01631-TC3\_20220731\_212933\_000.wav 5MU01631-TC3\_20220731\_213019\_000.wav SMU01631-TC3\_20220731\_213205\_000.wav SMU01631-TC3\_20220731\_222728\_000.wav SMU01631-TC3\_20220731\_223018\_000.wav SMU01631-TC3\_20220731\_225326\_000.wav SMU01631-TC3\_20220731\_225341\_000.wav SMU01631-TC3\_20220731\_225429\_000.wav sMU01631-TC3\_20220731\_230443\_000.wav OUT FILE FS

Appendix H Manual Bat Call Vetting

13 13 13 13 13

ω

N 57 M M

സ്ത M 4

8/1/2022 8/1/2022 8/1/2022 //31/2022 /31/2022 7/31/2022 //31/2022 /31/2022 8/1/2022 8/1/2022 /33/2022 /31/2022 /31/2022 /31/2022 /31/2022 /31/2022 /31/2022 /31/2022 //31//2022 /31/2022 /31/2022 8/1/2022 8/1/2022 SMU01631-TC3\_20220731\_230513\_000.wav SMU01631-TC3\_20220731\_230526\_000.wav SMU01631-TC3\_20220801\_034257\_000.wav SMU01631-TC3\_20220731\_212006\_000.wav SMU01631-TC3\_20220731\_213150\_000.wav SMU01631-TC3\_20220731\_213618\_000.wav SMU01631-TC3 20220731 231349 000.wav 5MU01631-TC3 20220731 231404 000.wav SMU01631-TC3\_20220731\_231523\_000.wav SMU01631-TC3\_20220731\_231617\_000.wav SMU01631-TC3\_20220731\_231823\_000.wav SMU01631-TC3 20220731 231839 000.wav SMU01631-TC3 20220731 232633 000.wav 5MU01631-TC3\_20220801\_020604\_000.wav SMU01631-TC3\_20220801\_004620\_000.wav SMU01631-TC3 20220731 202056 000.wav 5MU01631-TC3\_20220731\_202356\_000.wav SMU01631-TC3\_20220801\_051523\_000.wav SMU01631-TC3\_20220731\_205351\_000.wav SMU01631-TC3\_20220801\_011738\_000.wav SMU01631-TC3\_20220801\_033051\_000.wav SMU01631-TC3\_20220731\_213938\_000.wav SMU01631-TC3\_20220731\_232922\_000.wav SMU01631-TC3\_20220731\_211817\_000.wav SMU01631-TC3\_20220731\_211847\_000.wav SMU01631-TC3\_20220731\_211935\_000.wav SMU01631-TC3\_20220731\_212021\_000.wav 5MU01631-TC3\_20220731\_212122\_000.wav SMU01631-TC3\_20220731\_212137\_000.wav SMU01631-TC3\_20220731\_212208\_000.wav SMU01631-TC3\_20220731\_212252\_000.wav 5MU01631-TC3\_20220731\_212548\_000.wav SMU01631-TC3\_20220731\_212725\_000.wav SMU01631-TC3\_20220731\_212742\_000.wav SMU01631-TC3\_20220731\_213134\_000.wav SMU01631-TC3\_20220731\_213354\_000.wav SMU01631-TC3\_20220731\_213409\_000.wav SMU01631-TC3\_20220731\_213431\_000.wav iMU01631-TC3\_20220731\_213953\_000.wav SMU01631-TC3 20220731 214053 000.wav SMU01631-TC3\_20220731\_214133\_000.wav SMU01631-TC3 20220731 214226 000.wav SMU01631-TC3\_20220731\_214256\_000.wav SMU01631-TC3\_20220731\_214533\_000.wav 5MU01631-TC3\_20220731\_214557\_000.wav 5MU01631-TC3\_20220801\_050804\_000.wav SMU01631-TC3\_20220731\_212223\_000.wav

7/31/2022 21:21:37 MYOLUC //31/2022 21:22:08 MYOLUC 7/31/2022 21:27:25 MYOLUC 21:31:50 MYOLUC //31/2022 21:34:09 MYOLUC /31/2022 21:41:33 MYOLUC 21:42:56 MYOLUC 21:45:33 MYOLUC 7/31/2022 21:18:47 MYOLUC 7/31/2022 21:19:35 MYOLUC 21:20:06 MYOLUC 7/31/2022 21:20:21 MYOLUC 7/31/2022 21:21:22 MYOLUC 21:22:23 MYOLUC 21:22:52 MYOLUC //31/2022 21:27:42 MYOLUC 21:31:34 MYOLUC //31/2022 21:33:54 MYOLUC 21:34:31 MYOLUC 21:36:18 MYOLUC 21:39:53 MYOLUC 21:40:53 MYOLUC /31/2022 21:42:26 MYOLUC 7/31/2022 21:45:57 MYOLUC 7/31/2022 21:18:17 MYOLUG '/31/2022 21:25:48 MYOLUC 23:05:13 EPTFUS 7/31/2022 23:05:26 EPTFUS //31/2022 23:13:49 EPTFUS //31/2022 23:14:04 EPTFUS 23:15:23 EPTFUS 7/31/2022 23:26:33 EPTFUS 0:46:20 LASBOR //31/2022 20:53:51 LASNOC 1:17:38 LASNOC 3:30:51 LASNOC 21:39:38 MYOLEI 23:29:22 MYOLEI 23:16:17 EPTFUS 7/31/2022 23:18:23 EPTFUS //31/2022 23:18:39 EPTFUS 2:06:04 EPTFUS 3:42:57 EPTFUS //31/2022 20:20:56 LASCIN /31/2022 20:23:56 LASCIN 5:08:04 LASCIN 5:15:23 LASON

17 8 113 8 4 4 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113 8 113

4

റന

NSP; NMT PQR-faint NSP; CMT CMT; NSP VSP; CMT CMT; NSP VSP; CMT NSP NSP 28.872 EPTFUS/LASNOC 29.632 LASNOC/EPTFUS EPTFUS 42.002 LASBOR 39.38 MYOLUC 40.479 MYOSPP 40.377 MYOLUC 41.579 MYOSPP 40.483 MYOLUC 40.323 MYOLUC 39.751 MYOLUG 41.156 MYOSPP 39.923 MYOLUC 38.775 MYOLUC 41.023 MYOSPP 41.472 MYOSPP 40.885 MYOSPP 42.602 MYOSPP 112.41 57.446 31.581 EPTFUS **31.908 EPTFUS** 35.034 EPTFUS 35.284 EPTFUS 35.339 EPTFUS 26.103 LASNOC 26.723 LASNOC 40.696 LASBOR 37.184 EPTFUS 40.283 EPTFUS 41.257 MYOSPF 37.82 MULTSP 32.907 EPTFUS **32.852 EPTFUS** 24.268 LASCIN **18.873 LASCIN 18.667 LASCIN 37.507 NOID** 36.681 NOID 29.751 NOID 19.62 NOID 41.27 NOID 43.116 NOID 40.904 NOID 43.175 NOID **39.612 NOID** 40.923 NOID 42.268 NOID 41.011 NOID 34.493 1 Bat Detector 3, Night 1 Terramor Catskills 38.794 56.304 71.662 75.505 79.397 75.919 65.239 74.14 71.775 71.016 71.716 65.093 66.016 67.854 60.464 64.491 63.783 61.927 43.092 67.193 20.013 20.18 20.335 25.279 27,402 42.07 29.111 79.198 64.781 51.618 66.25 66.108 62.316 67.455 72.978 59.883 62.926 69.003 71.811 67.488 72.333 62.346 61.163 55.036 66.367 72.142 141.94 111.5 101.54 168.4 164.16 144.9 20.13 44.02 159.86 8.42 -0.86 16.45 22.48 102.78 115.04 126.06 87.37 152.25 158.68 119.66 109.68 120.1 136.2 68,41 134.02 79.77 130.23 188.47 117.14 6.43 15.14 174.18 129.04 148.37 37.33 64,68 146.43 128.75 153.34 174.68 124.55 149.48 116.27 158.22 117.95 169.91 36.478 36.774 36.172 44.035 24.644 26.28 43.994 42.743 38.973 41.94 38.206 36.126 35.007 36.868 29.429 30.623 19.187 19.097 19.784 31.17 41.393 41.61 41.853 43.175 42.836 41.85 43.268 42.339 38.185 40.419 42.252 40.936 41.213 40.588 42.962 38.967 42.615 32.637 32.593 27.202 40.599 41.232 41.894 41.235 43.374 43.496 39,941 9 18 4 22 9 23 11 11 00 00 4 13 ю S 24 35 9 18 13 31 17 24 4 13 7 13 12 ω **6**0 17 4 ø 7 16 9 26 3 13 4 15 7 13 8 24 10 34 12 27 9 27 10 27 8 19 ω ev. 4 m ŝ 4 n 00 19 3 18 26 đ ŝ m cΩ, ŝ n m 00

CF call at ca 24 kHz - faint and only a few pulses, but diagnostic CF/FM call at ca 26 kHz, but more vertical than typical LASNOC multiple bat interference; at least one is probably EPTFUS NSP; PQR; not enough pulses to identify; weak more of a CF call, Fc around 26 kHz; very faint. NMT; variable Fc and upturned tail; diagnostic EPTFUS AND MYOSPP; CMT, NSP; interference PQR - faint and too few pulses to measure PQR - faint and too few pulses to measure PQR - faint and too few pulses to measure VSP; CMT; PQR; limited ZC measurement Fc=37-41; Sc=75-91; clear myotis tail NSP; multiple bats and interference Fc=39-40; Sc=59-110; also EPTFUS CF call at ca. 20 kHz or lower CF call at ca. 20 kHz or lower Faint CF pulses at ca 26 kHz Fc=36-42; Sc=75-110; CMT NSP; clear myotis tail NSP; clear myotis tail Fc=39-45; Sc=56-110 CF Call at ca. 26 kHz Fc=38-45; Sc=74-95 Fc=low 30s; FM call Fc=low 30s; FM call c=low 30s; FM call Fc=low 30s; FM call Fc=38-40; Sc=46-73 Fc=low 30s; FM call =c=37-38; Sc=45-68 PQR - faint; NSP POR: NSP - faint VMF; NMT

| Edgewood Environmental Consulting, LLC |                           |    |              | Te<br>Bat I  | Terramor Catskills<br>Bat Detector 3. Nicht | tskills<br>Nieht 1 |
|----------------------------------------|---------------------------|----|--------------|--------------|---------------------------------------------|--------------------|
|                                        |                           | ļ  | !            | ,            |                                             |                    |
| SMU01631-TC3_20220731_214650_000.wav   | 21:46:50                  | 12 | 1            |              |                                             | -                  |
| SMU01631-TC3_20220731_214705_000.wav   |                           | 18 | 18           |              |                                             | -                  |
| SMU01631-TC3_20220731_214720_000.wav   | 7/31/2022 21:47:20 MYOLUC | ση | Φ            |              | Ű                                           | 40.659 NOID        |
| SMU01631-TC3_20220731_214746_000.wav   | 7/31/2022 21:47:46 MYOLUC | 14 | 2 14 42.436  | 36 150.92    | 2 72.24                                     | 41.526 MYOSPP      |
| SMU01631-TC3_20220731_214835_000.wav   | 7/31/2022 21:48:35 MYOLUC | 10 | 6 10 41.574  | 74 170.22    | 2 78.363                                    | 40.81 SOD/LUC      |
| SMU01631-TC3_20220731_214916_000.wav   | 7/31/2022 21:49:16 MYOLUC | 21 | 11 21 43     | 43.19 145.05 | 5 72.008                                    | 41.941 MYOSPP      |
| SMU01631-TC3_20220731_214940_000.wav   | 7/31/2022 21:49:40 MYOLUC | ÷  | ŝ            |              |                                             | 41.919 NOID        |
| SMU01631-TC3_20220731_214950_000.wav   |                           | 16 | 16           |              | 3 75.827                                    | 40.314 MYOLUC      |
| SMU01631-TC3_20220731_215014_000.wav   |                           | 13 |              |              | 15                                          | 42.247 MYOSPP      |
| SMU01631-TC3_20220731_215052_000.wav   |                           | 15 | 15           |              |                                             | 40.976 MYOSPP      |
| SMU01631-TC3_20220731_215239_000.wav   |                           | 13 | 5 13 42.568  | 68 139.51    | 1 69.781                                    | 41.353 MYOSPP      |
| SMU01631-TC3_20220731_215309_000.wav   | 7/31/2022 21:53:09 MYOLUC | m  | 1 3 42.642   | 342 155.12   | 2 73.433                                    | 42.275 MYOSPP      |
| SMU01631-TC3_20220731_215342_000.wav   |                           | 16 |              | 38 157.5     | 5 73.994                                    | 41.041 MYOSPP      |
| SMU01631-TC3_20220731_215353_000.wav   |                           | 15 | 4 15 41.728  | 728 131.33   | 3 61.154                                    | 40.899 MYOSPP      |
| SMU01631-TC3_20220731_215405_000.wav   | 7/31/2022 21:54:05 MYOLUC | 12 | 5 12 42.674  | 74 169.8     | 8 75.212                                    | 41.198 MYOSPP      |
| SMU01631-TC3_20220731_215630_000.wav   | 7/31/2022 21:56:30 MYOLUC | 10 | 3 10 41.957  | 57 109.44    | 4 64.288                                    | 40.788 MYOSPP      |
| SMU01631-TC3_20220731_215830_000.wav   | 7/31/2022 21:58:30 MYOLUC | 15 | 8 15 42.313  | 113 154.09   | 9 71.569                                    | 41.213 MYOSPP      |
| SMU01631-TC3_20220731_230542_000.wav   | 7/31/2022 23:05:42 MYOLUC | 31 | 10 31 41.959 | 133.66       | 6 72.326                                    | 41.301 LASBOR      |
| SMU01631-TC3_20220731_230644_000.wav   | 7/31/2022 23:06:44 MYOLUC | 80 | 3 8 42.908   | 08 121.39    | 9 65.869                                    | 42.104 LASBOR      |
| SMU01631-TC3_20220731_230659_000.wav   | 7/31/2022 23:06:59 MYOLUC | 10 | 3 10 40,447  | 47 105.84    | 4 63.713                                    | 40.246 NOID        |
| SMU01631-TC3_20220731_230726_000.wav   | 7/31/2022 23:07:26 MYOLUC | 33 | 13 33 41     | 41.75 112.42 | 2 63.994                                    | 40.873 LASBOR      |
| SMU01631-TC3_20220731_230757_000.wav   | 7/31/2022 23:07:57 MYOLUC | 11 | 4 11 41.268  | 68 126.53    | 3 65.436                                    | 40.307 NOID        |
| SMU01631-TC3_20220731_230812_000.wav   |                           | 28 |              |              |                                             | -                  |
| SMU01631-TC3_20220731_230932_000.wav   | 7/31/2022 23:09:32 MYOLUC | 20 | -            |              | 3 62.074                                    |                    |
| SMU01631-TC3_20220731_230947_000.wav   |                           | 10 | 4 10 42.912  |              | 5 62.54                                     | 41.734 NOID        |
| SMU01631-TC3_20220731_231002_000.wav   |                           | Ð, | 4 6 41.398   |              |                                             |                    |
| SMU01631-TC3_20220731_231018_000.wav   | 7/31/2022 23:10:18 MYOLUC | 14 | 6 14 41.579  |              | 6 65.733                                    | 41.496 LASBOR      |
| SMU01631-TC3_20220731_231033_000.wav   | 23:10:33                  | 21 | 21           |              |                                             | 40.031             |
| SMU01631-TC3_20220731_231131_000.wav   | 23:11:31                  | 19 | 7<br>61      | • •          | Ψ.                                          | 41.328             |
| SMU01631-TC3_20220731_231146_000.wav   |                           | 80 | ~            |              |                                             |                    |
| SMU01631-TC3_20220731_231201_000.wav   | 23:12:01                  | 35 | -            |              | 4 68.053                                    | 40.691 LASBOR      |
| SMU01631-TC3_20220731_231232_000.wav   |                           | 24 | 24           |              |                                             | 41.491 NOID        |
| SMU01631-TC3_20220731_231247_000.wav   | 23:12:47                  | 10 |              |              |                                             | 41.016 NOID        |
| SMU01631-TC3_20220731_231303_000.wav   | 23:13:03                  | 13 |              | -            |                                             | A                  |
| SMU01631-TC3_20220731_231334_000.wav   | 23:13:34                  | 26 | 16 26 42.134 |              | Ξ.                                          |                    |
| SMU01631-TC3_20220731_231420_000.wav   |                           | 47 | 22 47 40.582 |              | 7 67.58                                     | 39.408 NOID        |
| SMU01631-TC3_20220731_231451_000.wav   | 23:14:51                  | ŝ  | m            | -            |                                             | 42.54 NOID         |
| SMU01631-TC3_20220731_231539_000.wav   | 7/31/2022 23:15:39 MYOLUC | 17 |              |              | 4 63.354                                    | 41.855 LASBOR      |
| SMU01631-TC3_20220731_231602_000.wav   |                           | 31 |              |              |                                             |                    |
| SMU01631-TC3_20220731_231751_000.wav   |                           | 90 |              | 29 133,95    | 5 63.104                                    | 38.244 EPTFUS      |
| SMU01631-TC3_20220731_231807_000.wav   | 7/31/2022 23:18:07 MYOLUC | 21 | 10 21 40.689 |              | 3 72.613                                    | 39.879 NOID        |
| SMU01631-TC3_20220731_232028_000.wav   | 7/31/2022 23:20:28 MYOLUC | 19 | 6 19 42.373  | (73 125.89   | 665,63 6                                    | 41.184 LASBOR      |
| SMU01631-TC3_20220731_232049_000.wav   | 7/31/2022 23:20:49 MYOLUC | 18 | 10 18 41     | 41.93 103.87 | 7 73.85                                     | 40.776 LASBOR      |
| SMU01631-TC3_20220731_232124_000.wav   | 7/31/2022 23:21:24 MYOLUC | 11 | 4 11 40      | 40.47 128.7  | 7 66.425                                    | 39.825 LASBOR      |
| SMU01631-TC3_20220731_232204_000.wav   |                           | 14 | 14           |              |                                             | 40.908 NOID        |
| SMU01631-TC3_20220731_232219_000.wav   |                           | 19 | 19           |              |                                             | 41.048 NOID        |
| SMU01631-TC3_20220731_232408_000.wav   | 7/31/2022 23:24:08 MYOLUC | 21 | 12 21 41.593 | 93 127.43    | 3 70.954                                    | 41.463 NOID        |
|                                        |                           |    |              |              |                                             |                    |

Fc=39-43; Sc=90-165; multiple pulses with split power centers suggest MYOLUC. multiple bat interference; at least one is probably LASBOR Multiple bat interference; VMF suggests LASBOR NMT; variable Fc and upturned tail; diagnostic NMT; variable Fc and upturned tail; diagnostic PQR - faint; too few pulses to measure VMF; NMT; upward curve to tail NSP; but VMF suggests LASBOR NSP; PQR - faint NSP NSP: CMT: POR - faint NSP; CMT NSP; CMT; POR - faint NSP: CMT: POR - faint FM call; Fc in low 30s NSP: CMT; POR- faint FM call; Fc in low 30s Fc=39-41; Sc=38-106 NSP; PQR - faint NSP NMT; PQR - faint PQR - faint; NSP NSP; CMT NMT; NSP NMT; NSP NSP: CMT NMT; NSP NSP: CMT NSP: CMT NSP: CMT NMT; NSP NMT; NSP NMT; NSP NMT; NSP NSP: CMT NSP: CMT NMT; NSP NMT; NSP

Terramor Catskills

7/31/2022 23:24:39 MYOLUC 7/31/2022 23:28:21 MYOLUC 7/31/2022 23:25:09 MYOLUC 7/31/2022 23:25:24 MYOLUC 7/31/2022 23:25:40 MYOLUC 7/31/2022 23:26:17 MYOLUC 7/31/2022 23:26:49 MYOLUC 7/31/2022 23:27:20 MYOLUC 7/31/2022 23:28:06 MYOLUC 7/31/2022 23:29:07 MYOLUC 7/31/2022 /31/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 \$/1/2022 3/1/2022 3/1/2022 8/1/2022 1/1/2022 3/1/2022 SMU01631-TC3\_20220731\_232439\_000.wav SMU01631-TC3\_20220731\_232509\_000.wav SMU01631-TC3\_20220731\_232540\_000.wav SMU01631-TC3\_20220731\_232601\_000.wav SMU01631-TC3\_20220731\_232617\_000.wav SMU01631-TC3\_20220731\_232649\_000.wav SMU01631-TC3\_20220731\_232720\_000.wav SMU01631-TC3\_20220731\_232821\_000.wav SMU01631-TC3\_20220801\_000847\_000.wav SMU01631-TC3\_20220801\_000902\_000.wav SMU01631-TC3\_20220801\_001311\_000.wav SMU01631-TC3\_20220801\_001436\_000.wav SMU01631-TC3\_20220731\_232524\_000.wav SMU01631-TC3\_20220731\_232806\_000.wav SMU01631-TC3\_20220731\_232907\_000.wav SMU01631-TC3\_20220731\_232937\_000.wav SMU01631-TC3\_20220801\_000808\_000.wav SMU01631-TC3\_20220801\_000833\_000.wav SMU01631-TC3\_20220801\_00034\_000.wav SMU01631-TC3\_20220801\_000949\_000.wav SMU01631-TC3\_20220801\_001005\_000.wav SMU01631-TC3\_20220801\_001011\_000.wav SMU01631-TC3\_20220801\_001255\_000.wav SMU01631-TC3\_20220801\_001327\_000.wav SMU01631-TC3\_20220801\_001342\_000.wav SMU01631-TC3 20220801 001358 000.wav SMU01631-TC3 20220801 001410 000.wav SMU01631-TC3\_20220801\_001451\_000.wav SMU01631-TC3\_20220801\_001507\_000.wav SMU01631-TC3 20220801 001522 000.wav SMU01631-TC3\_20220801\_001537\_000.wav SMU01631-TC3\_20220801\_001603\_000.wav SMU01631-TC3\_20220801\_001622\_000.wav SMU01631-TC3\_20220801\_001638\_000.wav SMU01631-TC3\_20220801\_001654\_000.wav SMU01631-TC3\_20220801\_001804\_000.wav SMU01631-TC3\_20220801\_004346\_000.wav 5MU01631-TC3\_20220801\_004433\_000.wav SMU01631-TC3\_20220801\_001026\_000.wav SMU01631-TC3\_20220801\_001057\_000.wav SMU01631-TC3\_20220801\_001249\_000.wav SMU01631-TC3\_20220801\_004401\_000.wav 5MU01631-TC3\_20220801\_004417\_000.wav SMU01631-TC3\_20220801\_004448\_000.wav SMU01631-TC3\_20220801\_004503\_000.wav 5MU01631-TC3\_20220801\_004604\_000.wav 5MU01631-TC3\_20220801\_005623\_000.wav

0:09:02 MYOLUC 0:12:49 MYOLUC 0:13:11 MYOLUC 0:13:27 MYOLUC 0:13:42 MYOLUC 23:26:01 MYOLUC 23:29:37 MYOLUC 0:08:08 MYOLUC 0:08:33 MYOLUC 0:08:47 MYOLUC 0:09:34 MYOUUC 0:09:49 MYOLUC 0:10:05 MYOLUC O:10:11 MYOLUC 0:10:26 MYOLUC 0:10:57 MYOLUC 0:12:55 MYOLUC 0:13:58 MYOLUC 0:14:10 MYOLUC 0:14:36 MYOLUC 0:14:51 MYOLUC 0:15:07 MYOLUC 0:15:22 MYOLUC 0:15:37 MYOLUC 0:16:03 MYOLUC 0:16:22 MYOLUC 0:16:38 MYOLUC 0:16:54 MYOLUC 0:18:04 MYOLUC 0:43:46 MYOLUC 0:44:17 MYOLUC 0:44:33 MYOLUC 0:44:48 MYOLUC 0:45:03 MYOLUC 0:46:04 MYOLUC 0:56:23 MYOLUC 0:44:01 MYOLUC

40.721 LASBOR 39.646 LASBOR 40.363 LASBOR **38.606 EPTFUS** 40.117 LASBOR 40.107 LASBOR 40.053 LASBOR 40.2 LASBOR 41.598 LASBOR 41.137 LASBOR 41.049 LASBOR 41.312 LASBOR 41.219 LASBOR 40.883 LA5BOR 41.786 LASBOR 40.915 LASBOR 41.156 LASBOR 41.836 LASBOR 41.33 LASBOR 40.752 LASBOR 41.075 LASBOR 40.802 LASBOR 40.799 LASBOR 41.244 LASBOR 40.952 LASBOR 40.525 LASBOR 41.094 LASBOR 40.578 LASBOR 41.572 LASBOR 39.984 LASBOR 38.064 EPTFUS 40,539 NOID **38.399 NOID 38.373 NOID** 40.068 NOID 42.729 NOID 41.422 NOID 40.758 NOID 38.64 NOID 40.401 NOID 41.092 NOID 39.47 NOID 40.708 NOID 40.07 NOID 42.661 NOID 40.437 NOID 40.521 NOID Bat Detector 3, Night 1 70.348 68.979 71.188 64.816 72.66 70.829 64.046 69.923 69.822 65.884 71.187 64.059 64,449 65.69 61.787 68.897 65.877 64.517 70.425 71.423 76.941 65.32 71.568 69.072 75.413 66.861 60.076 62.096 63,169 73.617 69.734 67.706 65.067 66.556 65.053 64.975 73.083 68.874 67.611 69.367 69.808 67.35 57.542 71.627 68.452 67.684 65.025 95.73 31.66 103.18 113.17 150.58 150.28 127.93 139.86 125.15 96.14 157.44 123.81 128.43 149.62 138.56 102.05 134.22 121.24 146.86 116.08 115.16 126.59 119.48 117.63 111.06 82.03 123.14 114,13 110.72 116.56 84.54 93.8 126.29 89.64 103.42 120.29 104.61 211.81 126.16 91.55 117.14 99.2 108.72 113.68 121.91 110.81 115.62 41.555 40.923 39.79 41.578 41.318 41.785 40.218 41.045 41.106 41.245 42.313 41.059 41.956 41.929 41.198 40.106 40.571 44.437 40.509 42.92 41.083 41.939 41.853 42.376 41.984 41.406 41.301 39.252 40.227 43.315 43.51 41.824 42.376 42.006 41.595 42.675 41.445 42.002 41.262 41.661 42.451 41.306 41.548 40.945 42.069 42,363 40.211 7 20 11 17 15 46 12 28 10 34 2 2 15 27 9 20 4 13 8 15 10 22 5 14 7 19 10 20 15 27 **9**6 **1**3 12 21 17 51 4 10 12 46 9 29 14 40 7 17 4 9 2 14 <2 4 8 15 8 11 18 35 17 27 9 14 10 21 6 15 18 37 8 20 17 22 14 19 12 19 11 14 5 13 16 9 18 26 ង ٥v ∞ ശ თ ហ ង ង

FM call; Fc in low 30s; multiple bats early in call FM call; Fc in low 30s; multiple bats early in call PQR - faint; too few pulses to measure VMF; NMT; upward curve to tail VMF; NMT; upward curve to tail /MF; NMT; upward curve to tail VMF; NMT; upward curve to tail VNF; NMT; upward curve to tail VMF; NMT; upward curve to tail /MF; NMT; upward curve to tail /MF; NMT; upward curve to tail /MF; NMT; upward curve to tail Multiple bat interference; NSF NSP; PQR - faint ŝ ß Š NSP NSP NSP dSN

Appendix H Manual Bat Call Vetting

Bat Detector 3, Night 1 Terramor Catskills

78.183 70.652

56.415

142.91

105.78 141.8 64.51 67.52 71.469 68.799

78.54

65.692 61.097 75.389 53,339

125.32

99.74 153.8 71.939 51.566

83.718

190.37 97.22

58.64 180.4 86.817 66.461

77.402 79.242 65.762

76.48 172.04

82.88

168.45 135.15 119.29 141.63 132.12 139.08 132.21 148.64 180.79 154.09 213.69 211.61 211.95 155.46 191.87 213.59 115.12 127.95 106.72 183.75 166.99 222.15 45.406 42.745 45.174 44.386 42.76 45.614 42.268 36,045 36.492 42.766 42.298 41.141 41.483 41.852 41.869 45.099 7 9 43.905 46.41 45.462 47.408 41.94 42.105 37.628 35.54 36.276 36.758 35.973 35.477 36.235 36.52 36.548 41.569 40.801 42.105 45.756 41.672 39.888 41.619 49.543 40.324 40.496 42.918 6 10 46.637 43.505 36,703 35.568 40.795 2 6 11 16 7 18 8 10 6 10 11 26 7 11 24 ۍ 0 10 17 5 0 4 3 G 2 7 11 5 7 4 11 10 21 ~ 17 23 8 18 5 11 7 13 16 32 20 36 15 29 4 13 15 30 11 27 9 12 4 6 11 16 27 5 11 14 19 27 ø 11 18 17 8 22 13 11 4 ഗ σ ñ 4 പ 19 20 ដ 8 12 5 \*\*\*\* 0:57:09 MYOLUC 0:57:24 MYOLUC 4:56:47 MYOLUC 0:56:54 MYOLUC 0:57:40 MYOLUC 0:59:28 MYOLUC 0:59:44 MYOLUC 0:59:59 MYOLUC 1:00:12 MYOLUC 1:00:30 MYOLUC 1:00:46 MYOLUC 1:01:33 MYOLUC 4:17:27 MYOLUC 4:50:10 MYOLUC 4:50:28 MYOLUC 4:50:52 MYOLUC 4:51:50 MYOLUC 4:53:09 MYOLUC 4:53:19 MYOLUC 4:55:01 MYOLUC 4:55:20 MYOLUC 4:58:25 MYOLUC 4:59:14 MYOLUC 4:59:30 MYOLUC 5:00:05 MYOLUC 5:01:07 MYOLUC 5:02:14 MYOLUC 5:07:41 MYOLUC 5:08:50 MYOLUC 5:27:45 MYOLUC 5:27:59 MYOLUC /31/2022 21:26:19 MYOSEP //31/2022 22:15:21 MYOSEP //31/2022 22:22:58 MYOSEP 22:23:26 MYOSEP 7/31/2022 22:23:56 MYOSEP 22:24:11 MYOSEP 22:24:42 MYOSEP 22:25:14 MYOSEP 22:25:29 MYOSEP 22:25:44 MYOSEP 22:26:15 MYOSEP 22:26:31 MYOSEP 22:26:46 MYOSEP NIYOSEP 22:53:56 MYOSEP 7/31/2022 22:54:11 MYOSEP 22:28:41 8/1/2022 8/1/2022 8/1/2022 /31/2022 //31/2022 //31/2022 /31/2022 //31/2022 7/31/2022 3/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 /31/2022 7/31/2022 /31/2022 /31/2022 7/31/2022 3/1/2022 1/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 SMU01631-TC3 20220801 005654 000 wav SMU01631-TC3 20220801 005709 000.wav SMU01631-TC3\_20220801\_005724\_000.wav SMU01631-TC3 20220801 005944 000.way SMU01631-TC3 20220801 005959 000.wav 5MU01631-TC3\_20220801\_010012\_000.wav 5MU01631-TC3\_20220801\_010030\_000.wav SMU01631-TC3 20220801 010046 000 wav 5MU01631-TC3 20220801 010133 000.wav SMU01631-TC3 20220801 041727 000.wav 5MU01631-TC3\_20220801\_045010\_000.wav SMU01631-TC3\_20220801\_045028\_000.wav SMU01631-TC3 20220801 045052 000.wav 5MU01631-TC3 20220801 045150 000.wav 5MU01631-TC3\_20220801\_045309\_000.wav SMU01631-TC3\_20220801\_045319\_000.wav SMU01631-TC3\_20220801\_045501\_000.wav SMU01631-TC3 20220801 045520 000.wav 5MU01631-TC3 20220801 045647 000.wav SMU01631-TC3\_20220801\_045825\_000.wav SMU01631-TC3\_20220801\_045914\_000.wav SMU01631-TC3\_20220801\_045930\_000.wav SMU01631-TC3 20220801 050107 000.wav 5MU01631-TC3\_20220801\_050214\_000.wav 5MU01631-TC3\_20220801\_050741\_000.wav SMU01631-TC3\_20220801\_050850\_000.wav 5MU01631-TC3\_20220801\_052745\_000.wav SMU01631-TC3 20220801 052759 000.wav SMU01631-TC3\_20220731\_212619\_000.wav 5MU01631-TC3\_20220731\_221521\_000.wav SMU01631-TC3\_20220731\_222258\_000.wav SMU01631-TC3 20220731 222326 000.wav 5MU01631-TC3\_20220731\_222356\_000.wav SMU01631-TC3 20220731 222411 000.wav SMU01631-TC3\_20220731\_222442\_000.wav SMU01631-TC3\_20220731\_222514\_000.wav SMU01631-TC3 20220731 222529 000.wav SMU01631-TC3\_20220731\_222544\_000.wav SMU01631-TC3\_20220731\_222631\_000.wav SMU01631-TC3\_20220731\_222646\_000.wav SMU01631-TC3 20220731 222841 000.wav SMU01631-TC3 20220731 225356 000.wav SMU01631-TC3\_20220731\_225411\_000.wav SMU01631-TC3\_20220801\_005740\_000.wav SMU01631-TC3 20220801 005928 000.wav SMU01631-TC3\_20220801\_050005\_000.wav 3MU01631-TC3\_20220731\_222615\_000.wav

NSP; CMT, but inconsistent; PQR; Fc35-38, but Sc >200 were going into AF NMT; VMF; steep calls, but Fc dips to low 30s; UT NMT; VMF; steep calls, but Fc dips to low 30s; UT NMT; VMF; steep calls, but Fc dips to low 30s NMT; VMF; steep calls, but Fc dips to low 30s NMT; VMF; steep calls, but Fc dips to low 30s VMF - bouncy; Fc-35-40; very variable slope VMF - bouncy; Fc-35-40; very variable slope PQR; too few measurable pulses to ID VMF; NMT; upward curve to tail VMF; NMT; upward curve to tall VMF; NMT; upward curve to tail VMF; NMT; upward curve to tail NMT; Fc-33-36; Sc-173-217; PQR VMF; NMT; upward curve to tail VMF; NMT; upward curve to tail VMF; NMT; upward curve to tail Fc in low 30s; Steep FM Call PQR - faint; NMT; NSP Fc in low 30s; FM call NSP; POR-faint; CMT NMT; PQR - faint NSP: POR - faint PQR - faint NSP: NMT PQR - faint PQR - faint PQR - faint PQR - faint NSP: NMT NSP: NMT VSP: NMT NSP: NMT NSP- NMT VSP-NMT PQR - faint NSP: NMT NSP: NMT NSP: NMT NSP 41.209 MYOSPP 67,533 41.025 LASBOR 41.118 LASBOR 41.766 LASBOR 40.698 LASBOR 40.804 LASBOR 40.931 LASBOR 40.891 LASBOP 39.973 LASBOR 44.886 LASBOR 40.628 LASBOR 36.221 EPTFUS 35.302 MYOSPI 34.779 EPTFUS 34.264 LASBOR 37.043 LASBOR 40.417 LASBOF 40.813 LASBOF 41.177 LASBOF 40.819 LASBOF 34.807 LASBOF 34.931 LASBOF 34.916 LASBOF 45.774 NOID 39.005 NOID 39.368 NOID 38.385 NOID 44.52 NOID 41.892 NOID 43.288 NOID 42.688 NOID 42.244 NOID 45.296 NOID 44.469 NOID 45.595 NOID 35.353 NOID 35.488 NOID 35.365 NOID 35.622 NOID 44.244 NOID 38.952 NOID 44.515 NOID 44.589 NOID 41.996 NOID 42.908 NOID **33.9 NOID** 

69.545 72.068 74.715 77.755 81.949 70.478 68.304 73.365

81.208

111.5

77.302

92.84

83.265

145.09

147.6

Appendix H Manual Bat Call Vetting

VMT; VMF; steep calls but Fc dips to low 30s

35.149 LASBOF

71.835 66.245 66.455

208.11 174.61

69.706

66.661

69.645 68.834 68.149

190.81

65.744

192.82

71.872 67.747 67.733

201.37

71.38

66.016 66.464

170.7

67.437

65.678

**Terramor Catskills** 

/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 8/1/2022 //31/2022 7/31/2022 7/31/2022 1/31/2022 8/1/2022 /31/2022 7/31/2022 /31/2022 /31/2022 7/31/2022 SMU01631-TC3\_20220731\_225444\_000.wav SMU01631-TC3\_20220731\_230037\_000.wav SMU01631-TC3\_20220731\_231436\_000.wav SMU01631-TC3\_20220731\_231507\_000.wav SMU01631-TC3\_20220731\_225457\_000.wav SMU01631-TC3 20220731 225907 000.wav SMU01631-TC3\_20220731\_225924\_000.wav SMU01631-TC3\_20220731\_225937\_000.wav SMU01631-TC3\_20220731\_230022\_000.wav SMU01631-TC3\_20220731\_231632\_000.wav SMU01631-TC3\_20220731\_231721\_000.wav SMU01631-TC3\_20220731\_231736\_000.wav SMU01631-TC3 20220731 231854 000.wav SMU01631-TC3\_20220731\_231926\_000.wav SMU01631-TC3\_20220731\_231942\_000.wav SMU01631-TC3\_20220731\_232704\_000.wav SMU01631-TC3\_20220731\_232735\_000.wav SMU01631-TC3\_20220731\_232750\_000.wav SMU01631-TC3\_20220731\_232837\_000.wav SMU01631-TC3\_20220731\_232852\_000.wav SMU01631-TC3\_20220731\_233745\_000.wav SMU01631-TC3\_20220801\_050645\_000.wav SMU01631-TC3\_20220731\_211801\_000.wav SMU01631-TC3\_20220731\_211832\_000.wav SMU01631-TC3\_20220731\_211950\_000.wav SMU01631-TC3\_20220731\_212152\_000.wav SMU01631-TC3\_20220731\_212237\_000.wav SMU01631-TC3\_20220731\_212525\_000.wav SMU01631-TC3 20220731 213502 000.wav 5MU01631-TC3\_20220731\_214149\_000.wav SMU01631-TC3\_20220731\_214311\_000.wav SMU01631-TC3\_20220731\_214539\_000.wav SMU01631-TC3 20220731 214548 000.wav SMU01631-TC3\_20220731\_214625\_000.wav SMU01631-TC3\_20220801\_045945\_000.wav 5MU01631-TC3\_20220731\_212710\_000.wav 5MU01631-TC3\_20220731\_212758\_000.wav SMU01631-TC3\_20220731\_212909\_000.wav SMU01631-TC3\_20220731\_214242\_000.wav SMU01631-TC3\_20220731\_214736\_000.wav SMU01631-TC3\_20220731\_214808\_000.wav SMU01631-TC3 20220731 214849 000.wav SMU01631-TC3 20220731\_215005\_000.wav SMU01631-TC3\_20220731\_215035\_000.wav SMU01631-TC3\_20220731\_215221\_000.wav SMU01631-TC3\_20220731\_215326\_000.wav SMU01631-TC3\_20220731\_215542\_000.wav

9 19 7/31/2022 21:18:01 MYOSOD 21:18:32 MY050D //31/2022 21:25:12 MYOSOD 21:27:10 MYOSOD //31/2022 21:27:58 MY050D 21:52:21 MYOSOD 22:54:44 MYOSEP 23:28:52 MYOSEP 7/31/2022 23:37:45 MYOSEP 7/31/2022 21:19:50 MYOSOE 7/31/2022 21:21:52 MYOSOD //31/2022 21:22:37 MYOSOD 7/31/2022 21:29:09 MYOSOD 7/31/2022 21:35:02 MYOSOD 7/31/2022 21:41:49 MYOSOD 21:42:42 MYOSOD 7/31/2022 21:43:11 MYOSOU 7/31/2022 21:45:39 MYOSOE 7/31/2022 21:45:48 MYOSOE //31/2022 21:46:25 MY050D 21:47:36 MYOSOD 7/31/2022 21:48:08 MYOSOD 7/31/2022 21:48:49 MYOSOD //31/2022 21:50:05 MYOSOD '/31/2022 21:50:35 MYOSOD 7/31/2022 21:53:26 MYOSOD 7/31/2022 21:55:42 MYOSOD '/31/2022 22:54:57 MYOSEP 7/31/2022 22:59:07 MYOSEP 22:59:37 MYOSEP 7/31/2022 23:00:22 MYOSEP 7/31/2022 23:00:37 MYOSEP 23:14:36 MYOSEP 23:15:07 MYOSEP 23:16:32 MYOSEP 23:17:21 MYOSEP 7/31/2022 23:17:36 MYOSEP 23:18:54 MYOSEP 23:19:26 MYOSEP 23:19:42 MYOSEP 7/31/2022 23:27:04 MYOSEP 7/31/2022 23:27:35 MYOSEP 7/31/2022 23:27:50 MYOSEP //31/2022 23:28:37 MYOSEP 4:59:45 MYOSEP 5:06:45 MYOSEP 7/31/2022 22:59:24 MYOSEF

ហ

39.791 MYOSPP 40.642 MYOLUC 35.44 LASBOR 34.369 LASBOR 35.258 LASBOR 35.35 LASBOR 40.912 MYOSPF 40.287 MYOSPP 40.191 MYOSPF 40.925 MYOLUC 40.673 MYOSPP 41.229 MYOSPF 34.988 LASBOR 35.611 LASBOR 35.411 LASBOR 35.298 LASBOR 35.599 LASBOR 36.893 LASBOR 35.076 LASBOR 34.376 LASBOR 35.766 LASBOR 34.891 LASBOR 34.492 LASBOR 35.175 LASBOR 34.914 LASBOR 36.178 LASBOR 36.607 LASBOR 35.924 LASBOR 40.417 MYOSPI 40.175 MYOSPF 40.767 MYOSPI 40.509 MYOSPI 42.27 MYOSPI 35.239 NOID 42.603 NOID 45.714 NOID 41.232 NOID 41.109 NOID 41.005 NOID 40.672 NOID 41.53 NOID 40.793 NOID 42.007 NOID 42.692 NOID 40.729 NOID 43.483 NOID 40.746 NOID Bat Detector 3, Night 1 65.723 80.316 66.317 66.137 66.987 66.738 67.268 63.747 72.311 67.534 65.341 68.869 65.197 65.441 68.489 79.085 67.379 62.219 70.278 69.36 66.048 68.936 67.991 67.183 63.527 64.901 65.075 68.626 68.834 75.389 68.65 65.405 67.649 69.108 65.396 61.489 71.067 78.17 61.994 63.917 67.543 71.028 60.678 63.171 61.686 68.483 64.432 185.38 169.62 169.51 181.64 170.78 163.59 185.32 209.74 164.9 185.18 169.93 123.01 131.28 208.75 160.69 150.09 154.96 145.4 186.83 175.09 186.75 135.42 166.79 160.28 96.87 132.73 181.56 201.42 150.63 90.93 190.65 145.75 171.8 150.17 212.47 197.91 207.92 122.74 107.67 160.61 155.32 160.29 139.34 185.22 153.9 117.36 137.91 37.286 36.358 37.579 37.193 45.316 36.384 35.966 36.678 37.509 36.94 48.647 42.048 42.334 40.895 36.484 36.57 35.668 36.886 36.227 37.07 41.31 42.067 40.671 41.435 42.785 42.692 41.242 42.976 36.115 37,809 36.457 36.752 36.3 35.501 41.084 44.458 41.45 41.214 40.912 41.252 41.408 47.058 41.818 42.436 41.47 41.454 41.365 10 11 12 16 13 22 3 15 6 22 4 12 3 14 1 13 2 8 R 5 21 ŝ 12 17 18 m 12 15 11 13 16 7 13 20 58 12 28 8 15 9 9 6 20 2 11 11 യ 4 13 ហ ο, 4 13 14 34 10 22 ശ 7 10 4 13 4 5 00 얺 00 თ Ę 2 ដ Щ 님 28 ទា 1 រប ß m ង 4 ŝ ເດ

NSP; PQR - faint; identifiable myotis tall in some pulses NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMIT; VMIF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses but Fc dips to low 30s VMT; VMF; steep calls but Fc dips to low 30s VMT; VMF; steep calls but Fc dips to low 30s Fc=38-42; Sc=59-98; CMT NSP; CMT; POR - faint VSP; CMT; POR - faint VSP; CMT; PQR - faint Fc=38-41; Sc=57-106 NSP; too short to ID NSP; PQR-faint; CMT NSP; PQR - faint VSP; POR - faint NSP; PQR - faint NSP; PQR - faint NSP; PQR - faint NSP; PQR-faint **VSP; CMT; PQR** NSP; CMT; POR PQR - faint CMT; NSP NSP; CMT NSP; POR NSP; CMT NSP NSP NSP NSP NSР ЯSP

Appendix H Manual Bat Call Vetting

|                         | ٩.                                   | ~                                    | ~                                    | ~                                    | ~                                    |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |                                      |  |
|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|
| T JUBIN                 | 155.53 70.616 41.528 MYOSPP          | 43.116 LASBOR                        | 41.027 LASBOR                        | 41.281 LASBOR                        | 40.284 LASBOR                        | 43.629 NOID                          | 40.83 NOID                           | 41.016 NOID                          | 41.769 NOID                          | 42.217 NOID                          | 43.913 NOID                          | 44.574 NOID                          | 44.23 NOID                           | 42.467 NOID                          | 42.28 NOID                           | 42.548 NOID                          |  |
| bat verector 3, Night 1 | 70.616                               | 67.474                               | 65.956                               | 69.12                                | 72.682                               | 67.698                               | 68.866                               | 66.317                               | 67.52                                | 66.238                               | 72.465                               | 67.133                               | 74.245                               | 67.251                               | 72.172                               | 64.822                               |  |
| bat uet                 | 155.53                               | 112.48                               | 128.64                               | 135.81                               | 110.07                               | 112.47                               | 111.06                               | 86.41                                | 122.56                               | 105.7                                | 149.77                               | 146.91                               | 185.87                               | 174.06                               | 137.8                                | 145                                  |  |
|                         | 8 20 42.518                          | 43.578                               | 41.995                               | 4 21 42.774                          | 40.551                               | 45.316                               | 6 16 41.268                          | 7 16 41.597                          | 2 7 43.224 122.56                    | 7 42.676 105.7                       | 44.45                                | 45.661                               | 45.22                                | 43.852                               | 42.697                               | 5 42.548                             |  |
|                         | 20                                   | 2                                    | 20                                   | 21                                   | m                                    | 'n                                   | 16                                   | 16                                   | 5                                    | ~                                    | 80<br>100                            | ŋ                                    | ~                                    | 4                                    | 2                                    | ŋ                                    |  |
|                         | 80                                   | 2                                    | ŝ                                    | 4                                    | 1                                    | 1                                    | 9                                    | ~                                    | 2                                    | 2                                    | Ś                                    | ŝ                                    | 5                                    | 0                                    | 0                                    | 0                                    |  |
|                         | 20                                   | 80                                   | 20                                   | 21                                   | m                                    | ю                                    | 16                                   | 16                                   | 7                                    | 7                                    | 80                                   | ი                                    | 7                                    | 4                                    | 2                                    | ம                                    |  |
|                         | 7/31/2022 21:55:58 MYOSOD            | 7/31/2022 23:06:13 MYOSOD            | 7/31/2022 23:06:29 MYOSOD            | 7/31/2022 23:07:10 MYOSOD            | 22 23:20:44 MYOSOD                   | 22 23:21:49 MYOSOD                   | 22 0:43:30 MYOSOD                    | 22 0:46:35 MYOSOD                    | 22 0:56:39 MYOSOD                    | 22 5:01:25 MYOSOD                    | 22 5:06:00 MYOSOD                    | 22 5:07:01 MYOSOD                    | 22 5:07:51 MYOSOD                    | 22 21:34:25 NoID                     | 22 21:42:38 NoID                     | 8/1/2022 1:01:17 NoID                |  |
|                         | 7/31/20                              | 7/31/20                              | 7/31/20                              | 7/31/20                              | 7/31/2022                            | 7/31/2022                            | 8/1/2022                             | 8/1/2022                             | 8/1/2022                             | 8/1/2022                             | 8/1/2022                             | 8/1/2022                             | 8/1/2022                             | 7/31/2022                            | 7/31/2022                            | 8/1/20                               |  |
|                         | SMU01631-TC3_20220731_215558_000.wav | SMU01631-TC3_20220731_230613_000.wav | SMU01631-TC3_20220731_230629_000.wav | SMU01631-TC3_20220731_230710_000.wav | SMU01631-TC3_20220731_232044_000.wav | SMU01631-TC3_20220731_232149_000.wav | SMU01631-TC3_20220801_004330_000.wav | SMU01631-TC3_20220801_004635_000.wav | SMU01631-TC3_20220801_005639_000.wav | SMU01631-TC3_20220801_050125_000.wav | SMU01631-TC3_20220801_050600_000.wav | SMU01631-TC3_20220801_050701_000.wav | SMU01631-TC3_20220801_050751_000.wav | SMU01631-TC3_20220731_213425_000.wav | SMU01631-TC3_20220731_214238_000.wav | SMU01631-TC3_20220801_010117_000.wav |  |

Terramor Catskills Bat Detector 3, Night 1

NSP; CMT NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s NMT; VMF; steep pulses, but Fc dips to low 30s PQR - faint; NSP NSP; PQR NSP NSP NSP NSP NSP NSP NSP PQR; NSP PQR; NSP PQR; NSP PQR - short PQR - faint; NSP

Appendix H Manual Bat Call Vetting

Terramor Catskills Bat Detector 3, Night 2 MANUAL ID Comments NMT; NSP VSP NSP 40.641 MYOLUC 41.216 MYOSPP 41.602 LASBOR 40.271 LASBOR 41.292 LASBOR 40.218 LASBOR 40.382 LASBOR 40.525 LASBOR 40.447 LASBOR 39.622 LASBOR 42.6 LASBOR 41.914 LASBOR 41.416 LASBOR 39.312 LASBOR 40.867 NOID 41.343 NOID 39.428 NOID 40.429 NOID 40.659 NOID 40.883 NOID 41.162 NOID 40.214 NOID 40.954 NOID 41.813 NOID 41.738 NOID 39.517 NOID 40.665 NOID 40.916 NOID 41.478 NOID 40.328 NOID 41.41 NOID 40.687 NOID 40.515 NOID 40.8 NOID 43.157 NOID 39.246 NOID 43.456 NOID 42.285 NOID 40.467 NOID 40.906 NOID 40.776 NOID 41.262 NOID 40.014 NOID 39.792 NOID 39.49 NOID 41.028 NOID Fmin 68.222 61.903 65.452 74.729 70.699 72.333 68.012 72.658 61.669 61.58 71.685 64.646 66.737 64.727 66.596 68.294 74.795 67.216 62.112 74.974 63.978 79.142 73.527 63.27 57.207 72.111 64.882 64.66 59.59 65.18 66.851 74.29 76.679 65.651 71.897 64.734 72.966 71.122 65.307 61.388 74.541 61.901 69.433 78.853 60.627 73.362 Fmax 3.54 3.515 3.353 3.639 3.515 3.364 2.924 3.209 3.205 3.936 2.952 2.746 3.221 41.25 153.02 3.349 3.065 3.709 3.525 2.982 3.405 3.854 3.617 3.022 2.426 3.121 3.241 3.837 2.669 39.535 102.17 3.706 3.878 4.074 2.907 4.377 2.981 2.986 3.648 3.946 3.033 2.997 3.603 2.81 2.17 2.664 2.7 3.219 2.92 3.738 Dur 122.39 131.04 128.4 65.56 163.4 169.9 6 13 42.495 142.96 159.77 151.92 96.69 67.55 138.43 159.02 93.46 145.2 165.14 105.57 105.65 79.36 134.01 188.91 144.5 145.79 115.46 130.8 87.47 93.36 142.49 128.32 150.88 171.73 121.57 163.44 122.52 155.04 155.7 161.72 226.72 181.6 109.15 136.78 126.6 141.58 160.92 Sc 41.579 41.918 43.518 43.298 39.709 43.852 41.6 41.896 42.121 41.538 41.829 41.582 41.455 41.906 39.66 42.522 42.33 41.522 40.495 41.992 41.068 41.794 40.229 41.995 41.616 42.288 41.967 42.261 42.39 41.594 41.182 40.185 42.92 42.318 43.899 41.055 42.214 41.734 40.968 39.81 42.164 44.955 40.934 PULSES MATCH N Fc 2 14 3 18 9 13 26 11 23 14 34 6 21 5 18 6 20 11 24 5 12 7 21 14 31 5 17 11 27 6 17 9 21 5 10 5 10 22 7 16 5 17 3 17 0 12 5 15 9 22 2 10 8 16 3 14 4 18 5 17 9 17 4 21 ø 7 20 9 29 6 12 9 8 14 5 10 8 16 m S 2 10 18 2 0 13 9 222 116 117 117 117 112 220 220 229 229 229 229 229 229 6 3 14 18 5 114 117 117 211 211 116 110 110 AUTO ID\* 8/1/2022 21:09:41 MYOLUC 8/1/2022 21:16:39 MYOSOD 8/1/2022 21:18:52 MYOSOD 8/1/2022 21:19:19 MYOSOD 3/1/2022 21:20:30 MYOLUC 3/1/2022 21:21:17 MYOSOD 3/1/2022 21:21:58 MYOSOD 8/1/2022 21:09:09 MYOLUC 8/1/2022 21:09:25 MYOLUC 8/1/2022 21:10:36 MYOLUC 8/1/2022 21:14:07 MYOLUC 8/1/2022 21:14:21 MYOLUC 8/1/2022 21:14:44 MYOLUC 8/1/2022 21:15:13 MYOSOD 8/1/2022 21:15:55 MYOLUC 8/1/2022 21:16:22 MYOSOD 8/1/2022 21:16:54 MYOLUC 8/1/2022 21:17:57 MYOSOD 8/1/2022 21:18:23 MYOLUC 3/1/2022 21:19:09 MYOLUC 3/1/2022 21:19:31 MYOLUC 3/1/2022 21:19:48 MYOLUC 3/1/2022 21:20:08 MYOLUC 3/1/2022 21:21:32 MYOLUC 3/1/2022 21:22:57 MYOLUC 3/1/2022 21:23:26 MYOLUC 3/1/2022 21:23:42 MYOSOD 3/1/2022 21:24:10 MYOLUC 8/1/2022 21:24:26 MYOLUC 3/1/2022 21:24:42 MYOLUC 3/1/2022 21:25:02 MYOLUC 3/1/2022 21:25:32 MYOLUC 8/1/2022 21:25:58 MYOLUC 3/1/2022 21:26:06 MYOSOD 8/1/2022 21:26:43 MYOLUC MYOSOD 3/1/2022 21:33:20 MYOLUC 8/1/2022 21:33:35 MYOLUC 8/1/2022 21:33:45 MYOLUC 8/1/2022 21:34:40 MYOSOD 8/1/2022 21:34:56 MYOSOD 8/1/2022 21:33:04 MYOLUC 8/1/2022 21:34:22 MYOLUC 8/1/2022 21:21:00 LASBOR 3/1/2022 21:22:25 NoID 8/1/2022 21:25:54 NoID 8/1/2022 21:26:59 TIME DATE SMU01631-TC3\_20220801\_210909\_000.wav SMU01631-TC3 20220801 210925 000.wav SMU01631-TC3\_20220801\_210941\_000.wav SMU01631-TC3\_20220801\_211036\_000.wav SMU01631-TC3\_20220801\_211407\_000.wav SMU01631-TC3\_20220801\_211421\_000.wav SMU01631-TC3\_20220801\_211444\_000.wav SMU01631-TC3\_20220801\_211513\_000.wav SMU01631-TC3\_20220801\_211555\_000.wav SMU01631-TC3\_20220801\_211622\_000.wav SMU01631-TC3 20220801 211639 000.wav SMU01631-TC3 20220801 211654 000.wav SMU01631-TC3\_20220801\_211757\_000.wav SMU01631-TC3\_20220801\_211823\_000.wav SMU01631-TC3 20220801 211852 000.wav SMU01631-TC3\_20220801\_211909\_000.wav SMU01631-TC3\_20220801\_211919\_000.wav SMU01631-TC3\_20220801\_211931\_000.wav SMU01631-TC3\_20220801\_211948\_000.wav SMU01631-TC3\_20220801\_212008\_000.wav SMU01631-TC3 20220801 212030 000.wav SMU01631-TC3\_20220801\_212100\_000.wav SMU01631-TC3\_20220801\_212117\_000.wav SMU01631-TC3\_20220801\_212132\_000.wav SMU01631-TC3\_20220801\_212158\_000.wav SMU01631-TC3\_20220801\_212225\_000.wav SMU01631-TC3\_20220801\_212257\_000.wav SMU01631-TC3 20220801 212326 000.wav SMU01631-TC3\_20220801\_212342\_000.wav SMU01631-TC3\_20220801\_212410\_000.wav SMU01631-TC3\_20220801\_212426\_000.wav SMU01631-TC3\_20220801\_212442\_000.wav SMU01631-TC3\_20220801\_212502\_000.wav SMU01631-TC3\_20220801\_212532\_000.wav SMU01631-TC3\_20220801\_212558\_000.wav SMU01631-TC3 20220801 212606 000.wav SMU01631-TC3\_20220801\_212643\_000.wav SMU01631-TC3\_20220801\_213304\_000.wav SMU01631-TC3\_20220801\_213320\_000.wav SMU01631-TC3\_20220801\_213335\_000.wav SMU01631-TC3\_20220801\_212554\_000.wav SMU01631-TC3\_20220801\_212659\_000.wav SMU01631-TC3\_20220801\_213345\_000.wav SMU01631-TC3\_20220801\_213422\_000.wav SMU01631-TC3\_20220801\_213440\_000.wav SMU01631-TC3\_20220801\_213456\_000.wav OUT FILE FS

NMT; NSP; VMF - probable LASBOR VMF from 32-40+kHz; upturned tail NMT; NSP; VMF - probable LASBOR VMF from 32-40+kHz; upturned tail NMT; NSP; VMF - probable LASBOR NMT; NSP; VMF - probable LASBOR NMT; NSP; VMF - probable LASBOR NMT: NSP; VMF - probable LASBOR VMF from 32-40+kHz; upturned tail CMT; NSP; Fc consistently 40+ PQR; too few pulses to ID PQR; too few pulses to ID CMT; Fc ~43; Sc 54-129 NMT; NSP NMT; NSP NMT; NSP NMT; NSP NMT; NSP

# Appendix H Bat Call Vetting

SMU01631-TC3 20220801 213519 000.wav SMU01631-TC3\_20220801\_213535\_000.wav SMU01631-TC3\_20220801\_213607\_000.wav SMU01631-TC3\_20220801\_213800\_000.wav SMU01631-TC3\_20220801\_213814\_000.wav SMU01631-TC3\_20220801\_213830\_000.wav SMU01631-TC3\_20220801\_213846\_000.wav SMU01631-TC3\_20220801\_213902\_000.wav SMU01631-TC3 20220801 213934 000.wav SMU01631-TC3\_20220801\_213949\_000.wav SMU01631-TC3\_20220801\_214004\_000.wav SMU01631-TC3 20220801 214035 000.wav SMU01631-TC3 20220801 214051 000.wav SMU01631-TC3\_20220801\_214104\_000.wav SMU01631-TC3\_20220801\_214119\_000.wav SMU01631-TC3\_20220801\_214134\_000.wav SMU01631-TC3\_20220801\_214151\_000.wav SMU01631-TC3\_20220801\_214157\_000.wav SMU01631-TC3\_20220801\_214224\_000.wav SMU01631-TC3 20220801 214257 000.wav SMU01631-TC3\_20220801\_214312\_000.wav SMU01631-TC3\_20220801\_214327\_000.wav SMU01631-TC3\_20220801\_214342\_000.wav 5MU01631-TC3\_20220801\_214359\_000.wav SMU01631-TC3\_20220801\_214414\_000.wav SMU01631-TC3\_20220801\_214508\_000.wav SMU01631-TC3\_20220801\_214539\_000.wav SMU01631-TC3\_20220801\_214556\_000.wav SMU01631-TC3\_20220801\_214613\_000.wav SMU01631-TC3\_20220801\_214644\_000.wav SMU01631-TC3\_20220801\_214757\_000.wav SMU01631-TC3\_20220801\_214828\_000.wav SMU01631-TC3\_20220801\_213551\_000.wav SMU01631-TC3 20220801 213634 000.wav SMU01631-TC3 20220801 214019 000.wav SMU01631-TC3\_20220801\_214240\_000.wav SMU01631-TC3\_20220801\_214437\_000.wav SMU01631-TC3\_20220801\_214452\_000.wav SMU01631-TC3\_20220801\_214628\_000.wav SMU01631-TC3\_20220801\_214659\_000.wav SMU01631-TC3\_20220801\_214709\_000.wav SMU01631-TC3 20220801 214725 000.wav SMU01631-TC3 20220801 214741 000.wav SMU01631-TC3\_20220801\_214812\_000.wav SMU01631-TC3\_20220801\_214843\_000.wav 5MU01631-TC3\_20220801\_214859\_000.wav 5MU01631-TC3\_20220801\_214914\_000.wav

8/1/2022 21:35:19 MYOSOD 3/1/2022 21:35:51 MYOSOD 3/1/2022 21:36:07 MYOSOD 3/1/2022 21:41:04 MYOSOD 3/1/2022 21:35:35 MYOLUC 21:36:34 MYOSOD 3/1/2022 21:39:02 MYOSOD 3/1/2022 21:39:49 MYOSOD 21:40:35 MYOSOD 3/1/2022 21:43:27 MYOLUC 3/1/2022 21:43:59 MYOSOD 21:38:00 MYOLUC 21:38:14 MYOLUC 21:38:30 MYOLUC 21:38:46 MYOLUC 3/1/2022 21:39:34 MYOLUC 3/1/2022 21:40:04 MYOLUC 21:40:19 MYOLUC 21:40:51 MYOLUC 3/1/2022 21:41:19 MYOLUC 3/1/2022 21:41:34 MYOSEP 3/1/2022 21:41:51 MYOLUC 3/1/2022 21:42:24 MYOSEP 21:42:40 MYOSEP 3/1/2022 21:43:12 MYOSEP 3/1/2022 21:43:42 MYOLUC 3/1/2022 21:44:14 MYOLUC 3/1/2022 21:44:37 MYOSEP 3/1/2022 21:44:52 MYOSEP 21:45:56 MYOLUC 3/1/2022 21:46:13 MYOSEP 3/1/2022 21:46:28 MYOSEP 3/1/2022 21:47:25 MYOSEP 8/1/2022 21:48:12 MYOSEP 3/1/2022 21:48:28 MYOLUC 8/1/2022 21:48:59 MYOSEP 8/1/2022 21:49:14 MYOSEP 3/1/2022 21:42:57 MYOSEP 3/1/2022 21:45:08 MYOSEP 3/1/2022 21:45:39 MYOSEP 3/1/2022 21:46:59 MYOSEP 8/1/2022 21:47:09 MYOSEP 3/1/2022 21:47:57 MYOSEP 3/1/2022 21:48:43 MYOSEP 3/1/2022 21:41:57 EPTFUS 3/1/2022 21:46:44 EPTFUS 3/1/2022 21:47:41 EPTFUS 3/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 3/1/2022

41.044 MYOLUC 39.88 MYOLUC 40.992 MYOLUC 40.682 LASBOR 36.028 LASBOR 37.147 LASBOR **33.369 LASBOR** 34.878 LASBOR **34.73 LASBOR 34.575 LASBOR 35.467 LASBOR** 35.535 LASBOR 36.439 LASBOR 40.029 LASBOR 36.739 LASBOR 34.473 LASBOR 38.012 LASBOR 34.605 LASBOR 35.179 LASBOR 35.271 LASBOR 36.842 LASBOR 40.37 NOID 41.666 NOID 41.242 NOID 39.194 NOID 40.791 NOID 40.998 NOID 40.636 NOID 38.062 NOID 47.97 NOID 39.382 NOID 35.573 NOID 35.72 NOID 159.56 2.823 63.672 41.458 NOID 72.334 41.728 NOID 40.217 NOID 41.384 NOID 41.273 NOID 40.239 NOID 40.46 NOID 42.771 NOID 41.147 NOID 41.165 NOID 39.781 NOID 34.667 NOID 38.379 NOID 37.84 NOID 73.836 61.38 65.815 74.535 62.135 65.043 76.41 65.894 67.435 65.478 69.209 64.744 70.469 60.358 68.914 69.005 67.175 67.384 62.428 63.359 62.09 65.718 67.863 Bat Detector 3, Night 2 58.737 67.707 72.652 63.735 70.027 65.924 66.087 69.183 67.637 64.752 64.278 58.36 65.489 69.504 69.464 66.315 68.453 69.134 68.493 67.627 64.954 74.388 3.177 3.376 3.248 3.203 3.216 3.404 2.815 4.096 3.143 3.074 3.389 3.283 3.036 2.994 2.916 2.819 2.824 3.058 3.095 2.96 158.66 3.431 3.499 2.916 3.369 3.742 3.392 3.042 3.404 2.841 3.243 4.451 2.943 3.24 2.925 2.945 2.876 3.085 2.927 92.95 3.688 3.231 3.387 3.121 3.201 3.151 2.82 105.86 3.201 142.1 70.81 125.77 80.1 216.96 166.86 107.96 139.83 163.18 99.27 136.44 151.33 192.46 154.14 198.84 181.71 105.39 220.95 208.31 175.16 163.84 170.06 17.71 138.51 168.91 154.28 144.18 205.42 158.9 213.39 194.7 203.42 245.28 169.19 137.92 105.39 113.93 72 190.73 135.53 203.42 167.77 170.13 40.99 41.195 41.918 41.21 40.318 41.669 38.364 36.294 49.24 48.126 40.619 36.373 40.942 35.72 36.067 35.77 36.499 38.61 36.55 39.061 39.451 36.488 41.829 42.985 42.386 42.151 42.924 42.202 41.498 41.658 39.231 40.336 41.928 36.964 41.967 37.703 38.957 42.792 42.397 37.331 36.108 35.126 35.981 36.563 39.443 42.821 40.197 10 19 3 9 6 12 6 21 9 22 3 11 4 20 8 23 14 35 14 32 11 32 9 20 11 26 23 37 4 12 15 46 4 5 8 15 6 25 7 17 15 37 18 33 9 23 11 28 12 17 8 29 24 34 18 25 9 12 6 19 5 17 6 24 11 29 9 ファ 14 32 10 16 13 33 2 15 27 12 17 15 20 4 41 29 2 2 9 4 2 53 E 10 H

NMT; NSP; multiple bats/interference; VMF - probable LASBOR NSP; PQR - faint; too few pulses to measure NSP; PQR - faint; too few pulses to measure NMT; VMF circa 35-40 kHz; upturned tail NMT; NSP; VMF - probable LASBOR NMT; NSP; VMF - probable LASBOR NMT; NSP; NMF - probable LASBOR NMT; NSP; VMF - probable LASBOR NMT; VMF circa 40 kHz; diagnostic NMT; VMF circa 40 kHz; diagnostic NMT; PQR; faint, truncated pulses NMT; PQR; truncated pulses CMT; Fc: 37-40; Sc: 47-102 CMT; Fc; 39-43; Sc:62-104 CMT; Fc: 39-41; Sc: 50-79 VMF from 32-40+kHz VMF from 32-40+kHz NSP; multiple bats NMT; VMF; NSP NMT; NSP NMT; NSP NSP VSP NSP NSP NSP NSP

NMT; NSP

Terramor Catskills

12 19 19

**Terramor Catskills** 

SMU01631-TC3\_20220801\_214929\_000.wav SMU01631-TC3\_20220801\_214944\_000.wav SMU01631-TC3 20220801 214959 000.wav SMU01631-TC3\_20220801\_215014\_000.wav SMU01631-TC3\_20220801\_215030\_000.wav SMU01631-TC3\_20220801\_215045\_000.wav SMU01631-TC3 20220801 215100 000.wav SMU01631-TC3\_20220801\_215115\_000.wav SMU01631-TC3\_20220801\_215131\_000.wav SMU01631-TC3\_20220801\_215146\_000.wav SMU01631-TC3 20220801 215218 000.wav SMU01631-TC3\_20220801\_215249\_000.wav SMU01631-TC3\_20220801\_215321\_000.wav SMU01631-TC3 20220801 215339 000.wav SMU01631-TC3 20220801 215357 000.wav SMU01631-TC3\_20220801\_215413\_000.wav SMU01631-TC3\_20220801\_215715\_000.wav SMU01631-TC3\_20220801\_215746\_000.wav SMU01631-TC3 20220801 215814 000.wav SMU01631-TC3\_20220801\_215857\_000.wav SMU01631-TC3\_20220801\_215913\_000.wav SMU01631-TC3\_20220801\_220008\_000.wav SMU01631-TC3\_20220801\_220024\_000.wav SMU01631-TC3\_20220801\_220039\_000.wav SMU01631-TC3\_20220801\_220052\_000.wav SMU01631-TC3 20220801 220108 000.wav SMU01631-TC3\_20220801\_220124\_000.wav SMU01631-TC3\_20220801\_220139\_000.wav SMU01631-TC3 20220801 220228 000.wav SMU01631-TC3\_20220801\_220242\_000.wav SMU01631-TC3\_20220801\_220257\_000.wav SMU01631-TC3\_20220801\_221010\_000.wav SMU01631-TC3\_20220801\_221855\_000.wav SMU01631-TC3 20220801 215202 000.wav SMU01631-TC3\_20220801\_215233\_000.wav SMU01631-TC3\_20220801\_215629\_000.wav SMU01631-TC3 20220801 215644 000.wav SMU01631-TC3\_20220801\_215730\_000.wav SMU01631-TC3\_20220801\_215928\_000.wav SMU01631-TC3\_20220801\_215943\_000.wav SMU01631-TC3\_20220801\_220156\_000.wav SMU01631-TC3 20220801 220212 000.wav SMU01631-TC3\_20220801\_220312\_000.wav SMU01631-TC3\_20220801\_221910\_000.wav SMU01631-TC3\_20220801\_221920\_000.wav SMU01631-TC3\_20220801\_222316\_000.wav SMU01631-TC3\_20220801\_222108\_000.wav

8/1/2022 21:49:29 MYOLUC 8/1/2022 21:49:44 MYOSEP 3/1/2022 21:53:21 MYOLUC 3/1/2022 21:53:39 MYOLUC 3/1/2022 21:53:57 MYOSOD 3/1/2022 21:54:13 MYOLUC 8/1/2022 21:56:29 MYOLUC 3/1/2022 21:56:44 MYOSOD 3/1/2022 21:57:15 MYOLUC 3/1/2022 21:57:30 MYOLUC 8/1/2022 21:57:46 MYOLUC 3/1/2022 21:58:14 MYOLUC 8/1/2022 21:58:57 MYOLUC 8/1/2022 21:59:13 MYOLUC 3/1/2022 21:59:43 MYOSOD 3/1/2022 22:18:55 MYOSOD 3/1/2022 22:19:20 MYOSOD 8/1/2022 22:23:16 MYOSOD 3/1/2022 21:49:59 MYOSEP 3/1/2022 21:50:14 MYOSEP 8/1/2022 21:50:30 MYOSEP 3/1/2022 21:50:45 MYOLUC 3/1/2022 21:51:00 MYOSEP 3/1/2022 21:51:15 MYOSEP 3/1/2022 21:51:46 MYOSEP 3/1/2022 21:52:02 MYOSEP 3/1/2022 21:52:18 MYOSEP MYOSEP 8/1/2022 21:52:49 MYOSEP 8/1/2022 21:59:28 MYOLUC 8/1/2022 22:00:24 MYOLUC 3/1/2022 22:01:08 MYOSEP 3/1/2022 22:02:12 MYOLUC 3/1/2022 22:19:10 MYOLUC 3/1/2022 22:21:08 MYOLUC 3/1/2022 22:00:08 MYOSEP 8/1/2022 22:00:39 MYOSEP 8/1/2022 22:00:52 MYOSEP 8/1/2022 22:01:39 MYOSEP 3/1/2022 22:01:56 MYOSEP 8/1/2022 22:02:42 MYOSEP 8/1/2022 22:02:57 MYOSEP 3/1/2022 22:03:12 MYOSEP 3/1/2022 21:51:31 EPTFUS 8/1/2022 22:01:24 EPTFUS 3/1/2022 22:10:10 MYOLEI 8/1/2022 22:02:28 EPTFUS 3/1/2022 21:52:33

NMT; NSP; VMF - probable LASBOR NMT; NSP 35.4 LASBOR **35.68 LASBOR** 34.938 LASBOR 36.166 LASBOR 35.628 LASBOR 35.48 LASBOR **34.403 LASBOR** 40.069 LASBOR **37.122 LASBOR** 38.031 LASBOR 36.745 LASBOR **35.486 LASBOR 34.726 LASBOR 35.13 LASBOR 38.736 LASBOR** 34.874 LASBOR 146.22 3.163 68.214 37.416 NOID 35.874 NOID 37.425 NOID 39.868 NOID 35.434 NOID 35.27 NOID 35.862 NOID 41.422 NOID 40.885 NOID 40.376 NOID 41.397 NOID 39.753 NOID 35.063 NOID 38.884 NOID 37.451 NOID 39.524 NOID 40.802 NOID 41.167 NOID 40.956 NOID 40.164 NOID 41.567 NOID 40.291 NOID 41.177 NOID 40.967 NOID 40.976 NOID 41.68 NOID 41.782 NOID 41.005 NOID 41.472 NOID 42.014 NOID 40.598 NOID Bat Detector 3, Night 2 67.823 62.404 69.32 63.57 75.805 74.87 66.985 67.134 70.985 68.243 65.517 70.302 64.677 67.032 69.549 68.27 72.351 69.796 61.496 70.336 63.701 69.612 65.515 66.418 67.377 63.841 71.765 60.281 70.134 67.467 64.197 68.292 67.999 61.354 66.203 69.805 68.141 62.521 73.601 65.772 71.337 66.132 68.686 64.725 72.222 71.446 2.834 2.559 3.506 3.234 3.403 3.249 3.58 2.882 2.886 3.04 2.833 3.041 3.276 3.257 2.918 2.867 2.945 3.368 3.445 3.242 3.493 3.471 3.329 3.292 3.148 3.287 3.198 2.855 3.17 3.263 2.841 2.99 2.897 3.002 3.49 3.05 3.031 3.02 3.348 3.087 3.087 3.21 135.4 3.376 3.045 3.011 3.006 181.6 196.38 231.16 130.59 151.69 139.02 189.58 175.92 112.53 143.93 165.64 158.56 174.4 150.66 160.76 150.26 170.63 213.95 134.54 134.46 211.89 203.59 125.39 184.91 252.18 212.23 220.5 177.7 86.11 139.74 122.64 173.18 104.69 122.33 167.6 123.09 136.32 153.19 176.62 142.13 182.37 121.86 150.19 159.82 142.21 36.81 36.375 36.459 37.999 38.025 37.184 37.171 41.803 42.56 41.712 38.871 37.896 38.696 36.232 38.262 37.374 36.191 42 40.424 41.09 42.506 41.628 41.562 42.403 42.422 42.294 41.818 41.158 38.851 38.817 40.672 36.476 43.212 37.567 41.407 41.643 40.078 37.441 36.401 37.655 36.055 42.033 41.476 39.768 44.185 43.186 42.525 17 28 17 37 27 66 7 15 20 32 22 30 20 29 5 7 16 33 7 10 11 22 8 20 7 18 7 18 12 23 5 13 12 30 5 14 4 15 4 13 7 24 3 22 54 12 20 14 22 11 26 12 35 11 24 16 48 19 39 14 38 9 15 14 19 9 21 8 36 17 22 5 13 10 25 8 17 12 24 4 19 10 22 5 14 9 21 6 18 2 m 2 2

NSP/PQR - faint in some areas and aliasing in others NSP; PQR - faint; too few pulses to measure NSP; PQR - faint; too few pulses to measure NMT; VMF circa 35-40 kHz; upturned tail NMT; NSP; VMF - probable LASBOR NMT; VMF circa 40 kHz; diagnostic NMT; VMF; NSP; Fc<35 to >40 VMF from 32-40+kHz VMF from 32-40+kHz NMT; NSP; VMF NMT; NSP NMT; NSP NMT; NSP NMT; NSP NMT; NSP NMT; NSP NMT: NSP NSP NSP NSP NSP NSP NSP

Terramor Catskills

15

15 17 17 18 18 4

17

15 22 15 23 23 25

SMU01631-TC3 20220801 222328 000.wav SMU01631-TC3 20220801 222347 000.wav SMU01631-TC3 20220801 222403 000.wav SMU01631-TC3\_20220801\_222908\_000.wav SMU01631-TC3\_20220801\_222942\_000.wav SMU01631-TC3 20220801 222958 000.wav SMU01631-TC3\_20220801\_223030\_000.wav SMU01631-TC3\_20220801\_223120\_000.wav SMU01631-TC3\_20220801\_223145\_000.wav SMU01631-TC3\_20220801\_223454\_000.wav SMU01631-TC3\_20220801\_223525\_000.wav SMU01631-TC3\_20220801\_223611\_000.wav SMU01631-TC3\_20220801\_223833\_000.wav SMU01631-TC3\_20220801\_224210\_000.wav SMU01631-TC3\_20220801\_224401\_000.wav SMU01631-TC3\_20220801\_225550\_000.wav SMU01631-TC3\_20220801\_232152\_000.wav SMU01631-TC3 20220801 232222 000.wav SMU01631-TC3\_20220801\_232238\_000.wav SMU01631-TC3\_20220801\_232253\_000.wav SMU01631-TC3\_20220801\_232308\_000.wav SMU01631-TC3\_20220801\_232431\_000.wav SMU01631-TC3\_20220801\_232645\_000.wav SMU01631-TC3\_20220801\_232701\_000.wav SMU01631-TC3\_20220801\_232717\_000.wav SMU01631-TC3\_20220801\_232732\_000.wav SMU01631-TC3\_20220801\_232918\_000.wav SMU01631-TC3\_20220801\_232950\_000.wav SMU01631-TC3\_20220801\_233302\_000.wav SMU01631-TC3\_20220801\_233338\_000.wav SMU01631-TC3\_20220801\_222925\_000.wav SMU01631-TC3\_20220801\_223015\_000.wav SMU01631-TC3 20220801 223105 000.wav SMU01631-TC3\_20220801\_223540\_000.wav 5MU01631-TC3\_20220801\_223643\_000.wav SMU01631-TC3\_20220801\_224759\_000.wav SMU01631-TC3\_20220801\_232135\_000.wav SMU01631-TC3\_20220801\_232332\_000.wav SMU01631-TC3\_20220801\_232347\_000.wav SMU01631-TC3\_20220801\_232408\_000.wav SMU01631-TC3\_20220801\_232416\_000.wav SMU01631-TC3\_20220801\_232933\_000.wav SMU01631-TC3\_20220801\_233006\_000.wav SMU01631-TC3\_20220801\_233323\_000.wav SMU01631-TC3\_20220801\_233403\_000.wav SMU01631-TC3\_20220802\_005627\_000.wav SMU01631-TC3\_20220802\_005642\_000.wav

8/1/2022 22:47:59 MYOLUC 8/1/2022 22:55:50 MYOLUC 23:21:35 MYOSOD 3/1/2022 23:21:52 MYOSOD 23:22:22 MYOSOD 3/1/2022 23:22:53 MYOSOD 8/1/2022 23:24:31 MYOSOD 8/1/2022 23:29:18 MYOSOD 23:33:02 MYOSOD 8/1/2022 22:23:28 MYOLUC 8/1/2022 22:23:47 MYOSOD 3/1/2022 22:24:03 MYOLUC 8/1/2022 22:29:08 MYOSEP 8/1/2022 22:34:54 MYOSEP 22:35:40 MYOSEP 8/1/2022 22:44:01 MYOSEP 8/1/2022 23:22:38 MYOLUC 3/1/2022 23:23:08 MYOLUC 3/1/2022 23:23:32 MYOLUC 3/1/2022 23:23:47 MYOLUC 3/1/2022 23:24:08 MYOLUC 3/1/2022 23:24:16 MYOLUC 3/1/2022 23:26:45 MYOLUC 3/1/2022 23:27:01 MYOLUC 3/1/2022 23:27:17 MYOLUC 3/1/2022 23:27:32 MYOLUC 3/1/2022 23:29:33 MYOLUC 3/1/2022 23:29:50 MYOLUC 23:30:06 MYOLUC 23:33:23 MYOLUC 3/1/2022 23:33:38 MYOLUC 3/1/2022 23:34:03 MYOLUC 0:56:27 MYOLUC 0:56:42 MYOSOD 22:29:25 MYOSEP 22:29:42 MYOSEP 22:30:15 MYOSEP 22:31:20 MYOSEP MYOSEP 22:36:11 EPTFUS 3/1/2022 22:42:10 EPTFUS EPTFUS 22:30:30 EPTFUS 22:31:05 EPTFUS 3/1/2022 22:31:45 EPTFUS 8/1/2022 22:35:25 EPTFUS 8/1/2022 22:38:33 EPTFUS 22:29:58 22:36:43 3/1/2022 3/1/2022 8/1/2022 3/1/2022 8/1/2022 3/1/2022 8/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 3/1/2022 8/1/2022 3/1/2022 8/2/2022 8/1/2022 8/2/2022

17

12 118 116 116 118 118 118

10 5 9 119 5 5

7 14 22 3 3 3 29 29 23 23

36.151 LASBOR 35.174 LASBOR 25.772 LASBOR 35.604 LASBOR 35.42 LASBOR 29.643 EPTFUS 35.387 LASBOR 40.862 LASBOR 40.658 LASBOR 40.559 LASBOR 41.046 LASBOR 40.38 LASBOR 35.534 LASBOF 34.904 LASBOF 35.61 LASBOF 34.474 NOID 41.38 NOID 41.057 NOID 34.672 NOID 35.261 NOID 35.183 NOID 35.191 NOID 35.084 NOID 39.334 NOID 40.076 NOID 41.552 NOID 35.425 NOID 42.066 NOID 39.175 NOID 41.285 NOID 41.123 NOID 41.184 NOID 41.226 NOID 40.603 NOID 40.018 NOID 43.89 NOID 41.103 NOID 41.364 NOID 41.051 NOID 42.371 NOID 42.018 NOID 41.828 NOID 40.864 NOID 41.416 NOID 40.962 NOID 40.917 NOID 41.299 NOID 66.713 53.573 64.476 68.179 48.196 65.849 65.468 133.44 3.395 70.164 69.662 68.352 63.63 65.81 67.813 68.287 59.085 61.512 66.743 72.103 61.06 Bat Detector 3, Night 2 62.739 73.696 68.013 62.905 67.116 40.064 77.377 57.985 73.264 64.108 65.063 63.759 68.588 71.277 36.368 71.417 63.404 65.692 69.769 60.175 71.185 66.908 62.737 71.596 74.146 67.803 62.452 62.877 3.544 2.959 3.079 2.915 3.004 8.431 4.964 2.997 3.435 3.301 3.677 3.659 3.229 3.324 3.616 3.183 3.062 2.989 3.377 2.898 2.967 2.879 3.404 3.008 2.933 3.302 2.965 3.141 3.162 3.435 2.667 3.488 3.307 3.469 3.825 3.266 3.211 2.432 2.862 3.3 3.482 3.391 3.481 3.137 2.884 3.22 107.69 149.8 206.72 145.4 161.29 124.19 186.75 139.16 109.76 83.29 100.76 109.59 160.54 150.06 40.7 -1.74 194.32 65.34 151.06 130.83 111.53 135.78 164.8 180.59 96.31 109.83 145.92 207.82 184.79 209.37 199 180.42 190.27 112.31 137.67 167.26 117.2 109.83 132.69 122.07 125.57 148.64 136.81 119.4 114.75 134.05 36.429 35.448 36.04 36.054 35.747 35.985 36.433 40.014 41.108 36 36.097 36.767 25.941 42.547 41.01 41.497 42.409 41.672 43.772 36.288 36.119 36.756 36.478 37.491 45.149 42.632 42.248 42.069 41.461 41.631 40.713 45.886 41.938 42.406 41.718 43.426 43.468 42.916 42.879 41.595 41.296 30.392 41.401 42.134 42.183 41.274 42.24 6 15 8 15 13 15 10 15 4 6 7 7 14 14 22 2 3 15 29 2 2 10 23 5 17 4 12 8 18 6 15 8 16 3 9 8 18 9 18 10 17 9 15 8 15 19 23 10 25 6 16 6 10 5 13 а Э 4 14 20 10 17 15 22 2 3 7 9 ω 8 19 S 5 22 7 16 11 18 5 13 7 17 4 12 б 14 ч S

NSP; PQR - faint; too few pulses to measure NMT; VMF circa 35-40 kHz; upturned tail NMT; VMF circa 35-40 kHz; upturned tail NMT; VMF circa 35-40 kHz; upturned tail NMT; NSP; VMF - probable LASBOR /MF from 32-40+kHz; upturned tail VMF from 32-40+kHz; upturned tail VMF from 32-40+kHz; upturned tail NMT; NSP; VMF - probable LASBOR /MF from 32-40+kHz; upturned tail VMF from 32-40+kHz; upturned tail NMT; NSP; VMF - probable LASBOR VMT; NSP; VMF - probable LASBOR NMT; NSP; VMF - probable LASBOR /MF; NMT; upward hook at tail VMF; NMT; upward hook at tail /MF; NMT; upward hook at tail /MF; NMT; upward hook at tail /MF; NMT; upward hook at tail CMT; NSP; Fc drops to low 30s; /MF from 32-40+kHz FM Call; Fc ca 30 kHz PQR - too faint to ID NMT; NSP **NMT; NSP** NMT; NSP NMT; NSP NMT; NSP NMT; NSP

Page 4

VMT; NSP; VMF - probable LASBOR

Terramor Catskills

8/2/2022 8/2/2022 8/2/2022 8/2/2022 3/2/2022 3/2/2022 8/2/2022 3/2/2022 8/2/2022 8/2/2022 8/2/2022 8/2/2022 3/2/2022 3/2/2022 8/2/2022 8/2/2022 8/2/2022 8/2/2022 8/2/2022 8/2/2022 3/2/2022 3/2/2022 8/2/2022 8/2/2022 8/2/2022 3/2/2022 SMU01631-TC3\_20220802\_005823\_000.wav SMU01631-TC3\_20220802\_005838\_000.wav SMU01631-TC3\_20220802\_005854\_000.wav SMU01631-TC3\_20220802\_010311\_000.wav SMU01631-TC3\_20220802\_010327\_000.wav SMU01631-TC3\_20220802\_010509\_000.wav SMU01631-TC3\_20220802\_021754\_000.wav SMU01631-TC3\_20220802\_021802\_000.wav SMU01631-TC3\_20220802\_024453\_000.wav SMU01631-TC3\_20220802\_041540\_000.wav SMU01631-TC3 20220802 043440 000.wav SMU01631-TC3 20220802 043505 000.wav SMU01631-TC3\_20220802\_045011\_000.wav SMU01631-TC3\_20220802\_050331\_000.wav SMU01631-TC3\_20220802\_050348\_000.wav SMU01631-TC3\_20220802\_050402\_000.wav SMU01631-TC3\_20220802\_050418\_000.wav SMU01631-TC3\_20220802\_050434\_000.wav SMU01631-TC3 20220802 050452 000.wav SMU01631-TC3 20220802 050509 000.wav SMU01631-TC3 20220802 050518 000.wav SMU01631-TC3\_20220802\_050657\_000.wav SMU01631-TC3\_20220802\_050713\_000.wav SMU01631-TC3\_20220802\_050731\_000.wav SMU01631-TC3\_20220802\_050747\_000.wav SMU01631-TC3\_20220802\_050840\_000.wav

0:58:23 MYOSOD 5:04:02 MYOSOD 0:58:38 MYOLUC 0:58:54 MYOLUC 1:03:11 MYOLUC 1:03:27 MYOLUC 1:05:09 MYOLUC 2:44:53 MYOLUC 4:15:40 MYOLUC 4:50:11 MYOLUC 5:03:31 MYOLUC 5:03:48 MYOLUC 5:04:18 MYOLUC 5:04:34 MYOLUC 5:05:09 MYOLUC 5:05:18 MYOLUC 5:06:57 MYOLUC 5:07:13 MYOLUC 5:07:31 MYOLUC 5:07:47 MYOSOD 5:08:40 MYOLUC 4:34:40 MYOSEP 4:35:05 MYOSEP 5:04:52 MYOLUC 2:17:54 EPTFUS 2:18:02 EPTFUS

40.707 LASBOR 41.752 LASBOR 41.336 LASBOR **29.618 EPTFUS 28.248 EPTFUS** 41.121 LASBOR 41.628 LASBOR 41.273 NOID 41.44 NOID 40.984 NOID **39.73 NOID** 39.085 NOID 35.321 NOID 38.624 NOID 39.229 NOID 42.674 NOID 42.32 NOID 42.585 NOID 40.904 NOID 43.567 NOID 43.202 NOID 44.018 NOID 43.634 NOID 43.657 NOID 43.913 NOID 43.824 NOID Bat Detector 3, Night 2 68.16 116.77 3.093 62.201 64.332 39.983 51.517 69.352 66.681 50.82 80:308 63.428 79.392 71.731 63.278 67.291 69.164 43.352 48.354 72.155 81.044 72.134 79.682 74.297 82.687 71.695 68.671 69.471 3.543 4.494 3.526 4.266 2.234 3.111 2.437 3.443 3.338 3.095 2.925 3.318 3.295 3.255 3.498 3.031 3.262 3.587 3.865 3.424 103.15 3.336 125.46 3.686 3.871 3.101 123.33 3.475 121.67 24.45 109.34 19.19 41.71 67.59 146.65 251.25 55.21 173.06 139.06 219.62 90.33 169.49 169.9 161.37 164.39 117.97 160.65 102.93 141.45 169.21 42.813 36.064 40.077 42.574 42.579 41.406 42.595 28.722 41.094 43.714 45.834 42.691 42.048 42.563 42.764 30.149 40.414 40.447 44.015 44.885 44.425 46.669 45.056 44.874 45.896 44.968 6 16 14 28 3 6 6 14 8 24 4 11 12 19 12 18 15 28 1 4 6 11 2 2 6 2 2 2 10 7 11 13 26 11 15 15 24 8 10 б 13 σ 00 00 4 ч 2 00 00 4 m S

PQR - too few pulses to measure; faint NMT; NSP; VMF - probable LASBOR VMF; NMT; upward hook at tail CMT; NSP; Fc drops to low 30s; VMF; NMT; upward hook at tail VMF; NSP; probable LASBOR FM Call; Fc ca 30 kHz FM Call; Fc ca 30 kHz PQR - faint PQR - faint PQR - faint PQR - faint

VMF; NSP; probable LASBOR

| FC            |
|---------------|
| Consulting, I |
| Environmental |
| Edgewood      |

| 8/1/2022 23:28:49 EPTFUS 2<br>8/2/2022 0:46:30 EPTFUS 17<br>8/2/2022 0:46:38 EPTFUS 13<br>8/2/2022 0:46:44 EPTFUS 13<br>8/2/2022 0:51:20 EPTFUS 11<br>8/2/2022 1:12:39 EPTFUS 5<br>8/2/2022 1:12:39 EPTFUS 8<br>8/2/2022 4:31:18 EPTFUS 8 | EPTFUS         2         2         30.546           EPTFUS         17         11         7         33.034           EPTFUS         17         11         17         33.034           EPTFUS         13         10         13         31.425           EPTFUS         15         6         15         32.731           EPTFUS         11         5         12         27.259           EPTFUS         5         3         5         26.948           EPTFUS         8         4         8         29.282 | 16.61<br>16.61<br>245.74<br>245.87<br>207.44<br>46.5<br>25.29 |         | 956<br>699<br>877<br>565<br>267 | 30.204 NOID<br>31.094 EPTFUS<br>30.088 EPTFUS<br>31.788 EPTFUS<br>31.788 EPTFUS<br>24.527 LASNOC<br>26.592 LASNOC | 그는 것은 것은 것은 물건 것을 얻을 것                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 0:46:30 EPTFUS 17<br>0:46:38 EPTFUS 13<br>0:46:44 EPTFUS 15<br>0:51:20 EPTFUS 11<br>1:12:39 EPTFUS 5<br>4:53:18 EPTFUS 8                                                                                                                  | 17         11         17         33.034           13         10         13         31.425           15         6         15         32.731           11         5         11         27.259           11         5         11         27.259           13         3         5         26.948           8         4         8         29.282                                                                                                                                                             | 245.74<br>245.87<br>207.44<br>46.5<br>25.29                   |         |                                 | 11.094 EPTFUS<br>10.888 EPTFUS<br>11.788 EPTFUS<br>44.527 LASNOC<br>16.592 LASNOC                                 | 이 이가 이가 없다. 사람 위험 20                                                           |
| 0:46:38 EPTFUS 13<br>0:46:44 EPTFUS 15<br>0:51:20 EPTFUS 11<br>1:12:39 EPTFUS 5<br>4:53:18 EPTFUS 8                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 245.87<br>207.44<br>46.5<br>25.29                             |         | 10.10.01.01                     | 0.888 EPTFUS<br>11.788 EPTFUS<br>14.527 LASNOC<br>16.592 LASNOC                                                   | 요즘 같아. 영화 영화 20                                                                |
| 0:46:44 EPTFUS 15<br>0:51:20 EPTFUS 11<br>1:12:39 EPTFUS 5<br>4:53:18 EPTFUS 8                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 207.44<br>46.5<br>25.29                                       |         | 53 54 GS                        | 1.788 EPTFUS<br>4.527 LASNOC<br>6.592 LASNOC                                                                      | 1400 NEW 1977 18                                                               |
| 0:51:20 EPTFUS 11<br>1:12:39 EPTFUS 5<br>4:53:18 EPTFUS 8                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               | ., .,   | 80.00                           | 14.527 LASNOC                                                                                                     | SE 28 10                                                                       |
| 1:12:39 EPTFUS 5<br>4:53:18 EPTFUS 8                                                                                                                                                                                                      | 5 3 5 26.948<br>8 4 8 29.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               | ,       |                                 | 16.592 LASNOC                                                                                                     | 1000                                                                           |
| 4:53:18 EPTFUS 8                                                                                                                                                                                                                          | 8 4 8 29.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                               |         |                                 |                                                                                                                   |                                                                                |
|                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73.30                                                         | 2.933   |                                 | 28.838 EPTFUS/LASNOC                                                                                              | FW to CF call; FC*26 KHz; Fmax < 50 KHz                                        |
| 8/1/2022 21:12:43 LASNOC 2                                                                                                                                                                                                                | 2 1 2 27.974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 47.04                                                         | 3.408   | 31.274                          | 27.126 NOID                                                                                                       | PQR - too few pulses to measure, but few pulses look like LASNOC               |
| 8/2/2022 0:01:06 LASNOC 2                                                                                                                                                                                                                 | 2 1 2 26.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.44 1                                                       | 12.118  |                                 | 26.249 LASNOC                                                                                                     | CF call; Fc~26 kHz; Fmax<50 kHz                                                |
| 8/2/2022 1:42:55 LASNOC 9                                                                                                                                                                                                                 | 9 9 27.789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.81                                                          | 7.236   | 32.83                           | 27.253 LASNOC                                                                                                     | CF call; Fc~26 kHz; Fmax<50 kHz                                                |
| 8/2/2022 4:53:13 LASNOC 3                                                                                                                                                                                                                 | 3 3 3 26.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15.43                                                         | 4.812 3 | 30.174                          | 26.613 LASNOC                                                                                                     | CF Call; Fc $\sim$ 26 kHz or below; Fmax<45; only a few pulses, but diagnostic |
| 8/2/2022 4:40:18 MYOSEP 14                                                                                                                                                                                                                | 14 11 14 38.637                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 314.74                                                        | 2.688 7 | 70.048                          | 33.394 NOID                                                                                                       | NSP; Fc in low 30s                                                             |
| 8/2/2022 4:49:46 MYOSEP 4                                                                                                                                                                                                                 | 4 4 52.049                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 327.17                                                        | 2.517 6 | 68.986                          | 37.87 NOID                                                                                                        | NMT; NSP                                                                       |
| 8/2/2022 4:52:32 MYOSEP 15                                                                                                                                                                                                                | 15 12 15 40.658                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 290.14                                                        | 2.494 6 | 69.421                          | 35.834 NOID                                                                                                       | NMT; NSP                                                                       |

Terramor Catskills Bat Detector 5, Night 1

CMT; Fc-40-41; Sc 128-141; PROBABLE FM call: Fc low 30s FM call; 26<Fc<32 FM call: Fc low 30s MANUALID Comments NMT; NSP CMT; NSP NMT; NSP CMT; NSP VMF; UT 39.66 MYOSOD 40.97 MYOSPP 33.79 MYOSPP 35.981 LASBOR **33.735 EPTFUS 38.623 EPTFUS 33.264 EPTFUS** 34.634 EPTFUS **34.022 EPTFUS 33.772 EPTFUS** 35.243 EPTFUS 32.076 EPTFUS **33.031 EPTFUS 33.147 EPTFUS** 34.333 EPTFUS **34.551 EPTFUS 33.324 EPTFUS 36.612 EPTFUS** 32.465 EPTFUS 33.999 EPTFUS 35.104 EPTFUS **33.208 EPTFUS 33.847 EPTFUS 34.352 EPTFUS** 37.292 EPTFUS 35.112 EPTFUS **33.218 EPTFUS 33.654 EPTFUS** 37.241 EPTFUS **33.22 EPTFUS** 34.741 EPTFUS 32.594 EPTFUS 35.672 EPTFUS **36.215 EPTFUS 33.176 EPTFUS 33.572 EPTFUS 32.84 EPTFUS** 34.071 EPTFUS 33.166 EPTFUS **33.655 EPTFUS** 34.151 EPTFUS 32.925 EPTFUS 33.639 EPTFUS 32.168 EPTFUS 70.577 45.088 NOID 35.251 NOID Fmin 68.47 68.616 73.716 65.116 63.944 65.853 66.312 70.171 67.056 63.08 66.845 71.782 68.661 68.687 68.683 66.874 68.139 68.354 64.621 69.688 67.413 59.514 67.57 67.736 69.484 67.546 70.913 64.76 65.422 67.359 67.667 64.834 68.853 72.441 73.121 69.427 66.125 68.039 68.558 65.934 65.752 67.086 67.799 68.847 67.371 Fmax 3.56 3.399 2.95 3.245 3.515 3.386 3.598 3.415 3.25 3.151 3.348 2.973 3.517 2.871 3.426 3.137 3.423 3.097 3.577 3.489 2.549 3.513 3.544 3.668 3.136 3.278 3.359 3.26 3.558 259.08 2.792 2.77 3.028 3.059 3.346 3.1 166.68 3.296 3.38 3.3 3.297 3.382 3.696 208.18 2.852 3.496 3.961 3.292 3.393 Dur 92.86 178.42 169.9 155.5 173.06 145.35 162.66 122.15 150.69 148.2 139.77 175.34 139 150.52 162.77 145.31 140.72 191.8 168.69 165.09 93.75 136.75 241.09 191.54 186.97 149.94 148.19 187.64 149.57 158.08 138.2 150.34 162.29 167.88 146.63 156.84 133.18 145.97 127.99 171.04 140.71 138.73 138.34 Sc 33.676 35.037 44.732 35.119 43.051 36.101 36.585 36.53 34.812 45.522 36.893 37.617 36.105 34.67 34.67 38.793 35.119 35.849 33.741 34.62 36.482 35.428 33.675 37.709 34.515 34.549 35.017 37.079 35.757 33.554 37.051 39.914 33.826 34.317 34.146 35.054 41.805 41.677 33.727 42.003 34.298 34.967 34.162 34.247 35.383 33.734 R 32 19 16 28 44 25 25 25 25 30 42 13 21 39 30 6 27 31 23 13 24 24 14 20 26 27 29 21 14 53 33 18 17 AUTO ID\* PULSES MATCH N 18 0 00 4 38 33 15 7 22 11 11 σ 5 16 22 57 15 8 23 23 18 σ 119 19 14 б 18 16 12 24 51 19 10 18 24 33 2 5 H 
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 13 12 12 13 7/31/2022 21:04:28 MYOSOD 7/31/2022 20:24:48 MYOLUC 7/31/2022 20:47:30 MYOSEP 7/31/2022 20:50:54 MYOSEP 7/31/2022 21:05:00 MYOLUC 7/31/2022 20:57:47 EPTFUS 7/31/2022 20:59:25 EPTFUS 7/31/2022 21:00:50 EPTFUS 7/31/2022 21:01:19 EPTFUS 7/31/2022 21:03:03 EPTFUS 7/31/2022 21:03:31 EPTFUS 7/31/2022 21:04:44 EPTFUS 7/31/2022 21:05:08 EPTFUS 7/31/2022 21:08:44 EPTFUS 7/31/2022 21:06:12 EPTFUS 7/31/2022 21:09:27 EPTFUS 7/31/2022 21:10:03 EPTFUS 7/31/2022 21:11:32 EPTFUS 7/31/2022 21:12:49 EPTFUS 7/31/2022 21:13:05 EPTFUS 7/31/2022 21:14:26 EPTFUS 7/31/2022 21:15:18 EPTFUS 7/31/2022 21:16:05 EPTFUS 7/31/2022 21:16:55 EPTFUS 7/31/2022 21:17:44 EPTFUS 7/31/2022 21:18:26 EPTFUS 7/31/2022 21:21:07 EPTFUS 7/31/2022 21:22:10 EPTFUS EPTFUS 7/31/2022 21:24:19 EPTFUS 7/31/2022 21:26:44 EPTFUS 7/31/2022 21:27:30 EPTFUS 7/31/2022 21:27:38 EPTFUS 7/31/2022 21:30:39 EPTFUS 7/31/2022 21:32:42 EPTFUS 7/31/2022 21:35:41 EPTFUS EPTFUS 7/31/2022 21:24:39 EPTFUS 7/31/2022 21:29:16 EPTFUS 7/31/2022 21:29:51 EPTFUS 7/31/2022 21:33:30 EPTFUS 7/31/2022 21:34:17 EPTFUS '/31/2022 21:34:58 EPTFUS 7/31/2022 21:36:35 EPTFUS 7/31/2022 21:40:34 EPTFUS 7/31/2022 21:42:10 EPTFUS 7/31/2022 21:23:33 7/31/2022 21:40:07 TIME DATE SMU01649-TC5\_20220731\_202448\_000.wav SMU01649-TC5\_20220731\_204730\_000.wav SMU01649-TC5 20220731 205054 000.wav SMU01649-TC5\_20220731\_205747\_000.wav SMU01649-TC5\_20220731\_205925\_000.wav SMU01649-TC5\_20220731\_210050\_000.wav SMU01649-TC5 20220731 210119 000.wav SMU01649-TC5 20220731 210303 000.wav SMU01649-TC5\_20220731\_210331\_000.wav SMU01649-TC5\_20220731\_210428\_000.wav SMU01649-TC5 20220731 210444 000.wav SMU01649-TC5 20220731 210500 000.wav SMU01649-TC5 20220731 210508 000.wav SMU01649-TC5\_20220731\_210612\_000.wav SMU01649-TC5\_20220731\_210844\_000.wav SMU01649-TC5 20220731 210927 000.wav SMU01649-TC5\_20220731\_211003\_000.wav SMU01649-TC5\_20220731\_211132\_000.wav SMU01649-TC5\_20220731\_211249\_000.wav SMU01649-TC5\_20220731\_211305\_000.wav SMU01649-TC5 20220731 211518 000.wav SMU01649-TC5\_20220731\_211605\_000.wav SMU01649-TC5\_20220731\_211655\_000.wav SMU01649-TC5\_20220731\_211744\_000.wav SMU01649-TC5\_20220731\_211826\_000.wav SMU01649-TC5\_20220731\_212107\_000.wav SMU01649-TC5\_20220731\_212210\_000.wav SMU01649-TC5\_20220731\_212333\_000.wav SMU01649-TC5\_20220731\_212419\_000.wav SMU01649-TC5\_20220731\_212644\_000.wav SMU01649-TC5\_20220731\_212730\_000.wav SMU01649-TC5\_20220731\_212738\_000.wav SMU01649-TC5\_20220731\_212916\_000.wav SMU01649-TC5\_20220731\_212951\_000.wav SMU01649-TC5\_20220731\_213039\_000.wav SMU01649-TC5\_20220731\_213242\_000.wav SMU01649-TC5\_20220731\_213330\_000.wav SMU01649-TC5\_20220731\_213417\_000.wav SMU01649-TC5 20220731 211426 000.wav SMU01649-TC5\_20220731\_212439\_000.wav SMU01649-TC5 20220731 213458 000.wav SMU01649-TC5\_20220731\_213541\_000.wav SMU01649-TC5\_20220731\_213635\_000.wav SMU01649-TC5\_20220731\_214007\_000.wav SMU01649-TC5\_20220731\_214034\_000.wav SMU01649-TC5\_20220731\_214210\_000.wav OUT FILE FS

Appendix H Manual Bat Call Vetting

Terramor Catskills

22:24:21 MYOSOD 22:24:35 MYOSOD 22:28:01 MYOSOD **MYOSEP** 22:31:39 EPTFUS 22:51:35 EPTFUS 7/31/2022 21:50:09 EPTFUS 21:52:36 EPTFUS 21:56:18 EPTFUS 21:57:04 EPTFUS 22:02:52 EPTFUS 22:07:40 EPTFUS EPTFUS 22:09:46 EPTFUS 22:10:08 EPTFUS 22:10:37 EPTFUS 22:12:06 EPTFUS 22:12:25 EPTFUS 22:13:32 EPTFUS 22:15:32 EPTFUS 22:20:03 EPTFUS 22:20:31 EPTFUS 22:22:00 EPTFUS 22:22:05 EPTFUS 22:24:53 EPTFUS 22:25:43 EPTFUS 22:34:09 EPTFUS 22:35:09 EPTFUS 22:35:55 EPTFUS 22:36:38 EPTFUS 22:37:07 EPTFUS 22:38:17 EPTFUS 22:40:35 EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS EPTFUS 22:48:53 EPTFUS 22:49:35 EPTFUS 22:50:13 EPTFUS 22:51:07 EPTFUS 22:53:11 EPTFUS 7/31/2022 21:49:01 EPTFUS 22:16:18 EPTFUS EPTFUS 22:27:56 NoID 22:08:35 22:41:53 22:43:55 22:44:44 22:45:30 22:46:23 22:51:17 22:43:07 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 SMU01649-TC5 20220731 214901 000.wav SMU01649-TC5\_20220731\_215009\_000.wav SMU01649-TC5\_20220731\_220946\_000.wav SMU01649-TC5\_20220731\_221206\_000.wav SMU01649-TC5\_20220731\_222200\_000.wav SMU01649-TC5\_20220731\_222205\_000.wav SMU01649-TC5\_20220731\_222421\_000.wav SMU01649-TC5\_20220731\_222435\_000.wav SMU01649-TC5\_20220731\_222543\_000.wav SMU01649-TC5\_20220731\_222756\_000.wav SMU01649-TC5\_20220731\_223139\_000.wav SMU01649-TC5\_20220731\_223509\_000.wav SMU01649-TC5\_20220731\_223555\_000.wav SMU01649-TC5\_20220731\_223638\_000.wav SMU01649-TC5 20220731 223707 000.wav SMU01649-TC5\_20220731\_223817\_000.wav SMU01649-TC5\_20220731\_224035\_000.wav SMU01649-TC5\_20220731\_224153\_000.wav SMU01649-TC5\_20220731\_224307\_000.wav SMU01649-TC5 20220731 224355 000.wav SMU01649-TC5\_20220731\_224530\_000.wav SMU01649-TC5\_20220731\_224853\_000.wav SMU01649-TC5\_20220731\_215236\_000.wav SMU01649-TC5\_20220731\_215618\_000.wav SMU01649-TC5\_20220731\_215704\_000.wav SMU01649-TC5 20220731 220252 000.wav SMU01649-TC5 20220731 220740 000.wav SMU01649-TC5\_20220731\_220835\_000.wav SMU01649-TC5\_20220731\_221008\_000.wav SMU01649-TC5\_20220731\_221037\_000.wav SMU01649-TC5\_20220731\_221225\_000.wav SMU01649-TC5\_20220731\_221332\_000.wav SMU01649-TC5\_20220731\_221532\_000.wav SMU01649-TC5\_20220731\_221618\_000.wav SMU01649-TC5 20220731 222003 000.wav SMU01649-TC5\_20220731\_222031\_000.wav SMU01649-TC5\_20220731\_222453\_000.wav SMU01649-TC5\_20220731\_222801\_000.wav SMU01649-TC5\_20220731\_223409\_000.wav SMU01649-TC5\_20220731\_224444\_000.wav SMU01649-TC5\_20220731\_224623\_000.wav SMU01649-TC5\_20220731\_224935\_000.wav SMU01649-TC5\_20220731\_225013\_000.wav SMU01649-TC5\_20220731\_225107\_000.wav SMU01649-TC5\_20220731\_225135\_000.wav SMU01649-TC5\_20220731\_225311\_000.wav SMU01649-TC5\_20220731\_225117\_000.wav

36.318 | 31.743 32.903 33.039 31.939 56.673 72.808 66.505 62.362 69.449 66.641 59.297 66.846 65.981 60.684 68.932 70.489 63.556 68.777 65.41 65.163 63.416 69.388 68.584 63.266 65.21 67.305 77.044 70.537 68.313 62.524 68.455 61.334 69.371 64.799 Bat Detector 5, Night 1 3.534 3.333 3.054 2.309 3.433 3.811 3.22 3.417 3.105 2.863 3.87 3.228 82.75 4.776 4.219 3.541 3.701 3.697 3.277 3.047 3.275 3.287 3.097 3.571 2.922 3.368 3.496 3.65 3.31 3.31 3.31 147.3 174.83 131.2 154.02 151.12 155.71 117.66 140.26 141.8 104.44 129.23 137.31 180.51 149.21 161.01 149.98 151.64 127.08 153.02 148.67 136.68 196.71 137.55 147.44 138.78 143.74 131.37 142.47 129.69 33.649 34.733 34.03 37.411 38.49 33.213 41.805 34.109 35.566 33.34 34.243 32.134 35.405 34.143 33.86 34.652 34.374 34.4 33.605 43.286 48.207 37.757 37.94 33.722 37.871 36.497 35.412 33.991 33.994 40.983 00 16 11 14 18 24 46 20 22 18 24 53 14 22 12 28 16 14 24 56 30 26 29 39 17 28 14 57 22 

CMT; Fc-40-41; Sc-152-161; PROBABLE CMT; Fc-41-42; Sc-128-153; PROBABLE NMT; VMF; Fc-low 30s FM call: Fc low 30s NSP; PQR - faint 39.888 MYOSOD 40.576 MYOSOD EPTFUS EPTFUS EPTFUS EPTFUS 31.52 EPTFUS **33.192 EPTFUS** EPTFUS EPTFUS **33.885 EPTFUS** EPTFUS **33.817 EPTFUS** 35.299 EPTFUS **33.925 EPTFUS 33.376 EPTFUS** EPTFUS **33.955 EPTFUS 33.525 EPTFUS 33.519 EPTFUS** 36.624 EPTFUS 32.532 EPTFUS **37.695 EPTFUS** 32.566 EPTFUS **33.536 EPTFUS 33.673 EPTFUS** 44.079 LASBOR 32.894 EPTFUS **33.185 EPTFUS 34.75 EPTFUS 36.55 EPTFUS 34.399 EPTFUS 33.879 EPTFUS** 36.567 EPTFUS **34.533 EPTFUS 33.461 EPTFUS 33.668 EPTFUS 33.16 EPTFUS** 34.698 EPTFUS 35.01 EPTFUS **33.759 EPTFUS 33.71 EPTFUS** 34.133 EPTFUS 33.919 EPTFUS 36.192 EPTFUS 36.233 EPTFUS 42.35 NOID

33.497 |

70.839

64.471 66.259 67.08

3.286 3.898 3.317 3.259 3.224 3.523

122.67

62.342

2.978

149.13 123.25 128.55 137.9 161.98

36.092 34.494

33 10 13 53 22 26 20 53 42 18 13

33.467

69.359 70.449

197.07

34.353

34

35.188

65.319

3.204 3.113 3.532

141.14 141.52

34.599 34.768 34.236 34.255 35.027 36.253 36.959

183.05

66.575 67.363 66.44

68.178 62.224 59.083 66.207

68.44

3.36

153.25

37.196 37.92

36.683

34.335

33.307

3.359

155.71

3.001

154.9 150.92

34.829

32 53 53 5 69.083

3.298

134.32

39.644

26

3.7 3.31

142.57

5112

4.386

71.3

Appendix H Manual Bat Call Vetting Page 2

Terramor Catskills

SMU01649-TC5\_20220731\_225354\_000.wav SMU01649-TC5\_20220731\_231232\_000.wav SMU01649-TC5\_20220731\_233037\_000.wav SMU01649-TC5\_20220731\_233912\_000.wav SMU01649-TC5\_20220731\_234000\_000.wav SMU01649-TC5\_20220731\_234217\_000.wav SMU01649-TC5\_20220801\_011957\_000.wav SMU01649-TC5\_20220731\_225449\_000.wav SMU01649-TC5\_20220731\_225528\_000.wav SMU01649-TC5\_20220731\_225639\_000.wav SMU01649-TC5\_20220731\_225941\_000.wav SMU01649-TC5\_20220731\_230030\_000.wav SMU01649-TC5 20220731 231401 000.wav SMU01649-TC5 20220731 231523 000.wav SMU01649-TC5\_20220731\_231635\_000.wav SMU01649-TC5\_20220731\_231730\_000.wav SMU01649-TC5\_20220731\_232642\_000.wav SMU01649-TC5\_20220731\_232906\_000.wav SMU01649-TC5\_20220731\_232956\_000.wav SMU01649-TC5\_20220731\_234107\_000.wav SMU01649-TC5\_20220731\_234121\_000.wav SMU01649-TC5\_20220731\_234257\_000.wav SMU01649-TC5\_20220731\_234831\_000.wav SMU01649-TC5\_20220801\_010054\_000.wav SMU01649-TC5\_20220801\_011711\_000.wav SMU01649-TC5\_20220801\_012018\_000.wav SMU01649-TC5\_20220801\_024817\_000.wav SMU01649-TC5\_20220801\_013300\_000.wav SMU01649-TC5\_20220801\_031838\_000.wav SMU01649-TC5\_20220801\_034917\_000.wav SMU01649-TC5\_20220801\_035437\_000.wav SMU01649-TC5\_20220801\_035451\_000.wav SMU01649-TC5 20220801 045240 000.wav SMU01649-TC5 20220801 045321 000.wav SMU01649-TC5\_20220801\_050216\_000.wav SMU01649-TC5\_20220801\_051510\_000.wav SMU01649-TC5\_20220801\_045448\_000.wav

1:19:57 MYOSOD 1:33:00 MYOSOD 3:54:51 MYOSOD 4:53:21 MYOSOD 1:17:11 MYOLUC 3:49:17 MYOLUC 4:54:48 MYOLUC 5:02:16 MYOLUC 5:15:10 MYOLUC 4:52:40 LASNOC 22:53:54 EPTFUS 7/31/2022 22:54:49 EPTFUS 7/31/2022 22:55:28 EPTFUS 22:56:39 EPTFUS EPTFUS 23:12:32 EPTFUS 7/31/2022 23:14:01 EPTFUS 23:15:23 EPTFUS 23:16:35 EPTFUS 23:26:42 EPTFUS 23:29:06 EPTFUS 23:29:56 EPTFUS 23:30:37 EPTFUS 23:39:12 EPTFUS 7/31/2022 23:40:00 EPTFUS 7/31/2022 23:41:07 EPTFUS //31/2022 23:41:21 EPTFUS 23:42:17 EPTFUS 7/31/2022 23:48:31 EPTFUS 1:00:54 EPTFUS 2:48:17 EPTFUS 3:18:38 EPTFUS 23:00:30 EPTFUS 23:17:30 EPTFUS 23:42:57 EPTFUS 1:20:18 NoID 3:54:37 NoID 22:59:41 8/1/2022 8/1/2022 8/1/2022 7/31/2022 /31/2022 7/31/2022 7/31/2022 /31/2022 /31/2022 /31/2022 /31/2022 7/31/2022 8/1/2022 8/1/2022 8/1/2022 7/31/2022 7/31/2022 7/31/2022 7/31/2022 /31/2022 /31/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022

PQR - faint NMT; NSP NMT; NSP CMT; NSP CMT; NSP NMT; NSP 41.748 MYOSOD 41.81 MYOSPP 41.597 MYOLUC 42.631 MYOSPP 42.214 MYOSPP 35.268 EPTFUS **33.829 EPTFUS** 35.813 EPTFUS **34.746 EPTFUS 33.419 EPTFUS** 35.778 EPTFUS **34.243 EPTFUS** 34.537 EPTFUS **33.514 EPTFUS 33.454 EPTFUS 33.356 EPTFUS 33.513 EPTFUS** 34.708 EPTFUS **33.046 EPTFUS 33.604 EPTFUS** 32.681 EPTFUS **33.069 EPTFUS** 32.796 EPTFUS **33.405 EPTFUS 33.036 EPTFUS** 32.403 EPTFUS 34.365 EPTFUS 43.252 LASBOR 32.916 NOID 39.544 NOID 26.103 NOID 29.118 NOID 42.589 NOID 26.365 NOID 43.702 NOID 45.826 NOID 42.787 NOID 59.94 62.74 65.338 67.005 49.235 45.383 33.988 68.68 60.25 69.893 71.924 61.92 61.881 59.756 65.543 62.867 68.861 63.383 62.324 35.444 58.603 77.137 62.625 64.137 67.265 65.199 61.743 69.883 62.551 60.043 68.805 29.329 86.88 63.311 61.156 58.495 70.177 Bat Detector 5, Night 1 2.902 3.279 3.682 3.086 3.433 3.338 3.586 3.134 3.059 3.418 3.415 5.824 3.285 3.458 3.16 3.262 3.284 3.29 3.502 3.208 2.511 5.243 2.671 3.293 3.03 3.431 3.063 3.203 3.108 2.91 2.42 2.409 2.611 3.555 3.873 2.975 3.83 121.39 136.38 140.22 165.21 148 189.8 115.38 94.03 54.66 136.72 158.53 149.2 138.64 145.79 125.74 121.42 119.94 143.76 149.95 132.82 155.59 127.83 122.44 40.2 134.48 26.48 116.78 -16.78 126.8 125.99 162.47 150.75 144.37 114.07 131.07 84.7 109.22 34.245 35.206 33.907 33.699 33.908 36.059 34.331 37.149 37.316 34.418 37.201 35.751 35.473 34.281 34.208 33.999 34.342 33.493 34.306 33.639 35.095 34.192 44.883 43.548 39.941 29.63 42.9 44.59 46.798 45.98 36.283 43.826 26.104 44.094 43.802 26.941 43.042 30 31 16 14 24 ∞ % m 30 2 10 m 22 30 24 27 23 17 33 33 5 N 12 13 5 27 N 35 11 101 m 23 25 22 22 13 22 23 23 29 29 31 31 7 24 9 0 9 ----14 0 S 00

NMT; VMF; Fc->40, in and out of search phase CMT; Fc-41-43; Sc-132-192; PROBABLE PQR - not enough pulses to measure PQR - not enough pulses to measure PQR - too few pulses to ID PQR - too few pulses to ID PQR - too few pulses to ID CMT; Fc 41-42; Sc 99-108 CMT; NSP; PQR - faint FM call: Fc low 30s FM call: Fc low 30s

Appendix H Manual Bat Call Vetting

Terramor Catskills Bat Detector 5, Night 2

multiple bat interference; Probable EPTFUS - FM Call in low 30s CMT; Fc-40-43; Sc-161-209; Fmin-37-41: PROBABLE NSP; FM Call; Fc - low 30s; Probable EPTFUS CMT; PQR - faint and too few pulses to ID CMT; PQR - faint and too few pulses to ID NSP; PQR - faint and too few pulses to ID NSP; PQR - faint and too few pulses to ID NSP; PQR - faint and too few pulses to ID FM Call; Fc-low 30s; NMT -M Call; Fc-low 30s; NMT FM Call; Fc-low 30s; NMT PQR - faint; NSP PQR - faint; NSP NSP; PQR - faint PQR - faint; NSP CMT; NSP Comment MANUAL ID 40.128 MYOSPP **39.38 MYOSPP** 40.471 MYOSPP 41.134 MYOSOI **33.881 EPTFUS** 38.968 EPTFUS **32.924 EPTFUS** 36.053 EPTFUS 36.432 EPTFUS **34.455 EPTFUS** 32.789 EPTFUS 33.05 EPTFUS **33.836 EPTFUS 33.683 EPTFUS** 35.756 EPTFUS **33.706 EPTFUS 33.042 EPTFUS 33.764 EPTFUS 34.58 EPTFUS 33.593 EPTFUS 33.805 EPTFUS 34.41 EPTFUS** 35.849 EPTFUS **39.736 EPTFUS** 32.628 EPTFUS 33.007 EPTFUS 34.373 EPTFUS 34.684 EPTFUS 35.904 EPTFUS **34.942 EPTFUS 33.101 EPTFUS** 35.287 EPTFUS **33.363 EPTFUS** 36.448 EPTFUS 35.916 EPTFUS 34.287 EPTFUS 33.779 EPTFUS DION 33.445 NOID 41.04 NOID 40.032 NOID 32.066 NOID **39.809 NOID** 35.714 NOID 35.786 NOID 41.49 NOID Fmin 59.954 60.836 69.504 72.744 68.354 66.695 66.094 66.456 64.775 68.244 66.498 76.14 60.619 71.132 70.419 62.19 53.531 60.9 48.036 54.625 59.585 69.659 67.765 62.941 65.817 66.128 70.888 66.94 67.018 68.37 68.853 44.848 66.9 63.497 66.245 63.033 68.499 65.612 64.468 66.303 58.155 69.872 66.835 69.062 67.837 Fmax 2.349 2.619 2.295 3.215 3.428 3.145 2.998 3.305 3.064 3.514 3.015 2.079 3.282 3.612 2.251 2.98 2.871 2.685 4.178 3.102 2.766 3.091 3.578 3.031 3.209 3.211 4.286 3.083 3.225 2.357 3.105 3.255 3.341 2.853 0 2 42.472 179.34 2.026 3.32 3.08 3.195 3.33 3.162 3.103 3.281 3.107 3.32 3.531 Dur 148.15 174.36 148.05 151.31 167.87 176.69 177.53 150.4 141.35 146.11 157.87 169.15 166.08 117.63 127.89 188.35 171.62 200.77 153.07 139.25 174.32 169.32 177.68 168 166.21 198.84 178.95 163.67 157.51 152.71 126.76 142.87 148.29 131.2 174.24 176.24 175.89 128.06 163.79 124.35 155.41 166.97 178.11 112.91 Sc 5 12 41.447 4 28 42.4 34.018 33.76 34.79 36.834 34.6 6 7 32.211 40.277 42.044 42.368 39.55 37.359 34.99 37.161 37.276 37.174 37.126 33.445 33.699 42.26 36.258 33.777 38.36 35.474 34.243 34 45 36.672 40.713 41.661 37.037 34.403 33.887 44.991 33.503 38.219 39.248 35.685 35.831 36.854 36.731 36.412 33.808 37.717 39.675 AUTO ID\* PULSES MATCH N Fc 4 7 3 3 5 18 14 22 26 34 18 26 20 24 13 47 28 46 32 65 10 13 14 18 19 24 11 16 2 2 6 12 26 29 17 18 22 25 20 25 18 24 4 10 13 23 28 30 23 28 26 31 20 27 21 24 19 27 20 27 20 26 13 21 20 25 35 43 5 24 24 29 24 31 26 31 27 23 12 28 45 7 3 3 3 3 4 7 4 7 4 7 4 7 4 7 2 6 5 65 2 65 26 
 13

 15

 16

 17

 18

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 11

 12

 12

 13

 14

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 15

 8/1/2022 20:39:46 MYOSOD 20:41:11 MYOLUC 20:44:27 MYOSOD 20:51:39 MYOSOD 21:03:54 MYOSOD 21:20:36 MYOSOD 20:44:52 MYOSEP 21:02:26 EPTFUS 20:43:43 EPTFUS 20:43:59 EPTFUS 20:58:10 EPTFUS 21:00:13 EPTFUS 21:03:23 EPTFUS 21:04:37 EPTFUS 21:04:53 EPTFUS 21:05:39 EPTFUS 21:06:29 EPTFUS 21:06:45 EPTFUS 21:08:30 EPTFUS 21:08:53 EPTFUS 21:09:10 EPTFUS 21:09:25 EPTFUS 21:10:03 EPTFUS 21:10:48 EPTFUS 21:11:03 EPTFUS 21:12:38 EPTFUS 21:13:26 EPTFUS 21:14:08 EPTFUS 21:15:02 EPTFUS 21:15:32 EPTFUS 21:16:20 EPTFUS 21:16:29 EPTFUS 21:17:16 EPTFUS 21:18:58 EPTFUS 21:19:43 EPTFUS 21:20:57 EPTFUS 21:22:14 EPTFUS 21:22:41 EPTFUS 21:25:38 EPTFUS 21:26:48 EPTFUS 21:27:42 EPTFUS 21:28:28 EPTFUS 21:30:04 EPTFUS 21:31:28 EPTFUS 8/1/2022 21:34:26 EPTFUS 8/1/2022 20:39:29 NoID TIME 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 DATE SMU01649-TC5 20220801 210226 000.wav SMU01649-TC5\_20220801\_210323\_000.wav SMU01649-TC5\_20220801\_210629\_000.wav SMU01649-TC5\_20220801\_210645\_000.wav SMU01649-TC5\_20220801\_210830\_000.wav SMU01649-TC5\_20220801\_210910\_000.wav SMU01649-TC5\_20220801\_210925\_000.wav SMU01649-TC5\_20220801\_211003\_000.wav SMU01649-TC5 20220801 211326 000.wav SMU01649-TC5\_20220801\_211408\_000.wav SMU01649-TC5\_20220801\_211502\_000.wav SMU01649-TC5\_20220801\_211620\_000.wav SMU01649-TC5\_20220801\_211629\_000.wav SMU01649-TC5\_20220801\_212036\_000.wav SMU01649-TC5\_20220801\_212057\_000.wav SMU01649-TC5\_20220801\_212214\_000.wav SMU01649-TC5\_20220801\_212241\_000.wav SMU01649-TC5\_20220801\_212648\_000.wav SMU01649-TC5 20220801 212742 000.wav SMU01649-TC5\_20220801\_213426\_000.wav SMU01649-TC5 20220801 203929 000.wav SMU01649-TC5 20220801 203946 000.wav SMU01649-TC5\_20220801\_204111\_000.wav SMU01649-TC5\_20220801\_204343\_000.wav SMU01649-TC5\_20220801\_204359\_000.wav SMU01649-TC5 20220801 204427 000.wav SMU01649-TC5\_20220801\_204452\_000.wav SMU01649-TC5\_20220801\_205139\_000.wav SMU01649-TC5\_20220801\_205810\_000.wav SMU01649-TC5\_20220801\_210013\_000.wav SMU01649-TC5\_20220801\_210354\_000.wav SMU01649-TC5\_20220801\_210437\_000.wav SMU01649-TC5\_20220801\_210453\_000.wav SMU01649-TC5 20220801 210539 000.wav SMU01649-TC5\_20220801\_210853\_000.wav SMU01649-TC5\_20220801\_211048\_000.wav SMU01649-TC5\_20220801\_211103\_000.wav SMU01649-TC5\_20220801\_211238\_000.wav SMU01649-TC5\_20220801\_211532\_000.wav SMU01649-TC5\_20220801\_211716\_000.wav SMU01649-TC5 20220801 211858 000.wav SMU01649-TC5 20220801 211943 000.wav SMU01649-TC5\_20220801\_212538\_000.wav SMU01649-TC5\_20220801\_212828\_000.wav SMU01649-TC5\_20220801\_213004\_000.wav SMU01649-TC5\_20220801\_213128\_000.wav OUT FILE FS

Appendix H Manual Call Vetting

8/1/2022 3 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 3/1/2022 8/1/2022 3/1/2022 8/1/2022 3/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 3/1/2022 3/1/2022 8/1/2022 8/1/2022 8/1/2022 3/1/2022 8/1/2022 8/2/2022 8/2/2022 (/2/2022 8/2/2022 8/2/2022 8/2/2022 SMU01649-TC5\_20220801\_213507\_000.wav SMU01649-TC5\_20220801\_213547\_000.wav SMU01649-TC5 20220801 214443 000.wav SMU01649-TC5 20220801 214508 000.wav SMU01649-TC5\_20220801\_214714\_000.wav SMU01649-TC5\_20220801\_214758\_000.wav SMU01649-TC5 20220801 214852 000.wav SMU01649-TC5\_20220801\_214857\_000.wav SMU01649-TC5\_20220801\_214903\_000.wav SMU01649-TC5 20220801 215232 000.wav SMU01649-TC5 20220801 215303 000.wav SMU01649-TC5\_20220801\_215328\_000.wav SMU01649-TC5\_20220801\_215419\_000.wav SMU01649-TC5\_20220801\_215510\_000.wav 5MU01649-TC5\_20220801\_215530\_000.wav SMU01649-TC5\_20220801\_224758\_000.wav SMU01649-TC5\_20220801\_213641\_000.wav SMU01649-TC5\_20220801\_215023\_000.wav SMU01649-TC5\_20220801\_215027\_000.wav SMU01649-TC5 20220801 215112 000.wav SMU01649-TC5\_20220801\_221148\_000.wav SMU01649-TC5\_20220801\_221729\_000.wav SMU01649-TC5\_20220801\_223307\_000.wav SMU01649-TC5\_20220801\_223526\_000.wav SMU01649-TC5\_20220801\_224215\_000.wav SMU01649-TC5\_20220801\_224258\_000.wav SMU01649-TC5\_20220801\_224416\_000.wav SMU01649-TC5\_20220801\_224520\_000.wav SMU01649-TC5\_20220801\_224602\_000.wav SMU01649-TC5\_20220801\_224656\_000.wav SMU01649-TC5\_20220801\_224737\_000.wav SMU01649-TC5\_20220801\_224946\_000.wav SMU01649-TC5 20220801 225032 000.wav SMU01649-TC5\_20220801\_230543\_000.wav SMU01649-TC5\_20220801\_230725\_000.wav SMU01649-TC5\_20220801\_230805\_000.wav SMU01649-TC5\_20220801\_231132\_000.wav SMU01649-TC5\_20220801\_231416\_000.wav SMU01649-TC5\_20220801\_231531\_000.wav SMU01649-TC5 20220801 231644 000.wav SMU01649-TC5\_20220801\_233059\_000.wav SMU01649-TC5\_20220802\_030314\_000.wav SMU01649-TC5\_20220802\_045409\_000.wav SMU01649-TC5\_20220802\_045545\_000.wav SMU01649-TC5\_20220802\_041907\_000.wav SMU01649-TC5\_20220802\_045432\_000.wav SMU01649-TC5\_20220802\_045611\_000.wav

3/1/2022 22:11:48 MYOSOD 23:11:32 MYOLUC 3:03:14 MYOLUC 21:35:07 EPTFUS 21:36:41 EPTFUS 21:44:43 EPTFUS 21:45:08 EPTFUS 21:47:14 EPTFUS 21:47:58 EPTFUS 21:48:52 EPTFUS 21:48:57 EPTFUS 21:49:03 EPTFUS 21:50:23 EPTFUS 21:50:27 EPTFUS 21:51:12 EPTFUS 21:52:32 EPTFUS 21:53:03 EPTFUS 21:53:28 EPTFUS 21:54:19 EPTFUS 21:55:10 EPTFUS 8/1/2022 21:55:30 EPTFUS 22:17:29 EPTFUS 8/1/2022 22:33:07 EPTFUS 22:35:26 EPTFUS 22:42:15 EPTFUS 22:42:58 EPTFUS 22:44:16 EPTFUS 22:45:20 EPTFUS 22:46:02 EPTFUS 22:46:56 EPTFUS 22:47:37 EPTFUS 22:47:58 EPTFUS 22:49:46 EPTFUS 22:50:32 EPTFUS EPTFUS EPTFUS 23:08:05 EPTFUS 23:14:16 EPTFUS 23:15:31 EPTFUS 23:16:44 EPTFUS 23:30:59 EPTFUS 4:19:07 EPTFUS 4:54:09 EPTFUS EPTFUS 4:55:45 EPTFUS 4:56:11 EPTFUS 8/1/2022 21:35:47 NoID 23:05:43 23:07:25 4:54:32

159.59 3.469 67.511 33.391 EPTFUS Bat Detector 5, Night 2 60.713 60.53 70.202 63.428 68.392 64.587 65.348 67.354 73.507 63.197 72.621 64.907 65.345 64.092 70.457 62.922 61.616 66.723 63.765 67.236 63.6 59.052 63.825 65.861 68.568 67.876 65.831 67.175 67.888 61.142 68.94 38.35 59.364 55.059 62.277 69.366 71.177 68.143 64.157 74.771 34.645 63.347 45.804 64.629 44.338 56.943 3.535 3.196 4.316 3.242 2.248 3.443 3.177 3.028 3.107 2.837 5.123 4.531 3.486 3.449 3.161 3.543 4.104 2.591 3.873 3.981 4.257 3.081 3.136 3.371 3.236 3.199 179.58 2.323 123.07 3.694 164 3.396 3.28 155.29 3.492 123.86 3.745 3.028 3.628 2.982 4.891 3.507 3.65 3.541 3.683 2.94 3.774 3.331 3.508 4.309 3.686 98.22 135.33 169.65 143.1 131.17 141.77 163.41 150.65 120.32 48.51 99.95 150.48 158.3 125.64 132.1 69.65 138.31 87.05 125.91 138.22 119.97 107.74 53.1 161.29 144.04 136.29 164.86 170.74 166.74 131.26 137.88 136.9 134.81 128.59 109.95 144.6 136.26 142.75 156.26 108.09 146.66 33.4 35.424 34.3 36.35 34.53 33.472 34.282 32.03 37.242 43.861 34.093 33.048 35.833 41.148 33.854 40.386 42.829 36.452 39.079 35.656 34.864 35.122 39.477 34.992 34.949 34.648 32.65 33.627 35.155 36.195 33.788 38.297 33.951 37.344 35.281 34.978 35.345 29.852 35.57 33.72 34.288 34.377 31.165 33.503 31.467 33.607 28.347 18 24 0 8 19 23 16 20 23 25 20 24 7 7 17 19 16 20 18 20 13 17 23 25 21 26 12 13 11 19 16 23 26 28 32 39 7 32 13 16 13 16 17 18 14 14 23 26 14 16 48 59 33 36 18 21 10 11 11 11 14 18 2 2 24 25 26 32 11 12 13 21 27 m \$ 52 31 13 4 9 33 1 28 2 m 24 15 21 m 4 36 6 22 26

32.677 EPTFUS 35.082 EPTFUS EPTFUS **33.566 EPTFUS** 

29.852 NOID 32.708 NOID **39.973 NOID** 

33.987

**33.623 EPTFUS** 30.04 EPTFUS EPTFUS

4 6

33 28

32.067

39.154 NOID 27.807 NOID 30.725 NOID

32.409 |

CMT; Fc-41-43; Fmin-39-40; Sc-149-180; PROBABLE NSP; PQR - faint and too few pulses to ID NSP; multiple species with interference NSP; NMT; probable LASBOR (VMF) FM Call; Fc-low 30s; NMT PQR - faint PQR - faint PQR - faint POR - faint PQR - faint

41.462 MYOSOL

32.396 EPTFUS **31.794 EPTFUS** 32.277 EPTFUS **33.632 EPTFUS** 32.973 EPTFUS **32.988 EPTFUS** 36.397 EPTFUS **33.528 EPTFUS** 34.982 EPTFUS EPTFUS **33.81 EPTFUS** 32.404 EPTFUS **34.372 EPTFUS 34.426 EPTFUS** 

35.062 EPTFUS

**33.597 EPTFUS 33.983 EPTFUS** 35.932 EPTFUS **33.914 EPTFUS** 

**35.015 NOID** 

16 116 112 114 26 26 19

Appendix H Manual Call Vetting

35.548 EPTFUS

32.505 EPTFUS 32.795 EPTFUS 35.204 EPTFUS 32.781 EPTFUS **33.592 EPTFUS 31.512 EPTFUS** 34.309 EPTFUS **34.766 EPTFUS** 35.305 EPTFUS 34.314 EPTFUS

41.085 NOID

24 8

13 19

**Terramor Catskills** 

SMU01649-TC5\_20220802\_050448\_000.wav SMU01649-TC5\_20220802\_050606\_000.wav SMU01649-TC5\_20220802\_050645\_000.wav SMU01649-TC5\_20220802\_050702\_000.wav

Terramor Catskills Bat Detector 5, Night 2

 8/2/2022
 5:04:48
 EPTFUS
 9
 6
 9
 34.483
 122.79
 2.526
 53.994
 34.051
 NOID
 PQR - faint

 8/2/2022
 5:06:06
 EPTFUS
 32
 28
 33.37
 134.26
 141.5
 7.266
 57.268
 53.298
 EPTFUS
 FM Call; Fc-low 305; NMT

 8/2/2022
 5:06:45
 EPTFUS
 31
 33.97
 132.62
 3.175
 59.913
 32.609
 EPTFUS
 FM Call; Fc-low 305; NMT

 8/2/2022
 5:07:02
 EPTFUS
 31
 33.97
 132.62
 3.175
 59.913
 32.609
 EPTFUS
 FM Call; Fc-low 305; NMT

 8/2/2022
 5:07:02
 EPTFUS
 53
 36.213
 126.86
 3.303
 61.809
 34.597
 FM Call; Fc-low 305; NMT

Appendix H Manual Call Vetting

**Edgewood Environmental Consulting, LLC** 5 Edgewood Parkway

Fayetteville, NY 13066 mfishman@edgewoodenviro.com

T: +1 315.456.8731



I

## **Gottlieb**, Charles

| From:    | Michael Fishman <mfishman@edgewoodenviro.com></mfishman@edgewoodenviro.com> |
|----------|-----------------------------------------------------------------------------|
| Sent:    | Wednesday, November 2, 2022 3:19 PM                                         |
| То:      | Gottlieb, Charles                                                           |
| Subject: | Fwd: NYSDEC Preapplication Meeting Request Terramor Catskills Project       |

CAUTION: This email originated from outside of the firm. Do not click links or open attachments unless you recognize the sender and are expecting the message.

### Michael S. Fishman, CWB

Wildlife Biologist, Wetland Scientist, Regulatory Specialist

# **Edgewood Environmental Consulting, LLC**

+1 (315) 456-8731 mfishman@edgewoodenviro.com

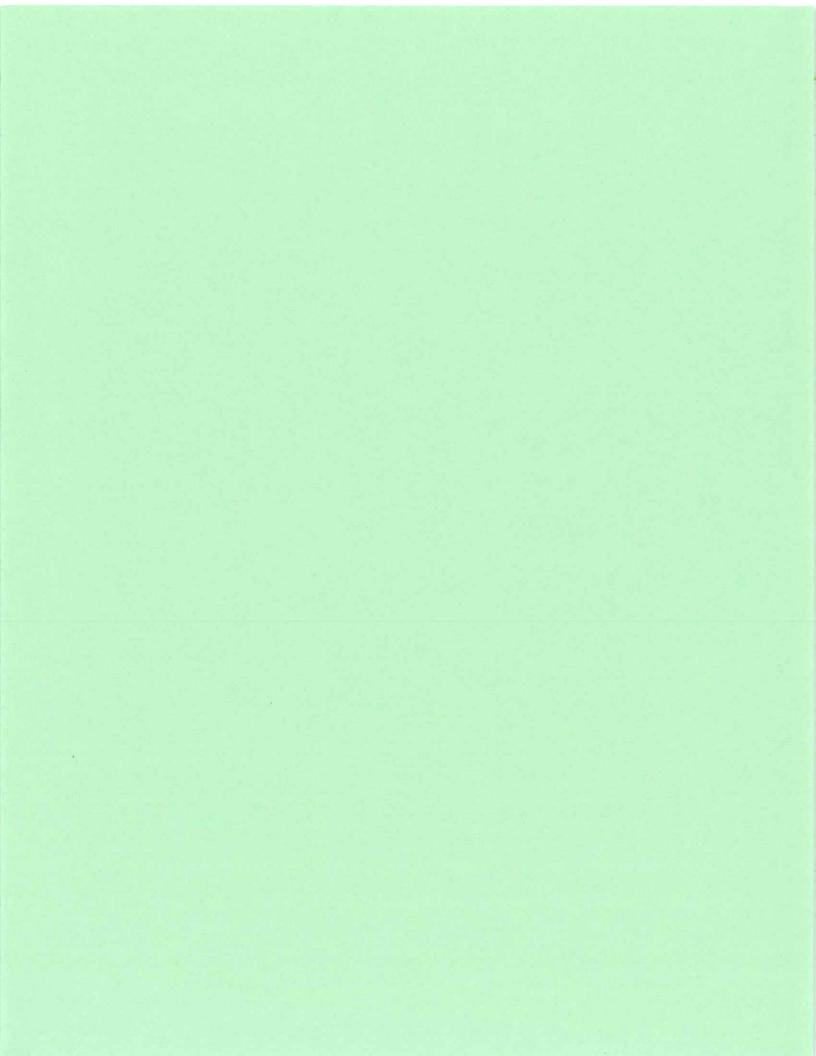
------ Forwarded message ------From: Benedetto, Frank J (DEC) <<u>Frank.Benedetto@dec.ny.gov</u>> Date: Wed, Nov 2, 2022 at 9:14 AM Subject: NYSDEC Preapplication Meeting Request Terramor Catskills Project To: <u>mfishman@edgewoodenviro.com</u> <<u>mfishman@edgewoodenviro.com</u>>

Hi Michael,

×

I was forwarded your email about a request for a preapplication meeting for the Terramor Catskills Project regarding a hit for Indiana Bats. I am the analyst handling the permitting of this project. I forwarded the information about the acoustic bat survey to our bat biologist. At this time the Department's position is that this survey result alone would not trigger review for State-listed bat species under our Article 11 Incidental Take permit program. The Department supports the management recommendations found in the report to avoid any potential impacts. Because of this, DEC doesn't think that a preapplication meeting to discuss the aforementioned permitting is necessary. In regards to the Article 15, Protection of Waters inquiry, I believe most of the applicants questions were answered in previous preapplication meetings, but I am happy to answer any other questions you may have about that. Please feel free to reach out to me directly with any other questions or concerns regarding this project.

Thank you,


## Frank J. Benedetto

Environmental Analyst 1, Division of Environmental Permits

## New York State Department of Environmental Conservation

21 S. Putt Corners Rd, New Paltz, NY 12561

(845) 256-0208 frank.benedetto@dec.ny.gov





5 Edgewood Parkway Fayetteville, NY 13066 +1 (315) 456-8731

15 November 2022

Noelle Rayman-Metcalf U.S. Fish & Wildlife Service New York Field Office 3817 Luker Road Cortland, NY 13045

Re: Indiana Bat Habitat Impact Assessment for Proposed Terramor Catskills Development Saugerties-Woodstock Road, T/o Saugerties, Ulster County, New York 42.049596°N, 74.074725°W, WGS84 datum

Dear Ms. Rayman-Metcalf:

Thank you for your time in our phone conference last week to discuss the above-referenced project. Per our discussion, we are herein providing a detailed description of the proposed project, a map of the bat habitat on the site with the site plan overlaid, and a more detailed site plan. These items should facilitate your determination of whether Indiana bats are likely to be adversely affected by the proposed development project.

The proposed Terramor Catskills project involves the construction of a 75-tent glamping campground with a lodge building containing food and beverage service and other customer services. Each tent site will have its own restroom facilities. The campground will also include a swimming pool area, event lawn, pavilion, and a wellness tent. Proposed support accessory structures including employee housing, a maintenance building, and golf cart storage. The attached Overall Site Plan illustrates the components and layout of all proposed development on the site. A total of 19.13 acres of land will be disturbed during the construction process, including a total of 4.72 acres of existing wooded area that will be cleared for the Project.

We anticipate that permitting of the site will be complete in early 2023, and construction will begin in early 2023, to be completed in 2024. Opening and operation of the facility is anticipated in late 2024, or early 2025.

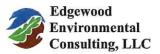
The attached *Bat Habitat Map with Proposed Site Plan Overlay* illustrates that most of the proposed development is confined to non-bat habitat areas of the site (mostly hemlock-hardwood forest with a dense understory). The only disturbances proposed in potential bat habitat areas include:

Proposed access roads from Saugerties-Woodstock Road and from Glasco Turnpike

Noelle Rayman-Metcalf, USFWS, Re: Terramor Catskills Bat Habitat Impact Assessment 15 November 2022

- Employee housing in the habitat area in the northwestern corner of the site
- Paved access road through the habitat patch in the south-central part of the site, which is along an existing dirt road, so little if any additional clearing will be required there.

The attached Forest Cover Map illustrates the forest cover within 2.5 miles of the Project Site. It indicates that of the 15,034 acres of land within 2.5 miles of the Project Site, 10,668 acres (70.96%) is forested with deciduous, mixed, and woody wetlands. If evergreen forest cover is also considered, then there are 12,509 acres (83.20%) of forest cover. The Project proposes to clear 4.72 acres of forest on the Project Site, which will leave 70.93% of deciduous/mixed/ woody wetland forest, or 83.17% of all forest types within 2.5 miles. The area of clearing represents 0.044% of deciduous/mixed/wetland forest, and 0.038% of all forest cover types, so impacts should be considered insignificant and discountable.


In addition, the Project Sponsor has committed to the following conservation measures to avoid incidental take of bats:

- Disturbance and tree clearing within potential bat habitat areas and near the acoustic detection of Indiana bat has been minimized. This will minimize human activity and disturbance in occupied and potential bat habitat areas.
- All necessary tree clearing will occur between November 1 and March 31, when bats are hibernating offsite. This will avoid incidental direct take of roosting bats from tree cutting during summer roosting season.
- Outdoor lighting will either be shielded to cast light below the horizontal plane, or will be low level (bollard) lighting to keep light near ground level.
- Outdoor lighting adjacent to wooded potential bat habitat areas will be motion-sensor lights to avoid illuminating forest edges all night.
- Chemical pesticides will not be used onsite, especially in or near water bodies.
- Quiet hours in the campsite will be enforced between 10 pm and 7 am, minimizing human disturbance of the area even when it is occupied.
- Pets will be required to be kept on leashes when outdoors and will not be allowed to run free.
- Campfire rings will be confined to developed areas of the site, away from wooded potential bat habitat. This will prevent smoke from disturbing roosting and foraging bats at night.

The minimal forest clearing and proposed conservation measures will yield minimal effects on resident or migrating bats. Therefore, we feel that the Project may affect, but is not likely to adversely affect Indiana bats on or around the Site.

NYSDEC has reviewed this project and made a determination that no incidental take permit (ITP) was required under NYSECL Article 11 as long as the above conservation measures were implemented (see attached email from NYSDEC).

Please advise as to whether you concur with our findings, or if you have any further questions or require any additional information.



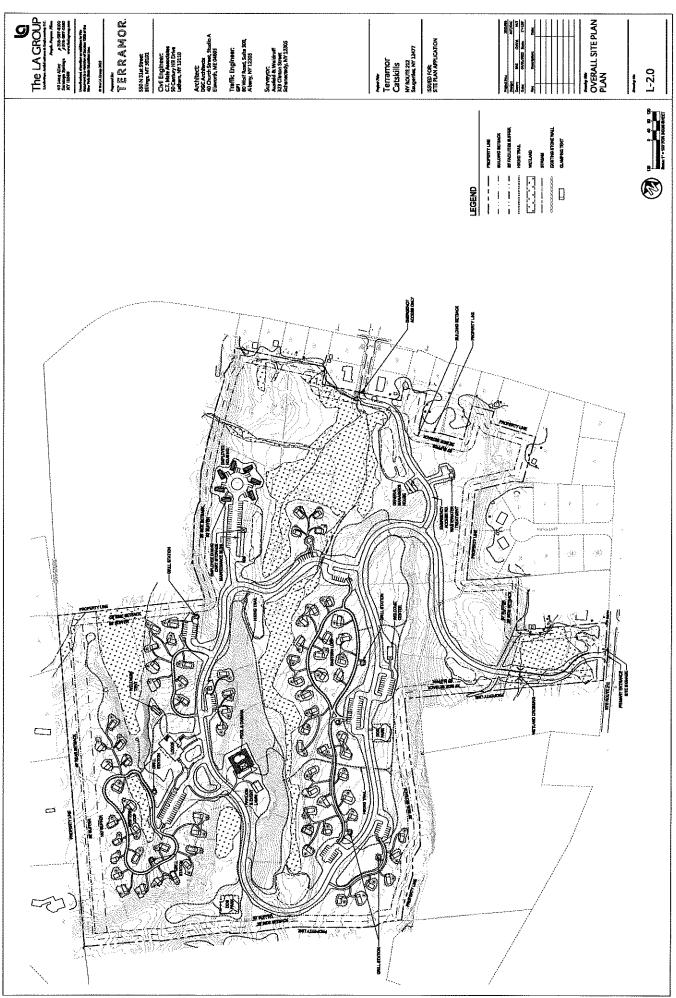
Thinking Outside.

Page 2

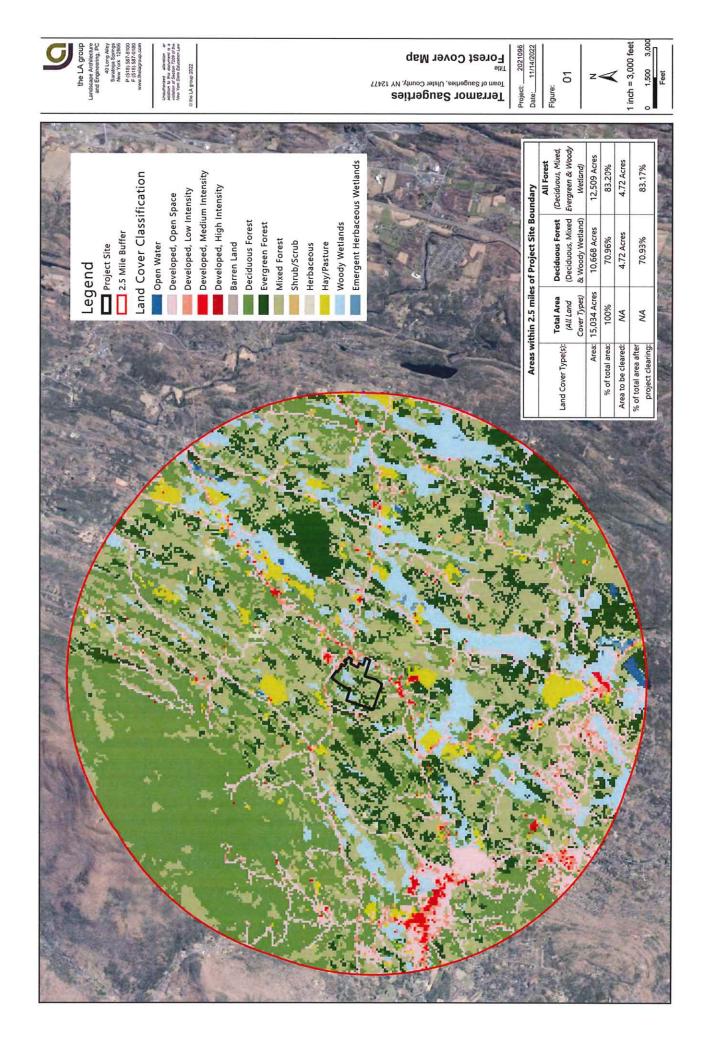
Noelle Rayman-Metcalf, USFWS, Re: Terramor Catskills Bat Habitat Impact Assessment 15 November 2022

The Project Sponsor has a meeting at the end of this week at which they are discussing this project, and would appreciate knowing your decision by then, if possible. Anything you can do to expedite this review would be greatly appreciated.

Sincerely,


Michael Johnan

Michael S. Fishman, CWB, FTWS Wildlife Biologist, Wetland Scientist, Regulatory Specialist


Enclosures

ec: Ahmed Helmi, Development Director, Terramor Resorts, LLC Kim White, Project Manager, Terramor Resorts, LLC Kevin Franke, The LA Group











Michael Fishman <mfishman@edgewoodenviro.com>

# NYSDEC Preapplication Meeting Request Terramor Catskills Project

1 message

### Benedetto, Frank J (DEC) <Frank.Benedetto@dec.ny.gov> To: "mfishman@edgewoodenviro.com" <mfishman@edgewoodenviro.com>

Wed, Nov 2, 2022 at 9:14 AM

Hi Michael,

I was forwarded your email about a request for a preapplication meeting for the Terramor Catskills Project regarding a hit for Indiana Bats. I am the analyst handling the permitting of this project. I forwarded the information about the acoustic bat survey to our bat biologist. At this time the Department's position is that this survey result alone would not trigger review for State-listed bat species under our Article 11 Incidental Take permit program. The Department supports the management recommendations found in the report to avoid any potential impacts. Because of this, DEC doesn't think that a preapplication meeting to discuss the aforementioned permitting is necessary. In regards to the Article 15, Protection of Waters inquiry, I believe most of the applicants questions were answered in previous preapplication meetings, but I am happy to answer any other questions you may have about that. Please feel free to reach out to me directly with any other questions or concerns regarding this project.

Thank you,

## Frank J. Benedetto

Environmental Analyst 1, Division of Environmental Permits

### New York State Department of Environmental Conservation

21 S. Putt Corners Rd, New Paltz, NY 12561

(845) 256-0208 frank.benedetto@dec.ny.gov

# J

# VISUAL IMPACT ASSESSMENT FOR KAMPGROUNDS OF AMERICA INC. D/B/A TERRAMOR

# TERRAMOR CATSKILLS CAMPGROUND FACILITY

NYS Route 212, Town of Saugerties, Ulster County, NY





November 2022



# TABLE OF CONTENTS

|    |      |                                                         | Page |  |
|----|------|---------------------------------------------------------|------|--|
| 1. | Visu | al Impact Assessment/Introduction                       | 1    |  |
|    | A.   | Project Description                                     | 1    |  |
|    | В.   | Regional and Local Landscape                            |      |  |
|    | C.   | Potential Impacts                                       | 2    |  |
| 2. | Met  | hodology                                                | 3    |  |
|    | A.   | Zone of Potential Visibility Maps                       |      |  |
|    | В.   | NYSDEC Visual Policy Resource Inventory                 | 4    |  |
|    | C.   | Viewpoint Selection and Field Study                     |      |  |
|    | D.   | Photo Simulation Rendering Process                      | 10   |  |
| 3. | Eva  | luation of Viewpoints Selected for Simulations          | 12   |  |
| 4. | Visı | Visual Impact Assessment Summary13                      |      |  |
| 5. | Арр  | Appendix A: Maps and Simulation Figures14               |      |  |
| 6. | Арр  | Appendix B: Existing View Photographs51                 |      |  |
| 7. | App  | Appendix C: Visual Impact Assessment Field Datasheets82 |      |  |

# **List of Figures**

| Figure 1  | Overall Site Plan                                                         |
|-----------|---------------------------------------------------------------------------|
| Figure 2  | Lodge – Floor Plans                                                       |
| Figure 3  | Lodge – Elevations                                                        |
| Figure 4  | Project Site Location Map                                                 |
| Figure 5  | Zone of Potential Visibility Map – No Tree Cover                          |
| Figure 6  | Zone of Potential Visibility Map – With Tree Cover                        |
| Figure 7  | NYSDEC Visual Policy Aesthetic Resource Inventory Potential Receptors Map |
| Figure 8  | NYSDEC Visual Policy Aesthetic Resource Inventory Potential Receptors &   |
|           | Zone of Potential Visibility Map                                          |
| Figure 9  | Sensitive Receptors Map                                                   |
| Figure 10 | Viewpoint Locations Map                                                   |
| Figure 11 | Simulation Viewpoint Locations Map                                        |
| Figure 12 | Viewpoint T1 Isaacs Property Existing View – 50 mm                        |
| Figure 13 | Viewpoint T1 Isaacs Property Terrain Reference – 50 mm                    |
| Figure 14 | Viewpoint T1 Isaacs Property Simulated View - 50 mm                       |
| Figure 15 | Viewpoint T1 Isaacs Property Simulated View with Screen Plantings - 50 mm |
| Figure 16 | Viewpoint T2 Buck Property Existing View – 50 mm                          |
| Figure 17 | Viewpoint T2 Buck Property Terrain Reference – 50 mm                      |
| Figure 18 | Viewpoint T2 Buck Property Simulated View – 50 mm                         |
| Figure 19 | Viewpoint T3 Monchik Property Existing View – 50 mm                       |

Visual Impact Assessment Terramor Catskills Campground Facility

| Eiguna 20 | View point T? Manahile Droports Terrain Deference 50 mm                    |
|-----------|----------------------------------------------------------------------------|
| Figure 20 | Viewpoint T3 Monchik Property Terrain Reference – 50 mm                    |
| Figure 21 | Viewpoint T3 Monchik Property Simulated View – 50 mm                       |
| Figure 22 | Viewpoint T3 Monchik Property Simulated View with Screen Plantings – 50 mm |
| Figure 23 | Viewpoint L2 Entry Drive Head-On Existing View – 50 mm                     |
| Figure 24 | Viewpoint L2 Entry Drive Head-On Terrain Reference – 50 mm                 |
| Figure 25 | Viewpoint L2 Entry Drive Head-On Simulated View – 50 mm                    |
| Figure 26 | Viewpoint L4 Entry Drive Eastbound Existing View – 50 mm                   |
| Figure 27 | Viewpoint L4 Entry Drive Eastbound Terrain Reference – 50 mm               |
| Figure 28 | Viewpoint L4 Entry Drive Eastbound Simulated View – 50 mm                  |
| Figure 29 | Viewpoint OM1 Overlook Mountain Fire Tower Existing View – 50 mm           |
| Figure 30 | Viewpoint OM1 Overlook Mountain Fire Tower Terrain Reference – 50 mm       |
| Figure 31 | Viewpoint OM1 Overlook Mountain Fire Tower DSM Reference – 50 mm           |
| Figure 32 | Viewpoint OM1 Overlook Mountain Fire Tower Simulated View – 50 mm          |
| Figure 33 | Viewpoint OM1 Overlook Mountain Fire Tower Existing View – 85 mm           |
| Figure 34 | Viewpoint OM1 Overlook Mountain Fire Tower Terrain Reference – 85 mm       |
| Figure 35 | Viewpoint OM1 Overlook Mountain Fire Tower DSM Reference – 85 mm           |
| Figure 36 | Viewpoint OM1 Overlook Mountain Fire Tower Simulated View – 85 mm          |

### List of Tables

| Table 1 | NYSDEC Visual Policy Aesthetic Resource Inventory Potential Receptors |
|---------|-----------------------------------------------------------------------|
| Table 2 | Sensitive Receptors for Field Evaluation                              |
| Table 3 | Viewpoints with Potential Views into Project Site                     |
| Table 4 | Representative Viewpoints Selected for Simulations                    |
| Table 5 | Evaluation of Simulated Views                                         |

# List of Photographs

| Photograph 2<br>Photograph 3<br>Photograph 3<br>Photograph 4<br>Photograph 5<br>Photograph 6<br>Photograph 7<br>Photograph 7<br>Photograph 9<br>Photograph 10<br>Photograph 12<br>Photograph 13<br>Photograph 14<br>Photograph 15<br>Photograph 16 | Viewpoint T1 Existing View Photograph – 50 mm focal length<br>Viewpoint T1 Existing View Photograph – 85 mm focal length<br>Viewpoint T2 Existing View Photograph – 50 mm focal length<br>Viewpoint T3 Existing View Photograph – 50 mm focal length<br>Viewpoint T3 Existing View Photograph – 50 mm focal length<br>Viewpoint T3 Existing View Photograph – 85 mm focal length<br>Viewpoint L1 Existing View Photograph – 50 mm focal length<br>Viewpoint L1 Existing View Photograph – 85 mm focal length<br>Viewpoint L2 Existing View Photograph – 85 mm focal length<br>Viewpoint L2 Existing View Photograph – 85 mm focal length<br>Viewpoint L2 Existing View Photograph – 50 mm focal length<br>Viewpoint L3 Existing View Photograph – 50 mm focal length<br>Viewpoint L3 Existing View Photograph – 85 mm focal length<br>Viewpoint L4 Existing View Photograph – 85 mm focal length<br>Viewpoint L4 Existing View Photograph – 50 mm focal length<br>Viewpoint L4 Existing View Photograph – 50 mm focal length<br>Viewpoint L4 Existing View Photograph – 50 mm focal length<br>Viewpoint L4 Existing View Photograph – 50 mm focal length<br>Viewpoint L5 Existing View Photograph – 85 mm focal length<br>Viewpoint L5 Existing View Photograph – 50 mm focal length<br>Viewpoint L5 Existing View Photograph – 50 mm focal length<br>Viewpoint L5 Existing View Photograph – 50 mm focal length<br>Viewpoint L5 Existing View Photograph – 50 mm focal length |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Photograph 17                                                                                                                                                                                                                                      | Viewpoint L5 Existing View Photograph – 85 mm focal length<br>Viewpoint L6 Existing View Photograph – 50 mm focal length<br>Viewpoint L6 Existing View Photograph – 85 mm focal length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Visual Impact Assessment Terramor Catskills Campground Facility

| Photograph 19 | Viewpoint OM1 Existing View Photograph – 50 mm focal length |
|---------------|-------------------------------------------------------------|
| Photograph 20 | Viewpoint OM1 Existing View Photograph – 85 mm focal length |
| Photograph 21 | Viewpoint OM2 Existing View Photograph – 50 mm focal length |
| Photograph 22 | Viewpoint OM2 Existing View Photograph – 85 mm focal length |
| Photograph 23 | Viewpoint OM3 Existing View Photograph – 50 mm focal length |
| Photograph 24 | Viewpoint OM3 Existing View Photograph – 85 mm focal length |
| Photograph 25 | Viewpoint OM4 Existing View Photograph – 50 mm focal length |
| Photograph 26 | Viewpoint OM4 Existing View Photograph – 85 mm focal length |
| Photograph 27 | Viewpoint OM5 Existing View Photograph – 50 mm focal length |
| Photograph 28 | Viewpoint OM5 Existing View Photograph – 85 mm focal length |
| Photograph 29 | Viewpoint OM6 Existing View Photograph – 50 mm focal length |
| Photograph 30 | Viewpoint OM6 Existing View Photograph – 85 mm focal length |

#### VISUAL IMPACT ASSESSMENT TERRAMOR CATSKILLS CAMPGROUND FACILITY

#### 1. Visual Impact Assessment/Introduction

Visual impact is assessed in terms of the anticipated change in visual resources, including whether there would be a change in the character or quality of a view with respect to significant scenic and aesthetic resources.

The following is a discussion of the Visual Impact Assessment performed for a new Terramor Catskills campground facility (the Project) proposed at the Kampgrounds of America Inc. (KOA) parcels (27.2-8-28 & 27.2-8-32.110) located west of Shultis Corners in Saugerties, NY. The Visual Impact Assessment considers existing conditions, viewshed analyses, identification of sensitive receptors within the surrounding area from which the Project may be visible, and impact assessments for representative viewpoints. A field study utilizing weather balloons to mark the location of the project site was conducted on October 7, 2022. Additional potential receptors were examined on October 21, November 2 and November 3, 2022.

#### A. <u>Project Description</u>

The Terramor Catskills property (the Site) consists of 77.51 acres in Saugerties, NY, abutting the eastern border of the town of Woodstock. The property is made up of two parcels, Tax # 27.2-8-28 and 27.2-8-32.110, both of which are currently undeveloped wooded sites.

The proposed project involves the construction of a campground including 75 camping spaces with a Lodge building containing food and beverage and other customer services. Each camping space will have their own restroom facilities. The campground will also include a Welcome Center, swimming pool area, event lawn, pavilion, and a wellness tent. Support accessory structures including employee housing, a maintenance building, and golf cart storage are also proposed. **Figure 1**, Overall Site Plan, illustrates the components and layout of all project development. The Lodge, the largest structure in the proposed Project, has a footprint of 6,455 square feet (See **Figure 2**) and a height of 30'-3" at its highest point (See **Figure 3**). Figures 2 and 3, respectively, show the floor plan and elevations of the Lodge building. A total of 19.13 acres of land will be disturbed during the construction process, including a total of 4.72 acres of existing wooded area that will be developed for the Project.

### B. <u>Regional and Local Landscape</u>

Landscape character is largely determined by the topography, land use, vegetation and water features that contribute to area views.

The project site is nestled between Ashokan Reservoir to the south and Overlook Mountain to the north. The Site is a mix of deciduous forest of moderate age with a general lack of woody understory and hemlock hardwood forest with a well-developed understory. Two brooks pass through the site including H-171-11-11-6 near the Route 212 frontage, and H-171-11-11-1 near the norther part of the site. Wetlands that were re-delineated in the spring of 2022 trend

east-west on the site and include an area spanning the Route 212 frontage and the large drainage that ends near Cottontail Lane and extends well into the site. There are two areas of ponded water within delineated wetlands in the northwest portion of the site. There are areas of steep slopes towards the upper ends of some wetlands, and overall, topography consists of a number of flat plateaus separated by areas of moderate slopes.

The regional context surrounding the project site is largely characterized by the Catskill Mountains and the Catskill Park, the smaller of New York State's two Forest Preserves, including nearby lands to the north, west, and south. The Catskill Park consists of 700,000 acres of land, 41% of which is state-owned "forever-wild" forest preserve. The region is home to a diverse array of wildlife and recreational activities. The Catskills are a prominent tourist destination, attracting approximately half a million visitors each year. The proposed Terramor Catskills Campground Facility aligns well with this regional context by supporting nature-based recreational activities and the tourism industry with temporary housing for those seeking to explore the State Park.

On a local scale, the site is located in an area that includes homes located on Raybrook Drive to the west and Glasco Turnpike and Cottontail Lane to the North. The NY Route 212 corridor is more mixed use and includes commercial properties in addition to residential properties. Commercial uses nearby include the Red Onion Restaurant, Glamour House Salon and Spa, and the South Peak Veterinary Hospital. A home occupation business, Cutting Edge Spray Foam Services, abuts the property along NY Route 212. Osnas Lane is a residential cul-de-sac located between the Red Onion and Cutting Edge Spray Foam Services.

### C. Potential Impacts

Due to the scenic nature of the area and the presence of several historic resources in the study area, it is particularly important to take steps to limit the impact of the Project on existing views into the Site. That is why the following analysis explicitly investigates the potential impact of the Project on all sensitive receptors (including scenic, aesthetic, historic, recreational, and natural resources) identified as having potential views into the Site.

In addition to this broader scale, Terramor is sensitive to the affect that the project may have on views from local residences. A number of project camp spaces are located in relatively close proximity to some of the residences located on Raybrook Drive. In their 7/11/2022 memo to the Planning Board, the Town's Planning Consultant identifies potential views into the project from these residences as an issue to be addressed (Item 4, pp. 3 & 4).

Upon conclusion of this analysis, it is the Applicant's position that the proposed Terramor campground facility will not cause a significant undue adverse visual impact. Some of the camp spaces on the south-west corner of the site will be visible from the neighboring Buck, Isaacs, and Monchik properties. The largest proposed structure, the Lodge, will only potentially be visible from the Overlook Mountain fire tower and scenic overlook viewpoints approximately 2.5 miles away. The impact assessment has also identified that a slight break in the treeline may be visible from Overlook Mountain due to the removal of trees within the project limits of clearing. The entry drive and Terramor welcome sign will be visible from NYS Route 212 in both the easterly

and westerly directions. All other development on the project site will be hidden from view at the viewpoints evaluated in this analysis, primarily due to the minimal limits of proposed project clearing and robust foreground vegetation blocking views into the site.

#### 2. Methodology

The Visual Impact Assessment evaluates existing conditions and determines the anticipated change in visual resources, including whether there would be a change in character or quality of views with respect to significant scenic and aesthetic resources within the study area. The "study area" consists of lands in the Towns of Saugerties, Woodstock, Hunter, Hurley, Kingston, and Ulster within a five-mile radius surrounding the project site (See Figure 4). Figure 4 shows the project site location within the context of the study area and greater surroundings.

The methodology used for the evaluation of potential visual impacts generally follows NYS DEC's *Assessing and Mitigating Visual Impacts* (NYSDEC Program Policy DEP-00-2)<sup>1</sup> and NYS APA's *Visual Analysis Methodology* policy<sup>2</sup> with a few adjustments.

The Visual Impact Assessment includes the use of USGS elevation data to create zone of potential visibility maps that show all areas within the 5-mile radius study area that are likely to have views into the project site. Next, a resource inventory is conducted to determine all the aesthetic resources/potential receptors within the study area. These resources are then evaluated against the zone of potential visibility maps to determine which potential receptors are likely to have views into the Project. Receptors within the zones of potential visibility, considered sensitive receptors, are then field verified, and photographs are taken. Representative photographs are then used to create simulations of the Project after construction. Finally, a comparison of the "before" and "after" views is conducted and discussed in the context of landscape character and receptor activity.

#### A. Zone of Potential Visibility Maps

A digital elevation model (DEM), which represents the bare-Earth surface with all natural and built features removed, was created for this analysis by mosaicking the following elevation data:

- 1. Proposed surface for areas of development -2 foot contours
- 2. Survey of existing elevations on project site -2 foot contours
- 3. 2014 USGS DEM for 5-mile radius around project site 1 meter resolution

Using ArcGIS Pro software and the DEM described above, a visibility analysis was conducted to determine each 1 ft x 1 ft raster cell within the 5-mile radius study area from which the Terramor Catskills campground facility may be visible based on topography alone. The height of the "viewer" was assumed to be 5'6", and the target point was set at the highest point on the roofline of the Lodge building. Using this process, a **Zone of Potential Visibility** map was prepared to aid in visual assessment (See **Figure 5**). **Figure 5** shows the location of the project site and areas from which views into the Project might be visible when only topography is considered (areas of potential visibility are denoted by the color orange).

Next, a resource inventory was conducted to determine all the aesthetic resources within a 5-mile radius of the project site (this process is described in detail in the next report section; NYSDEC Visual Policy Resource Inventory). These identified resources/potential receptors were then evaluated against the zone of potential visibility map created from the DEM to determine which potential receptors are likely to have views into the Project based on topography alone. The 5-mile radius buffer around the project site was then reduced to the smallest area needed to capture all potential sensitive receptors. This new buffer area was then used as the spatial extent for a digital surface model analysis.

A digital surface model (DSM), which captures both the natural and built features of the environment (trees, buildings, etc.) in addition to the topographic surface of the surroundings, was also built for this analysis. The DSM was built using 2014 USGS LiDAR point cloud data.

A second visibility analysis was then conducted using the DSM surface to determine each 1 ft x 1 ft raster cell within the reduced buffer area around the project site from which the campground facility may be visible based on existing topographic conditions and vegetative cover. Due to the high computational requirements for manipulating LiDAR data, the DSM zone of potential visibility analysis was only conducted for the reduced buffer area covering potential sensitive receptors identified in the more conservative DEM analysis. The height of the "viewer" was once again assumed to be 5'6", and the target point was set at the highest point on the roofline of the Lodge building. In this analysis, vegetation is assumed to be sufficiently dense to block views when it is an intervening feature between the viewer and the Project. A second **Zone of Potential Visibility** map was prepared to aid in visual assessment (See **Figure 6**). **Figure 6** shows the location of the project site and areas from which views into the Project might be visible when both topography and vegetative cover are considered (areas of potential visibility are denoted by the color orange).

### B. <u>NYSDEC Visual Policy Resource Inventory</u>

This section addresses an inventory of all visual policy resources located within a 5-mile radius of the project site in accordance with NYSDEC's Visual Assessment Program Policy. Identified resources are shown on Figure 7.

| NYSDEC Aesthetic          | Identified Resources/Potential Receptors within 5-mile Radius Study<br>Area |  |  |
|---------------------------|-----------------------------------------------------------------------------|--|--|
| <b>Resource Category</b>  |                                                                             |  |  |
|                           | Byrdcliffe Historic District                                                |  |  |
| A property on or          | Church of the Holy Transfiguration of Christ-on-the-Mount                   |  |  |
| eligible for inclusion in | Hasbrouck, Judge Jonathan, House                                            |  |  |
| the National or State     | Maverick Concert Hall                                                       |  |  |
| Register of Historic      | National Youth Administration Woodstock Resident Work Center                |  |  |
| Places                    | Opus 40                                                                     |  |  |
|                           | Vosburg Turning Mill Complex                                                |  |  |
|                           | Catskill Park Forest Preserve                                               |  |  |
| State Parks               | - Bluestone Wild Forest                                                     |  |  |
| State Parks               | - Kaaterskill Wild Forest                                                   |  |  |
|                           | - Overlook Mountain Wild forest                                             |  |  |

 Table 1.
 NYSDEC Visual Policy Aesthetic Resource Inventory Potential Receptors

Visual Impact Assessment Terramor Catskills Campground Facility

Page - 4

|   | NYS Heritage Areas                                                                                                                                                                                                   | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (formerly Urban                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Cultural Parks)                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Adirondack State                                                                                                                                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Forest Preserve                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | National Wildlife                                                                                                                                                                                                    | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | Refuges, State Game                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Refuges, or State                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ł | Wildlife Management                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Areas                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | National Natural                                                                                                                                                                                                     | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| L | Landmarks                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | The National Park                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | System, Recreation                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Areas, Seashores and                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Forests                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Rivers designated as                                                                                                                                                                                                 | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | National or State Wild,                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | Scenic or Recreational                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | Scenic or Recreational<br>A site, area, lake,                                                                                                                                                                        | NYS Route 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                      | NYS Route 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | A site, area, lake,                                                                                                                                                                                                  | NYS Route 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | A site, area, lake,<br>reservoir or highway                                                                                                                                                                          | NYS Route 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible                                                                                                                                                | NYS Route 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as                                                                                                                          | NYS Route 28 None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic                                                                                                                | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of                                                                                             | None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of                                                                                             | None Bluestone Wild Forest Onteora Lake Blue Trail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of                                                                                             | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of                                                                                             | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance                                                                   | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally                                             | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails                                                                                                                                                                                                                                                                                                                                                                  |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one                 | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail                                                                                                                                                                                                                                                                                                                    |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one<br>proposed for | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail         Indian Head Wilderness Echo Lake Trail                                                                                                                                                                                                                                                                     |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one<br>proposed for | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail         Indian Head Wilderness Echo Lake Trail         Indian Head Wilderness Devil's Path Trail                                                                                                                                                                                                                   |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one<br>proposed for | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail         Indian Head Wilderness Echo Lake Trail         Indian Head Wilderness Devil's Path Trail         Overlook Mountain Wild Forest Meads Meadow Trail                                                                                                                                                          |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one<br>proposed for | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail         Indian Head Wilderness Echo Lake Trail         Indian Head Wilderness Devil's Path Trail         Overlook Mountain Wild Forest Meads Meadow Trail         Overlook Mountain Overlook Spur Trail Extension                                                                                                  |
|   | A site, area, lake,<br>reservoir or highway<br>designated or eligible<br>for designation as<br>scenic<br>Scenic Areas of<br>Statewide Significance<br>State or Federally<br>designated trail, or one<br>proposed for | None         Bluestone Wild Forest Onteora Lake Blue Trail         Bluestone Wild Forest Onteora Lake Red Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Onteora Lake Yellow Trail         Bluestone Wild Forest Jockey Hill Bicycle Trail         High Woods Multiple Use Area Unmarked Trails         Indian Head Wilderness Overlook Trail         Indian Head Wilderness Echo Lake Trail         Indian Head Wilderness Devil's Path Trail         Overlook Mountain Wild Forest Meads Meadow Trail         Overlook Mountain Overlook Spur Trail Extension         Overlook Mountain Overloop Trail |

| ſ                                         |                                                                                     |
|-------------------------------------------|-------------------------------------------------------------------------------------|
|                                           | Ashokan Fishing Access Area                                                         |
|                                           | Indian Head Wilderness                                                              |
|                                           | Kingston City Local Resource Management Area Lands                                  |
| State Nature and                          | New York City Watershed Lands                                                       |
| Historic Preserve Areas                   | New York State Conservation Area Lands                                              |
|                                           | Rondout-Esopus Land Conservancy Relc #17                                            |
|                                           | Saugerties Village Local Resource Management Area Lands                             |
|                                           | Thorn Preserve – Catskill Center                                                    |
| Palisades Park                            | None                                                                                |
| Bond Act Properties                       | None                                                                                |
| Purchased under                           |                                                                                     |
| Exceptional Scenic                        |                                                                                     |
| Beauty or Open Space                      |                                                                                     |
| Category                                  |                                                                                     |
|                                           | High Woods Multiple Use Area (Local Recreation Area)                                |
|                                           | Big Deep (Local Recreation Area)                                                    |
|                                           | The Comeau Property Park (Local Recreation Area)                                    |
|                                           | Mount Marion Park Lands (Local Recreation Area)                                     |
| Additional Potential                      | Rick Volz Field (Local Recreation Area)                                             |
| Receptors identified by                   | John Victor Brown Memorial Park (Local Recreation Area)                             |
| the LA Group (LAG)                        | Ulster County Local Park Lands (Local Recreation Area)                              |
| (Outside of NYSDEC's<br>Visual Assessment | Saugerties Town Local Park Lands (Local Recreation Area)                            |
| Program Policy                            | Woodstock Town Local Park Lands (Local Recreation Area)                             |
| Requirements)                             | All public roads within a two-mile radius of the project site that pass through     |
| ( requirements)                           | the zones of potential visibility were identified as potential sensitive receptors. |
|                                           | Additionally, the three neighboring properties adjacent to the southwest            |
| · · · ·                                   | corner of the project site (Isaacs, Buck, and Monchik properties) were also         |
|                                           | evaluated as potential receptors despite their being private property.              |
| I                                         |                                                                                     |

An additional figure, the Aesthetic Resource Inventory Receptors & Zone of Potential Visibility Map, was developed to show the DSM zone of potential visibility in relation to the potential receptors identified by the inventory of visual resources (See Figure 8).

## C. <u>Viewpoint Selection and Field Study</u>

The potential receptors identified during the resource inventory were evaluated against the DSM zone of potential visibility map to determine which potential receptors were likely to have views into the Project. Potential receptors within the zone of potential visibility were considered sensitive receptors and require field verification of potential views into the project site (See **Figure 9**). **Figure 9**, the Sensitive Receptors Map, shows all the sensitive potential receptors that were later evaluated in the field.

A total of 32 sensitive receptors were identified for evaluation in the field. Twenty-six (26) of these sensitive receptors are located within a 2-mile radius around the project site. These 26 receptors were evaluated on the first day of the field study conducted by LAG Staff on October 7, 2022. The 6 remaining sensitive receptors were evaluated over the course of three other field days, taking place on October 21, November 2, and November 3, 2022.

| Table 2.      | Sensitive Receptors for Field Evaluation                              |                           |
|---------------|-----------------------------------------------------------------------|---------------------------|
| Date of Field |                                                                       | Potential Site Visibility |
| Evaluation    | Sensitive Receptor                                                    | Detected in the Field     |
|               | Isaacs Property                                                       | Potential views           |
|               | Buck Property                                                         | Potential views           |
|               | Monchik Property                                                      | Potential views           |
|               | CR 32 Glasco Tpke (from road public right-of-way)                     | No potential views        |
|               | CR 33 W Saugerties Rd (from road public right-of-way)                 | No potential views        |
|               | Stroll Road/Goat Hill Rd (from road public right-of-way)              | No potential views        |
|               | Woodstock Ridge (from road public right-of-way)                       | No potential views        |
|               | Mcgee Rd (from road public right-of-way)                              | No potential views        |
|               | Lewis Hollow Rd (from road public right-of-way)                       | No potential views        |
|               | Livingston Ct (from road public right-of-way)                         | No potential views        |
|               | California Quarry Rd/Cali Quarry Loop (from road public right-of-way) | No potential views        |
|               | Raybrook Dr (from road public right-of-way)                           | No potential views        |
|               | NYS Route 212 (from road public right-of-way)                         | Potential views           |
| 10/07/2022    |                                                                       | (of entry drive only)     |
|               | National Youth Administration Woodstock Resident                      | No potential views        |
|               | Work Center (Woodstock School of Art)                                 |                           |
|               | Artist Rd (from road public right-of-way)                             | No potential views        |
|               | Saugerties Transfer Station                                           | Potential views           |
|               | Reynolds Lane (from road public right-of-way)                         | No potential views        |
|               | Osnas Lane (from road public right-of-way)                            | No potential views        |
|               | Church St (from road public right-of-way)                             | No potential views        |
|               | Timberwall Rd (from road public right-of-way)                         | No potential views        |
|               | Phillips Rd (from road public right-of-way)                           | No potential views        |
|               | Fred Short Rd (from road public right-of-way)                         | No potential views        |
|               | Woodmore Lane (from road public right-of-way)                         | No potential views        |
|               | John Joy Rd (from road public right-of-way)                           | No potential views        |
|               | Site Entry Drive (NYS Route 212)                                      | Potential views           |
|               | Cottontail Ln                                                         | Potential views           |
|               | Maverick Concert Hall                                                 | No potential views        |
| 10/21/2022    | Church of the Holy Transfiguration of Christ-on-the-<br>Mount         | No potential views        |
|               | Opus 40                                                               | No potential views        |
|               | Sloan Gorge Loop Trail                                                | No potential views        |
| 11/02/2022    | High Woods Multiple Use Area Unmarked Trails                          | No potential views        |
| 11/03/2022    | Overlook Mountain Trail                                               | Potential views           |
| 11/03/2022    |                                                                       | 1 1 0101111111 110 140    |

 Table 2.
 Sensitive Receptors for Field Evaluation

During the October 7<sup>th</sup> field study, one 3-foot diameter red locator balloon on a 100-foot-long tether was flown above the tree canopy at the location of the Lodge building. A second 3-foot diameter red locator balloon on a 200-foot-long tether was flown above an existing clearing where the Pavilion & Event Lawn will be sited. Additionally, 16 ft x 20 ft orange tarps and a 20 ft x 20 ft red tarp were hung between trees at the locations and heights of the three tents that are sited closest to each of the neighboring homes (Isaacs, Buck, and Monchik Properties) to the south west. A traffic cone was also placed at the point where the centerline of the proposed entry

drive intersects NYS Route 212. The traffic cone, tarps, and locator balloons were not set up during the final three days of field evaluation. During all four field days, a Trimble Geo7x GPS device was used to orient to the correct bearing when looking for the project site from a sensitive receptor location.

The red locator balloons were used for orientation purposes only and were not intended to be representative of any element of the proposed development. The presence of the balloons within the photograph(s) was used to demonstrate that the photographs are capturing the correct views towards and into the project site. It is not necessary to use the location or size of the balloon in the photographs to accurately render the simulations of the Project. Before the advent of GPS and GIS technologies, the balloon diameter was used to scale the size of the target object. Today, using a georeferenced and scaled plan of the Project and GPS waypoints for the viewpoints, an accurately dimensioned Project can be rendered into the existing condition photographs to produce accurate simulations of the proposed views from the various viewpoints.

Throughout the course of the four field-days, all 32 sensitive receptors were visited to determine potential project visibility. Photographs were only taken, and datasheets only filled out, at locations where potential views into the project site were evident in the field. Sensitive receptors with apparent views from which photographs were taken are considered "Viewpoints". A total of 15 Viewpoints were identified during the four days of field evaluation.

Field photographs are taken at both 50 mm and 85 mm focal length digital equivalents (32 mm and 53 mm respectively). Photographs using a 50 mm equivalent focal length are considered to be the best representation of the field of vision of the average human eye. Photographs using an 85 mm focal length equivalent are representative of the acuity, or the ability to focus, of the human eye. It is very **important to note** that accurate representations of the field of view and acuity of the human eye when using these lens settings are only achieved when the images of the views are viewed as 11 inch by 17 inch graphics, the size of the simulations presented in this report. When these images are enlarged by printing them at a larger size or by projecting the images onto a screen at a different scale, the accuracy of what the eye will see is lost, and changes in what would actually be seen are exaggerated by such enlargements.

All photographs were taken with a digital SLR Cannon Rebel EOS camera. Photographs were downloaded and catalogued by viewpoint number and lens settings. Photo viewpoint locations were collected using a Trimble Geo7x GPS device. Photo location waypoints were downloaded from the GPS unit following the completion of the field study. Datasheets were scanned and copies of the data forms are included in **Appendix C**, **Visual Impact Assessment Field Data Sheets**. Datasheets include the time and date of photography, weather conditions, photograph locations (GPS waypoints), notes on the existing foreground, middleground and background views, and information regarding the potential project visibility from the viewpoint. Appendix B, Existing View Photographs, contains photos of existing views in the direction of the project site.

The following Table lists the 15 viewpoint locations identified during the field component of the Terramor Catskills Campground Facility Visual Impact Assessment and notes the potential for

views into the project site from each location. See Figure 10 for a map of the viewpoint locations.

| senting the<br>from the<br>he red tarp<br>p space is |
|------------------------------------------------------|
| e from the                                           |
| he red tarp                                          |
|                                                      |
|                                                      |
| n snace is                                           |
| h ohnoo 10                                           |
| n the property                                       |
| *                                                    |
| senting the                                          |
| e from the                                           |
|                                                      |
| on is visible, but                                   |
| ind vegetation                                       |
| site from this                                       |
| she nom mis                                          |
| 4                                                    |
| he entry road                                        |
| e sign will be                                       |
|                                                      |
| he entry road                                        |
| e sign will be                                       |
|                                                      |
| he entry road                                        |
| e sign will be                                       |
|                                                      |
| will be visible                                      |
|                                                      |
| will be visible                                      |
|                                                      |
| location. It is                                      |
| of the Lodge                                         |
| om the trees that                                    |
| rill be visible                                      |
| 111 00 4151010                                       |
| rom this                                             |
|                                                      |
| litions. The site                                    |
| during leaf-on                                       |
|                                                      |
| location. It is                                      |
| of the Lodge                                         |
| om the trees that                                    |
| vill be visible                                      |
|                                                      |
| ······································               |
| location. It is                                      |
| location. It is of the Lodge                         |
|                                                      |

| Table 3. | Viewpoints w | ith Potential Vi | ews into Proje | ect Site |
|----------|--------------|------------------|----------------|----------|
|          |              |                  |                |          |

-

|        |                                     | are cleared for the Project will be visible after construction.                                                                                                                                                    |  |
|--------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| VP-OM5 | Overlook Mountain Scenic Overlook 3 | The Site is visible from this location. It is<br>possible that small portions of the Lodge<br>and breaks in the treeline from the trees that<br>are cleared for the Project will be visible<br>after construction. |  |
| VP-OM6 | Overlook Mountain Scenic Overlook 4 | The site is partially visible from this<br>location during leaf off conditions. The site<br>will be obscured from view during leaf-on<br>conditions.                                                               |  |

Six viewpoints (VP-T1, VP-T2, VP-T3, VP-L2, VP-L4, and VP-OM1) were selected as the representative viewpoints for photo simulations to demonstrate the potential visual impact of the Project (See **Figure 11**). **Figure 11**, the Simulation Viewpoint Locations Map, shows the locations of all viewpoints selected for visual simulations. For viewpoints T1, T2, T3, L2, and L4, simulations were conducted for the 50 mm focal length photos (digital equivalent = 32 mm). For viewpoint OM1, simulations were conducted for both the 50 mm and 85 mm focal length photo (digital equivalents = 32 mm and 53 mm respectively).

| Table 4. Representative viewpoints Selected for Simulations |                              |                                                    |  |  |
|-------------------------------------------------------------|------------------------------|----------------------------------------------------|--|--|
| Viewpoint #                                                 | Viewpoint Name               | Focal Length(s) Selected for Simulation            |  |  |
| VP-T1                                                       | Isaacs Property              | 50 mm (digital equivalent = 32 mm)                 |  |  |
| VP-T2                                                       | Buck Property                | 50 mm (digital equivalent = 32 mm)                 |  |  |
| VP-T3                                                       | Monchik Property             | 50 mm (digital equivalent = 32 mm)                 |  |  |
| VP-L2                                                       | Entry Drive Cone – Head-On   | 50 mm (digital equivalent = 32 mm)                 |  |  |
| VP-L4                                                       | Entry Drive Cone – Eastbound | 50 mm (digital equivalent = 32 mm)                 |  |  |
| VP-OM1                                                      | Overlook Mountain Fire Tower | 50 & 85  mm (digital equivalents = $32 & 53  mm$ ) |  |  |

 Table 4.
 Representative Viewpoints Selected for Simulations

### D. Photo Simulations Rendering Process

Photo simulations ("After" photographic renderings) were created to depict visual changes or impacts that may result from the Project.

A 3-dimensional model of the study area was built by bringing the site plan, 3D models of the proposed tents, and the same DEM used to produce the Zone of Potential Visibility – No Tree Cover Map (See Figure 5) into the modeling program Rhino 3D. The DEM was used to create a 3D terrain surface. The 3D tents were then placed onto the terrain surface in the appropriate locations. Proposed project features from the site plan (buildings, roads, clearing limits, proposed plantings, and other miscellaneous features (campfires, light poles, signage, etc.)) were then projected onto the terrain surface to sit at the correct X, Y, Z positions in space.

The photo viewpoints and project development target GPS waypoints collected during the field component of the Visual Impact Assessment were also loaded into Rhino 3D and projected onto the 3D terrain surface. These points capture the locations of the photographer (viewpoint locations) and the target objects (the Lodge locator balloon, the tarps representing the proposed tents, or the traffic cone representing the centerline of the entry drive) down to an accuracy of approximately 3 feet. The original photographs taken at the six viewpoints selected for simulations were also loaded into Rhino 3D to be used as background images for the photo simulations.

The models in Rhino 3D were then adjusted to correctly match the perspective of the background images based on the information stored in the GPS waypoints. The height of the camera in the Rhino model was positioned to match the height of the photographer. The target of the camera was set to the GPS location of the target site feature (hanging tarp to represent tents for VP-T1, VP-T2, and VP-T3; traffic cone to represent centerline of entry drive for VP-L2 and VP-L4; lodge building for VP-OM1). For each rendering, the lens length of the model in Rhino 3D was set to match the lens length of the original background photograph. Sun positions were set to precisely recreate the sun direction and shadows at the times the photographs were taken.

V-Ray for Rhino 3D, a raytracing renderer that calculates the path that rays of light will travel in a given scene, was used to render the proposed condition with accurate textures, shadows, and light levels. High resolution raster images of the proposed conditions were then exported from V-Ray and brought into Photoshop where they were composited with the original photographs. Foreground trees were isolated in the original photographs and layered on top of the simulated images. The rendered image was then adjusted to match the depth of field of the original image.

For viewpoints VP-T1, VP-T2, VP-T3, VP-L2, VP-L3, VP-L4, VP-L5 and VP-L6, three (or four) simulation images were exported:

- 1. The original, existing view photograph
- 2. The terrain surface reference image
- 3. The final simulated view
- 4. (For VP-T1 and VP-T3, a fourth figure of the final simulated view with proposed screen plantings included was also exported)

For viewpoint VP-OM1 Overlook Mountain Fire Tower, a model of the canopy was needed to accurately represent the degree to which existing trees would block views of proposed features. This was necessary due to the distance between the viewpoint and the Project Site, and because the viewpoint is situated at an elevation above the canopy at the Site. Therefore, portions of the canopy can be expected to obstruct views of proposed site features. The DSM surface made from LiDAR point data was used to create a mesh in Rhino 3D. Sections of the mesh were then removed to reflect proposed clearing limits. The resulting mesh accurately portrays proposed clearing limits and the degree of visibility of proposed site features from the Overlook Mountain Fire Tower.

For viewpoint VP-OM1, four simulation images were exported:

- 1. The original, existing view photograph
- 2. The terrain surface reference image
- 3. The DSM reference image
- 4. The final simulated view

See Figures 12-36 in Appendix A, Maps and Simulation Figures for the photographic renderings of each representative viewpoint.

## 3. Evaluation of Viewpoints Selected for Simulations

The following Table provides a list of all the viewpoints for which simulations were prepared and indicates the scenic or historic significance (if any) of the resource, the viewer group, the distance between the resource and the project site, and the extent of expected project visibility.

| VP# | Viewpoint                          | Significance<br>(NYSDEC inventory<br>category)                              | Potential<br>Viewers                           | Miles<br>from<br>Site | Description of Expected View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T1  | Isaacs<br>Property                 | No NYSDEC<br>classification,<br>this viewpoint is a<br>local concern review | Private<br>Property<br>Owner                   | 0.06                  | Filtered views of at least one camp space<br>will be visible from the Isaacs Property.<br>Evergreen plantings will be placed<br>around the tent for additional screening to<br>provide mitigation for this potential<br>change in view.                                                                                                                                                                                                                                                                                                                                         |
| T2  | Buck Property                      | No NYSDEC<br>classification,<br>this viewpoint is a<br>local concern review | Private<br>Property<br>Owner                   | 0.06                  | A very slight portion of two camp spaces<br>may be visible from the Buck property<br>through the intervening vegetation.<br>Evergreen plantings will still be placed<br>around the camp space for additional<br>screening to provide mitigation for this<br>potential change in view.                                                                                                                                                                                                                                                                                           |
| Τ3  | Monchik<br>Property                | No NYSDEC<br>classification,<br>this viewpoint is a<br>local concern review | Private<br>Property<br>Owner                   | 0.06                  | Filtered views of at least three camp<br>spaces will be visible from the Monchik<br>Property. Evergreen plantings will be<br>placed around the camp space for<br>additional screening to provide mitigation<br>for this potential change in view.                                                                                                                                                                                                                                                                                                                               |
| L2  | Entry Drive<br>Cone - Head-<br>On  | No NYSDEC<br>classification,<br>this viewpoint is a<br>local concern review | Drivers &<br>passengers<br>on NYS<br>Route 212 | 0.01                  | The facility entrance drive, welcome<br>sign, light fixtures, and plantings will be<br>visible from NYS Route 212 when<br>approaching from the east and the west.<br>No other site development will be visible.                                                                                                                                                                                                                                                                                                                                                                 |
| L4  | Entry Drive<br>Cone -<br>Eastbound | No NYSDEC<br>classification,<br>this viewpoint is a<br>local concern review | Drivers &<br>passengers<br>on NYS<br>Route 212 | 0.02                  | The facility entrance drive, welcome<br>sign, light fixtures, and plantings will be<br>visible from NYS Route 212 when<br>approaching from the east and the west.<br>No other site development will be visible.                                                                                                                                                                                                                                                                                                                                                                 |
| OM1 | Overlook<br>Mountain Fire<br>Tower | State designated<br>trail in NYSDEC<br>Forest Preserve                      | Hikers –<br>open to the<br>public              | 2.62                  | Distant filtered view of the site including<br>the Lodge, Pavilion, Welcome Center,<br>and General Manager's House.<br>Additionally, portions of the proposed<br>ground plane and roadway will be<br>visible. Visible elements of the Terramor<br>Catskills development will be positioned<br>between five prominent existing clearings<br>in the surrounding landscape: (1)<br>Saugerties-Woodstock Transfer Station,<br>(2) Zena Cornfields, (3) Fam Acres LLC<br>property, (4) Town of Woodstock<br>Landfill, (5) Woodstock Jewish<br>Congregation. Other prominent features |

Table 5Evaluation of Simulated Views

| in the existing view include the NYS<br>Route 212 corridor and the Quality |
|----------------------------------------------------------------------------|
| Woven Labels, Especially Swedish Inc,<br>and Woodstock Wood facilities.    |
|                                                                            |

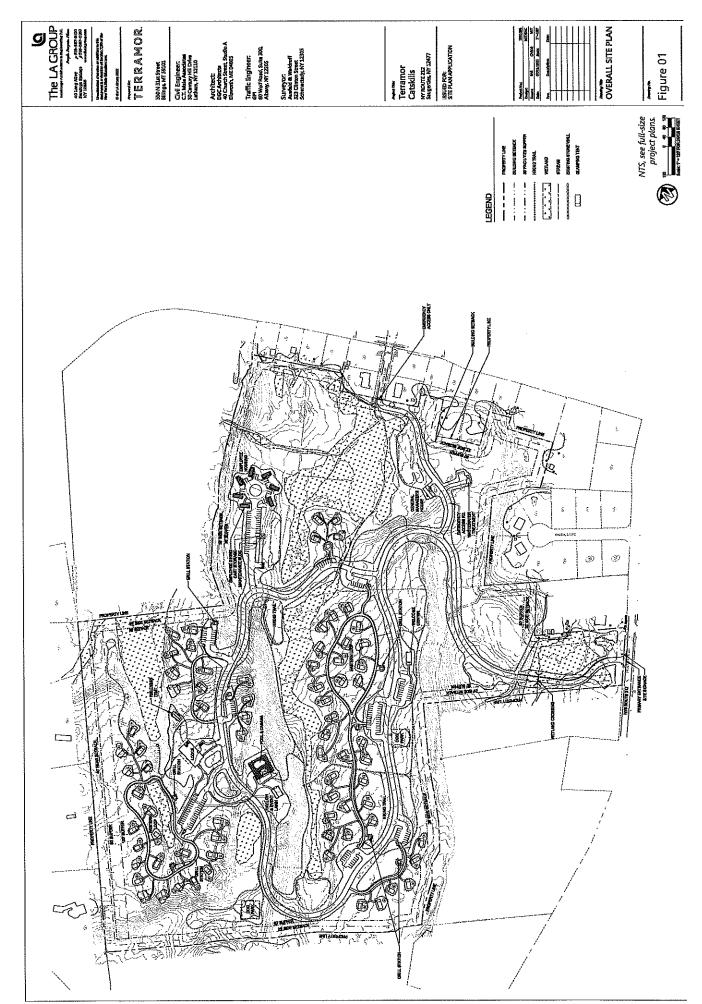
#### 4. Visual Impact Assessment - Summary

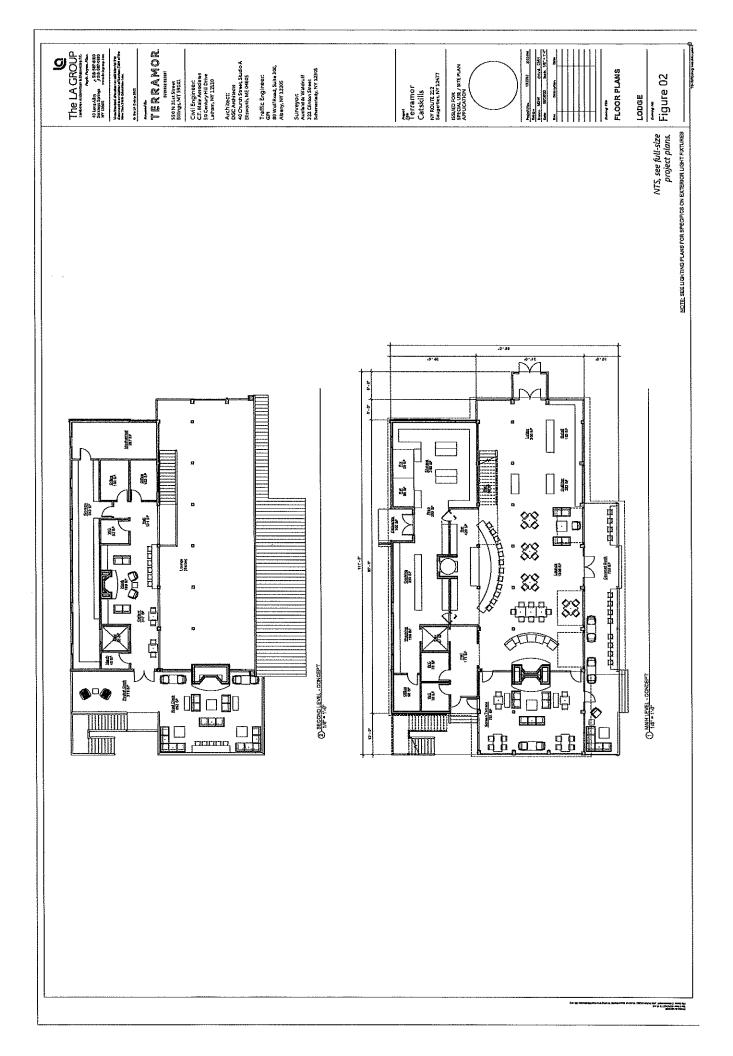
Visual impact is assessed in terms of the anticipated change in visual resources, including whether there would be a change in character or quality of the view with respect to significant scenic and aesthetic resources.

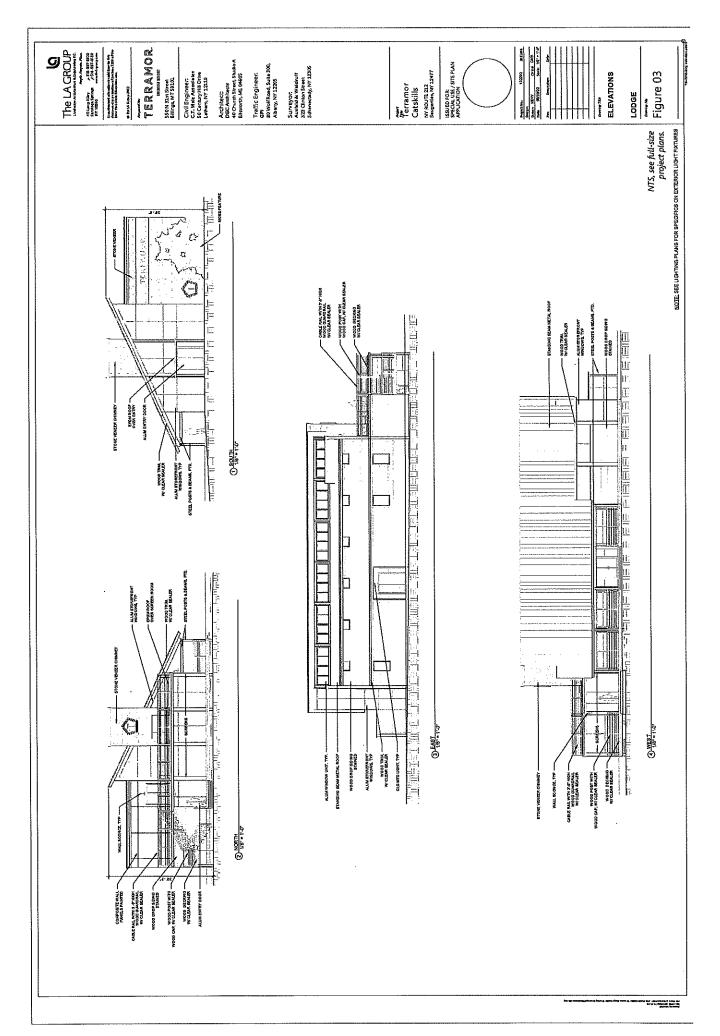
The zone of potential visibility map based on both topography and existing vegetation (Figure 6) showed that potential views into the Project would be very limited. Field reconnaissance and digital simulations verified that the proposed project will be minimally visible from the surrounding area.

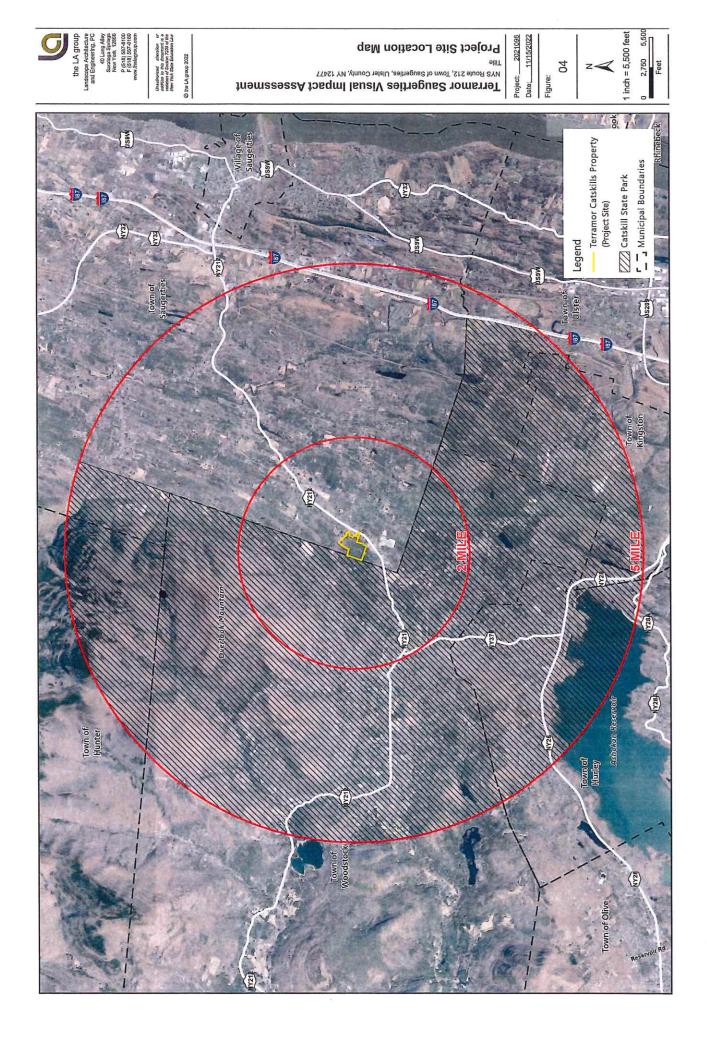
The only viewpoints from which any component of the proposed Project may be visible are: VP-T1 (filtered views of tents from the Isaacs Property); VP-T2 (filtered views of tents from the Buck Property); VP-T3 (filtered views of tents from the Monchik Property); VP-L2, VP-L3, and VP-L4 (views of the Entry Drive from NYS Route 212); VP-L5 and VP-L6 (views of the emergency access drive from Cottontail Lane); and VP-OM1, VP-OM2, VP-OM3, VP-OM4, VP-OM5, and VP-OM6 (filtered views of the Lodge, Pavilion, Welcome Center, General Manager's House, ground plane, and roadway from the Overlook Mountain Fire Tower and scenic overlooks). Of these viewpoints, only those on the State-designated Overlook Mountain Trail are considered significant aesthetic resources according to the NYSDEC Visual Policy. The neighboring properties (Isaacs, Buck and Monchik Properties) and public roads (NYS Route 212 and Cottontail Lane) were investigated in this report as local concerns upon request from the Planning Board's consultant. This goes above and beyond the NYSDEC requirements for Visual Impact Assessment, but was appropriate to include in order to provide a complete assessment of the Project.

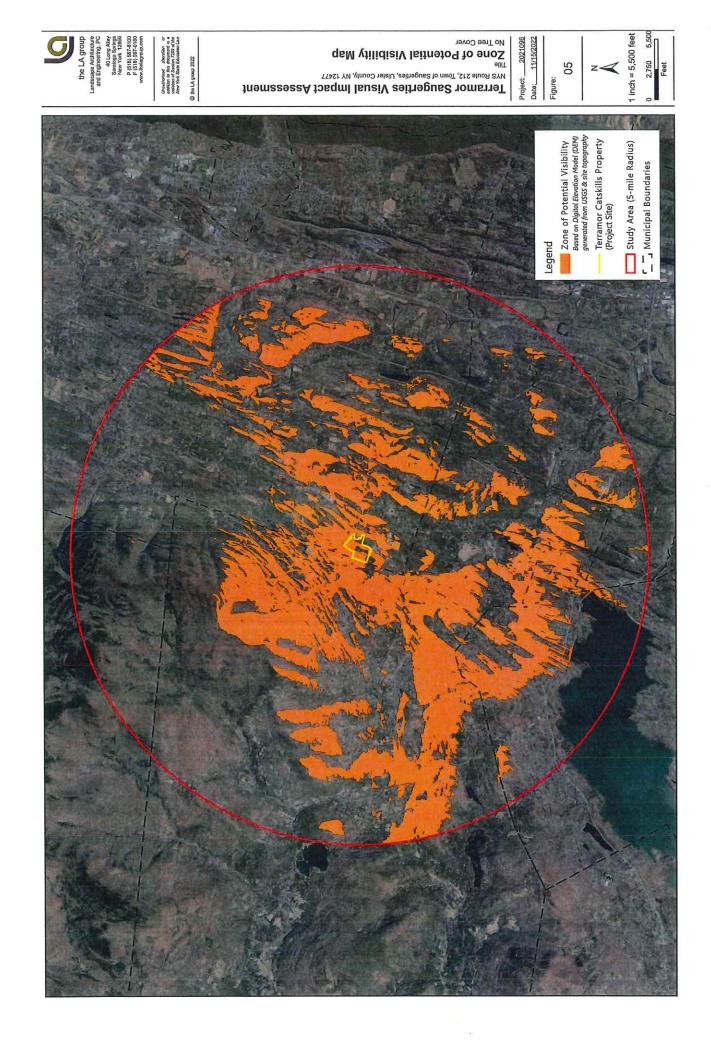
The results of this analysis indicate that the Project will not result in any significant adverse impacts to visual resources within the 5-mile radius study area.


Camp spaces will be visible to varying degrees from neighboring private properties on Raybrook Drive. While views of tents from the Buck property will be nearly entirely screened, there will be views that include camp spaces from the Isaacs and Monchik properties. However, intervening vegetation to remain, along with proposed screen plantings, while not totally blocking views into camp spaces from the Isaacs and Monchik property lines, provide views that are in general harmony with the character and appearance of the surrounding neighborhood and of the Town of Saugerties and will not adversely affect the general welfare of the inhabitants of the Town.

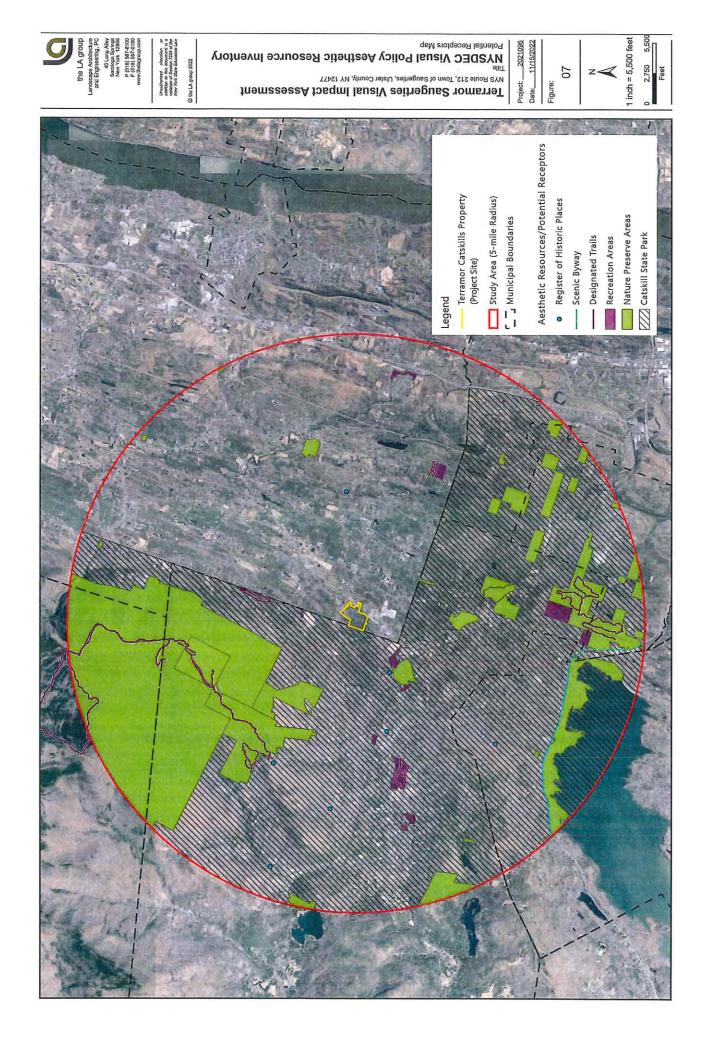

<sup>1</sup> http://www.dec.state.ny.us/website/dcs/policy/visual2000.pdf

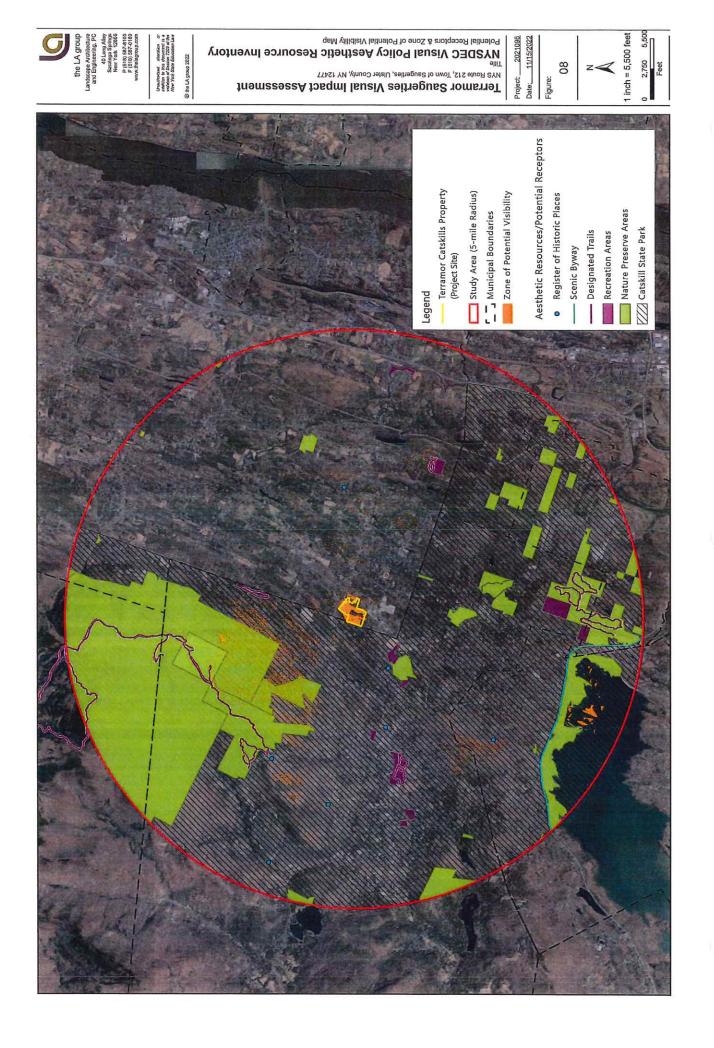

<sup>2</sup> http://www.apa.state.ny.us/Documents/Guidelines/Visual%20Analysis%20Methodology.swf

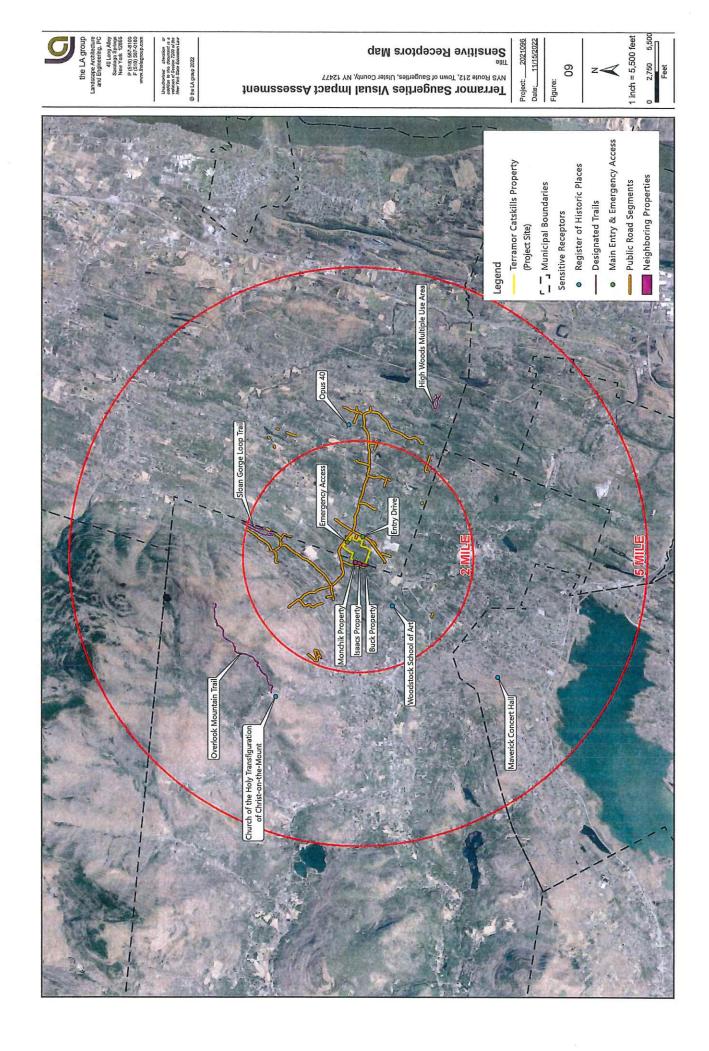

# APPENDIX A

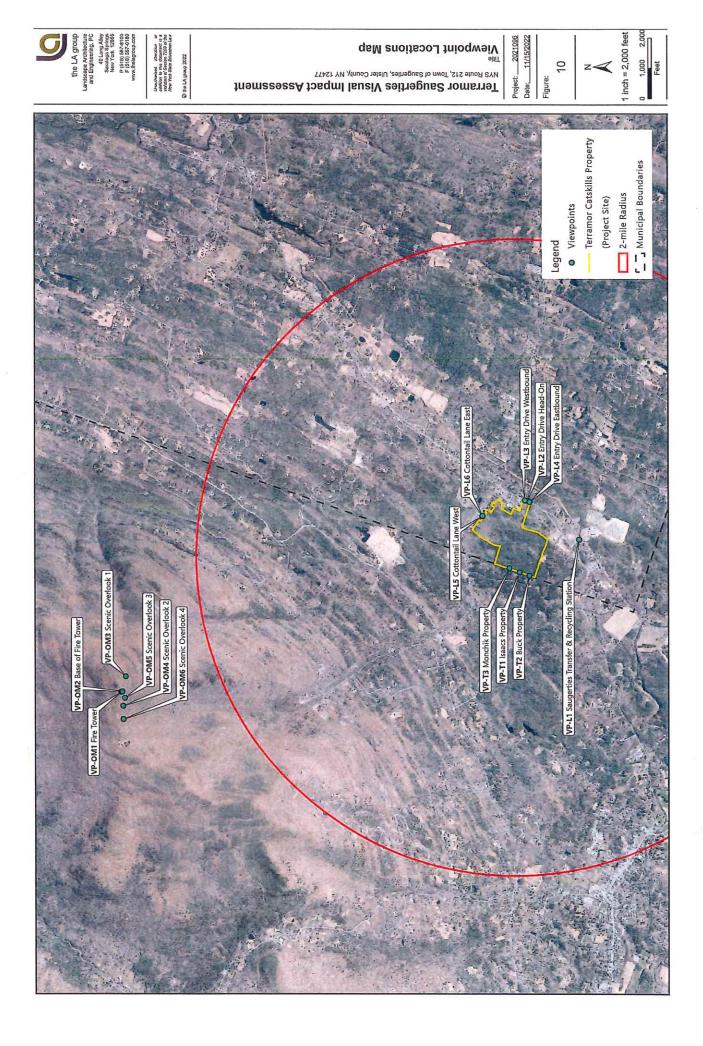

# Maps and Simulation Figures

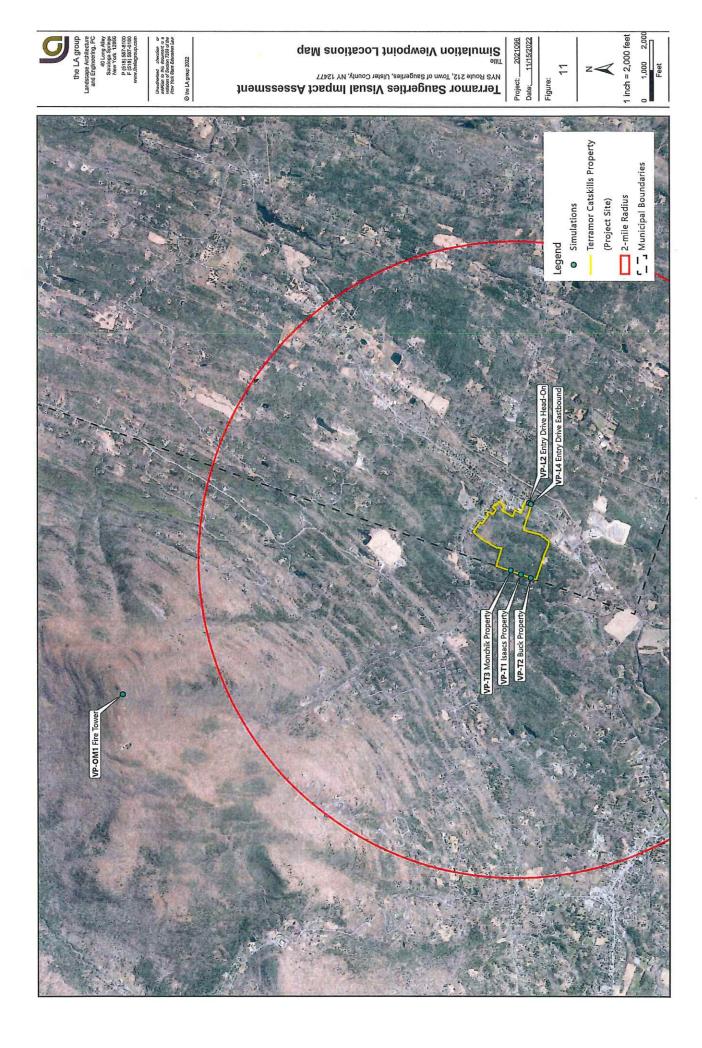




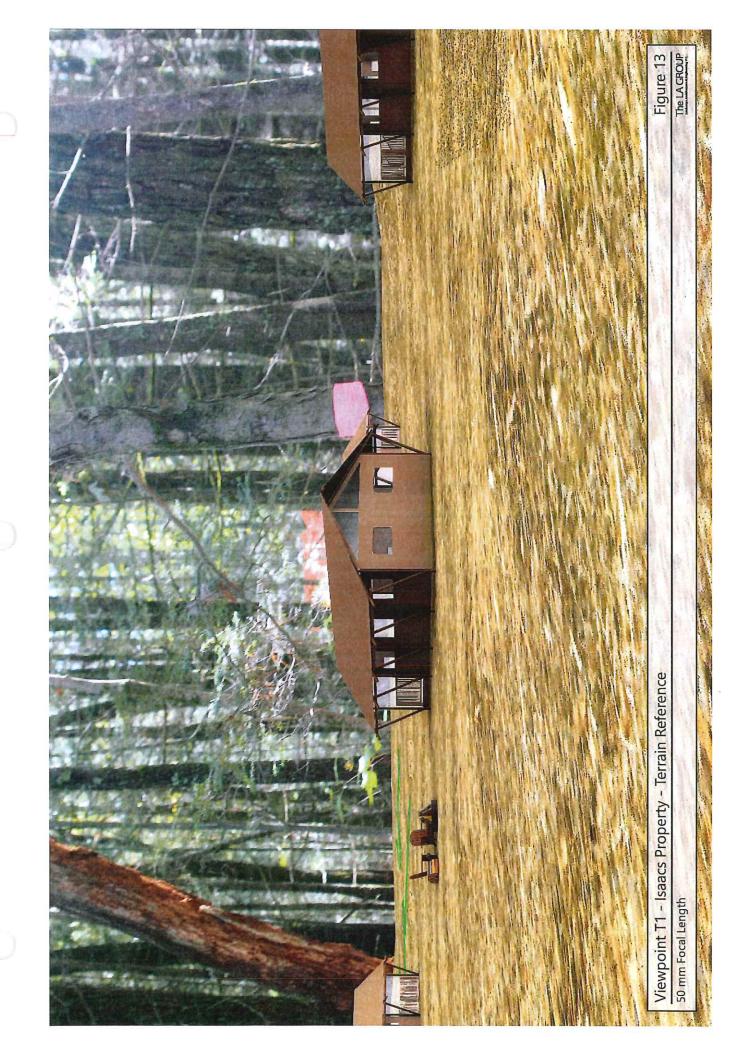



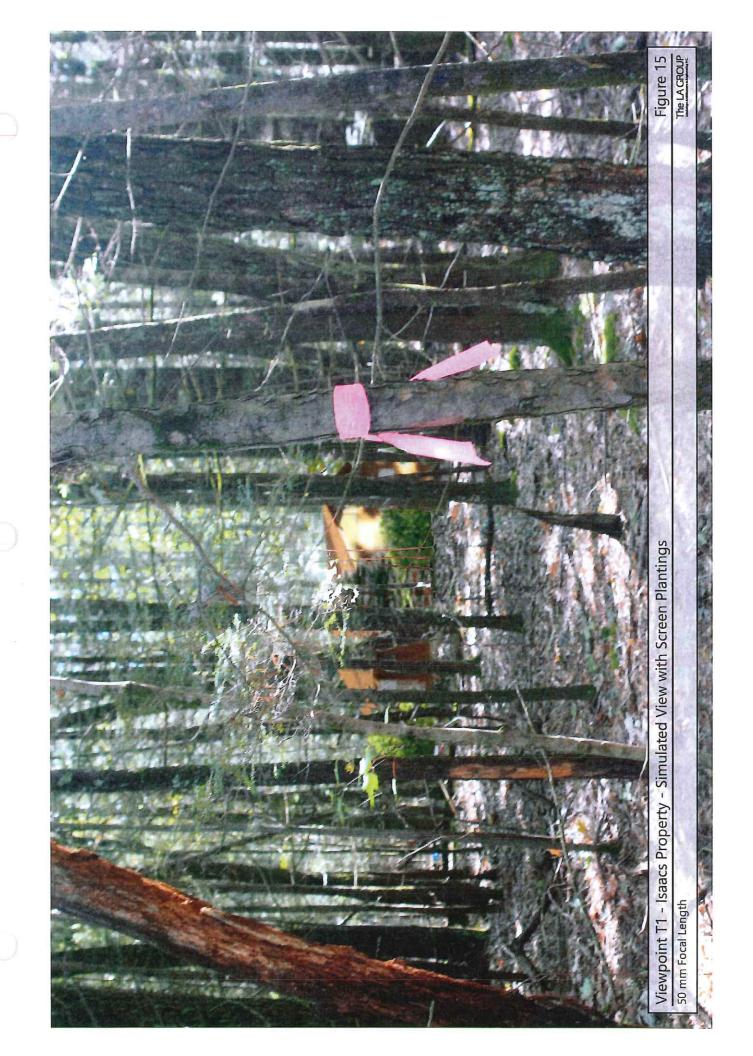









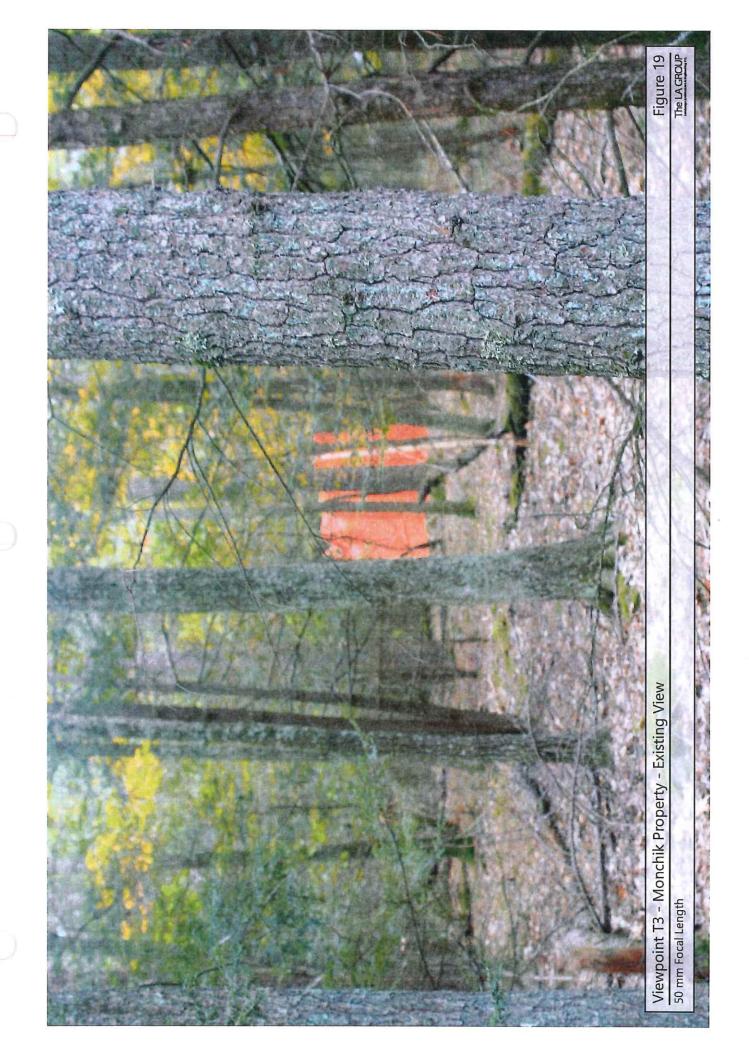


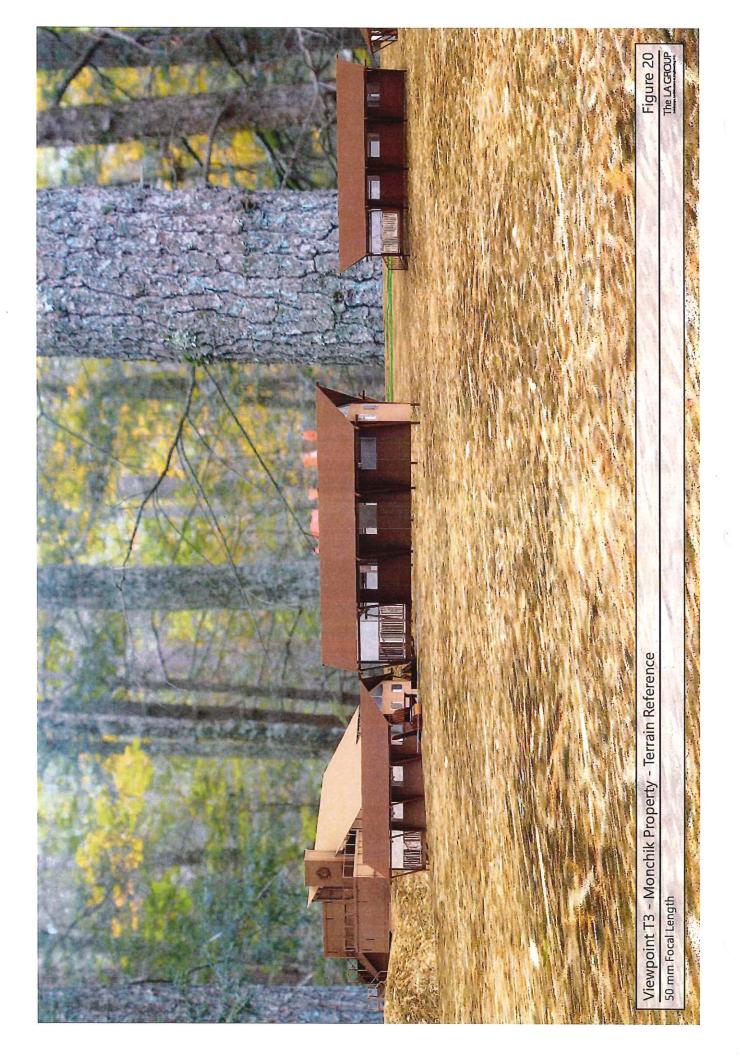



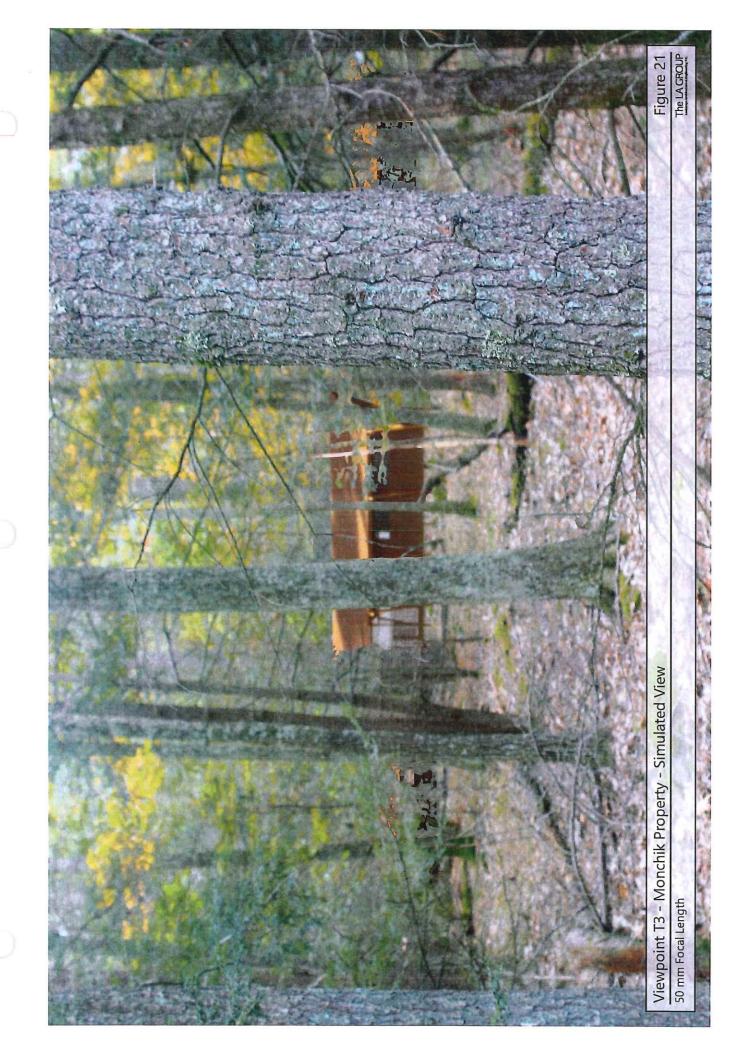


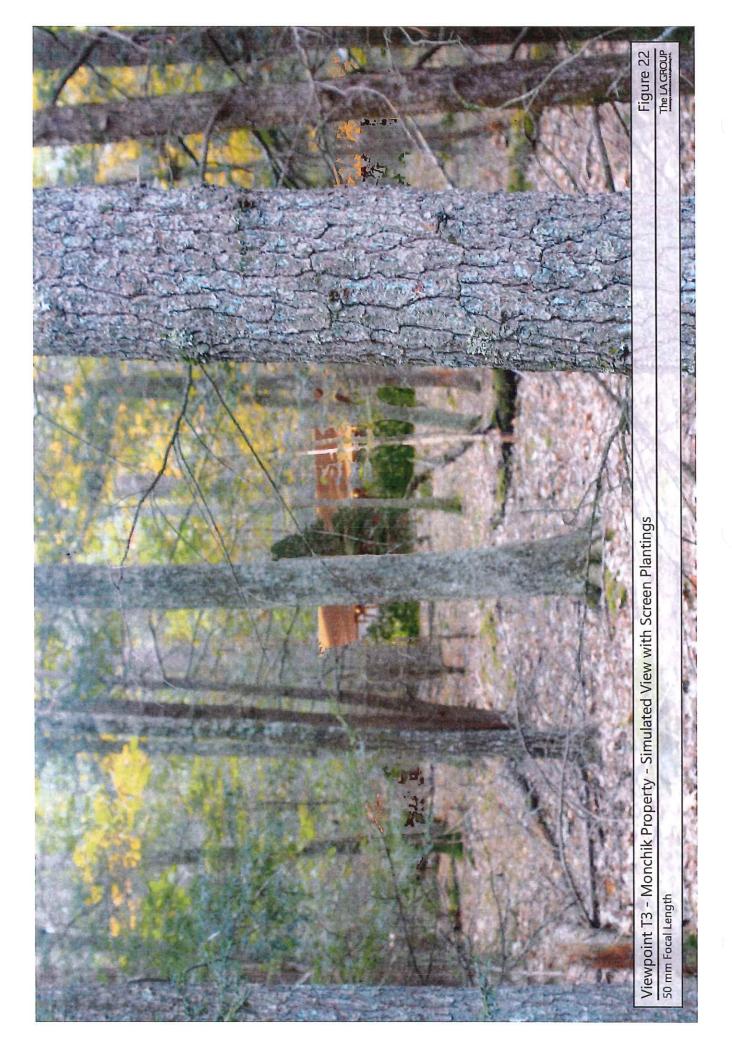




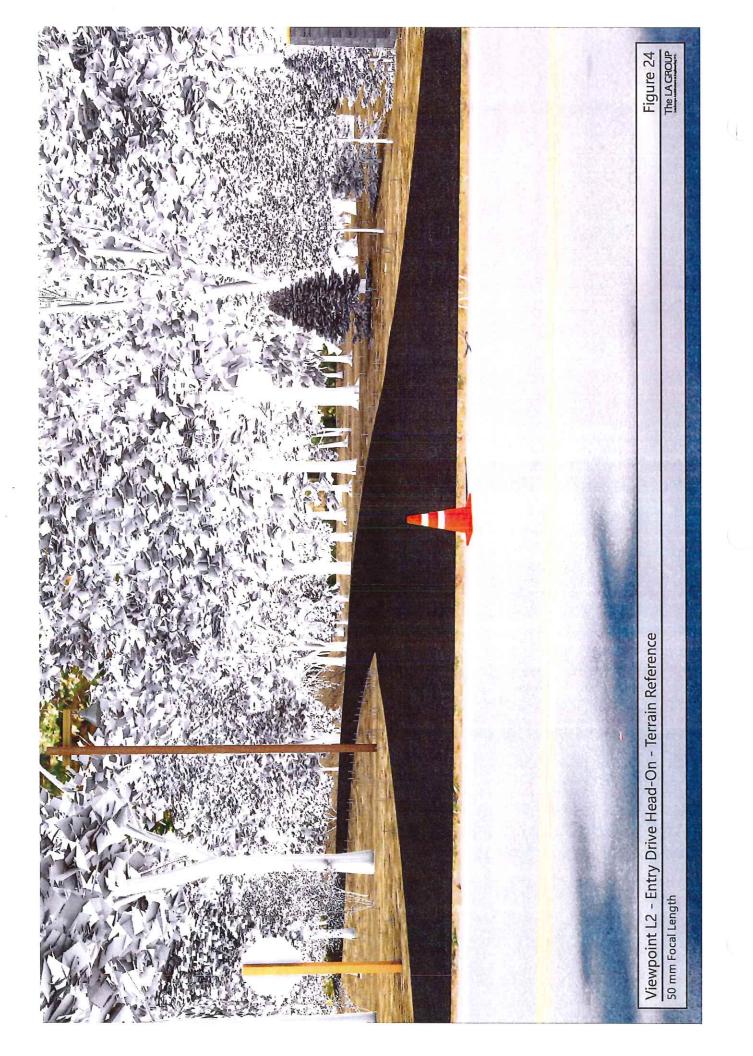



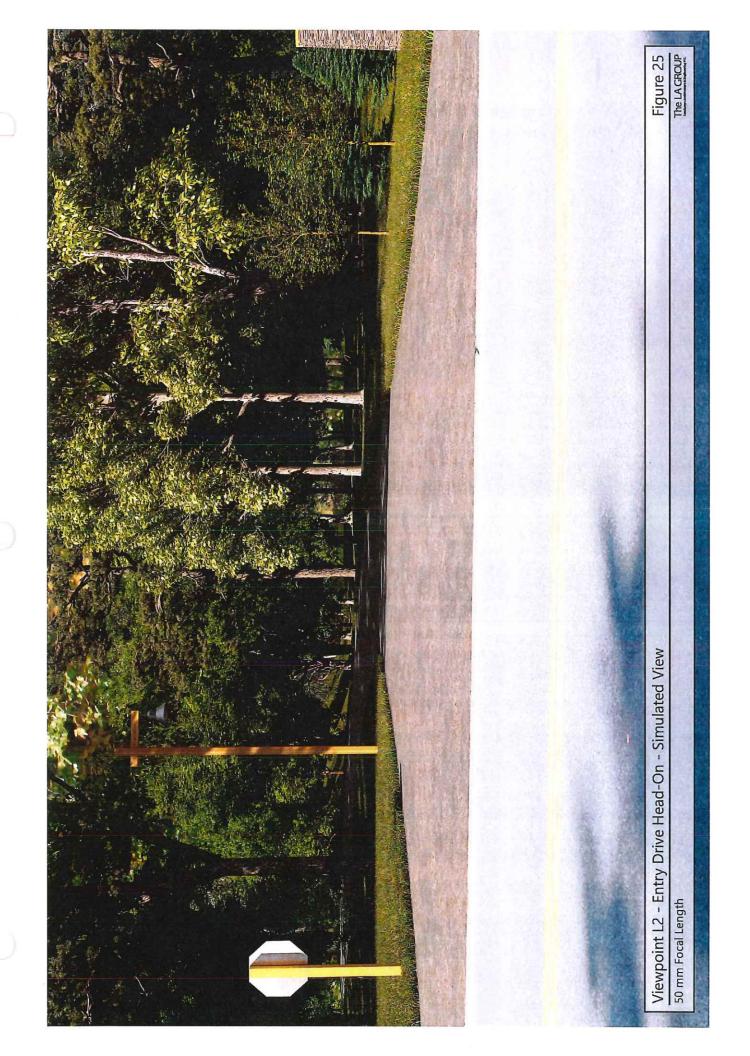



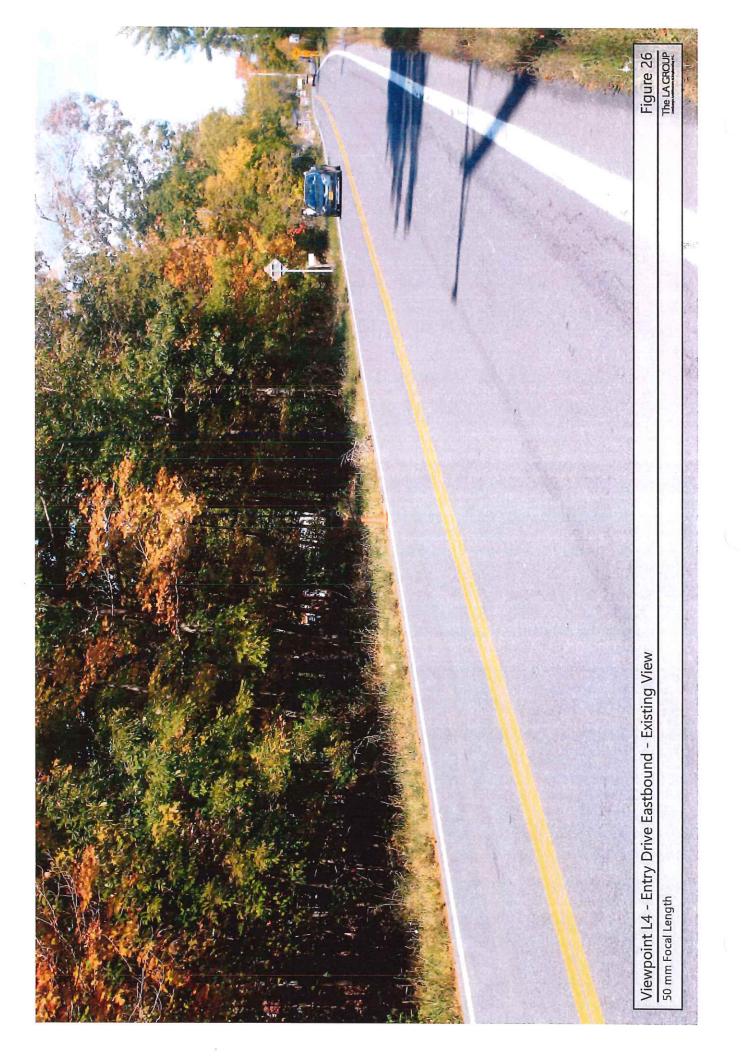



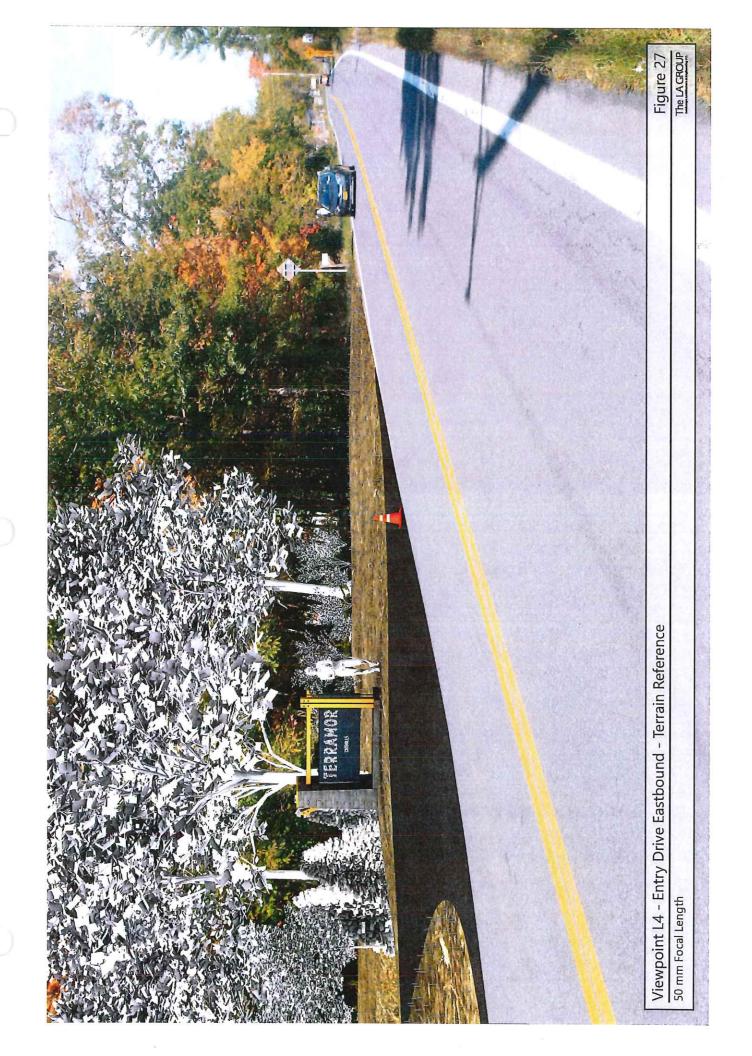



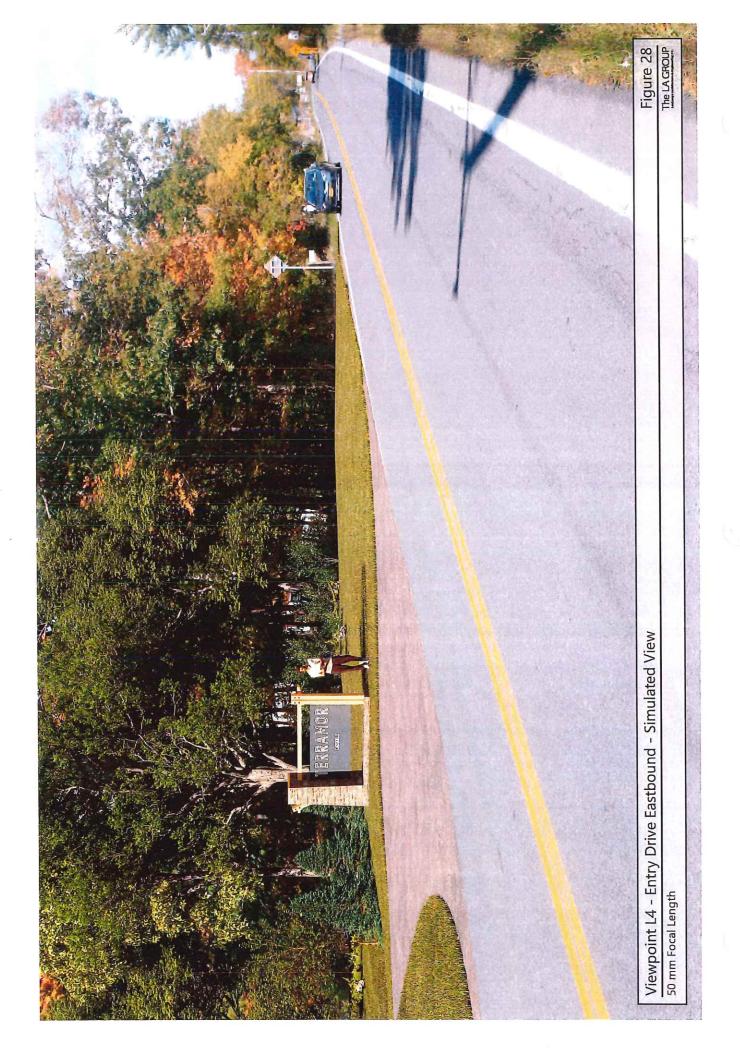


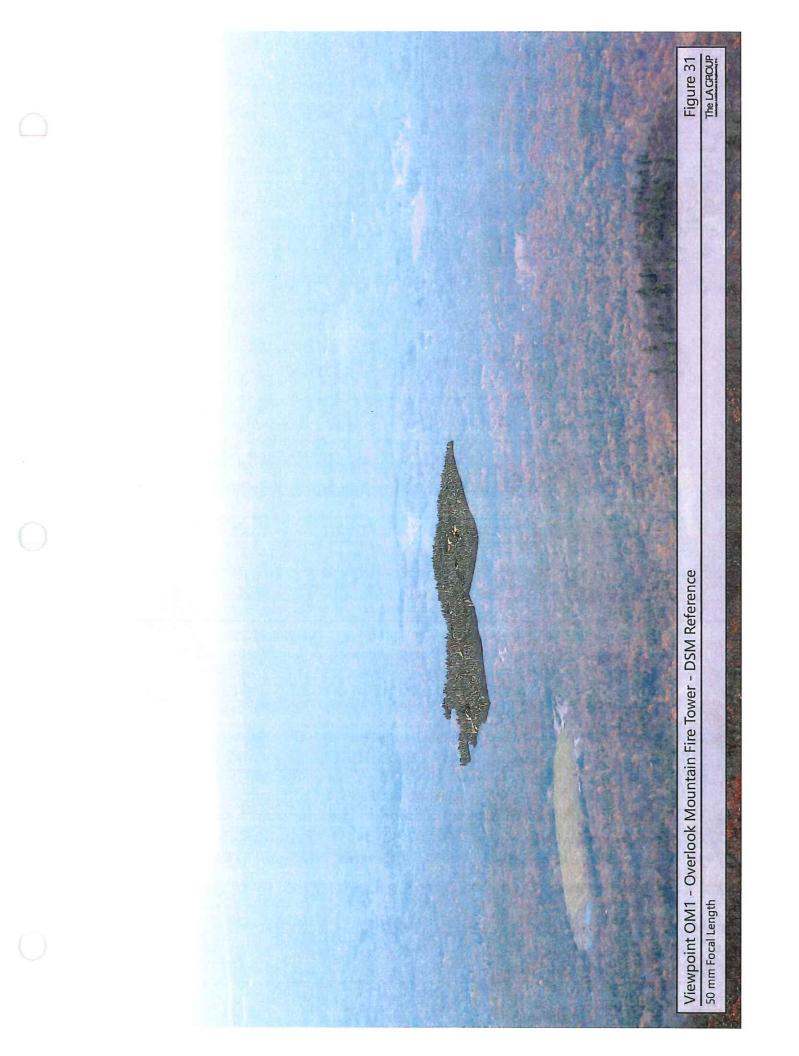



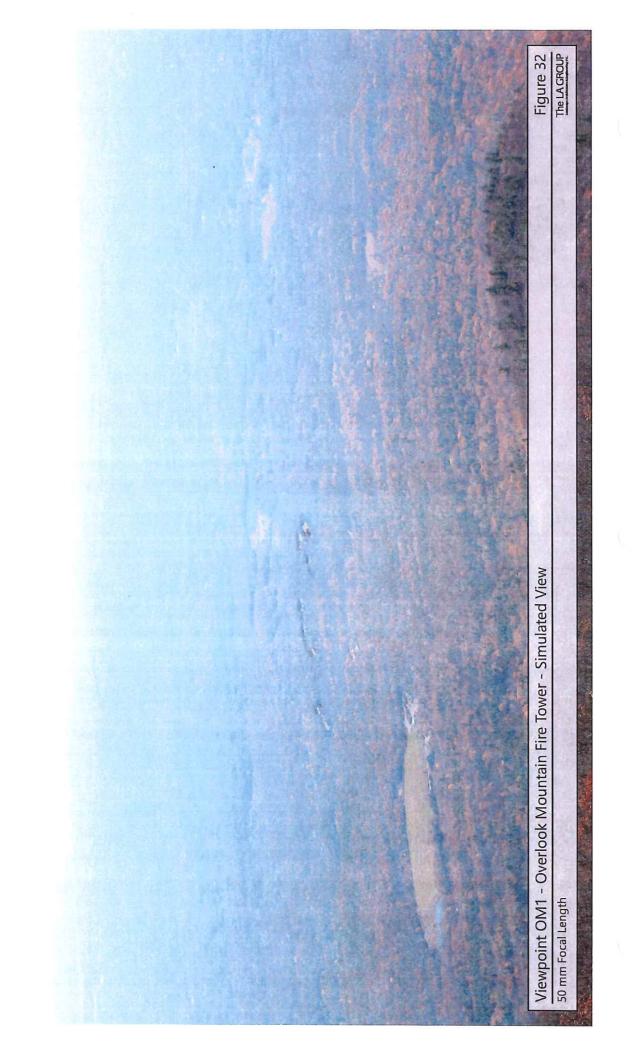



















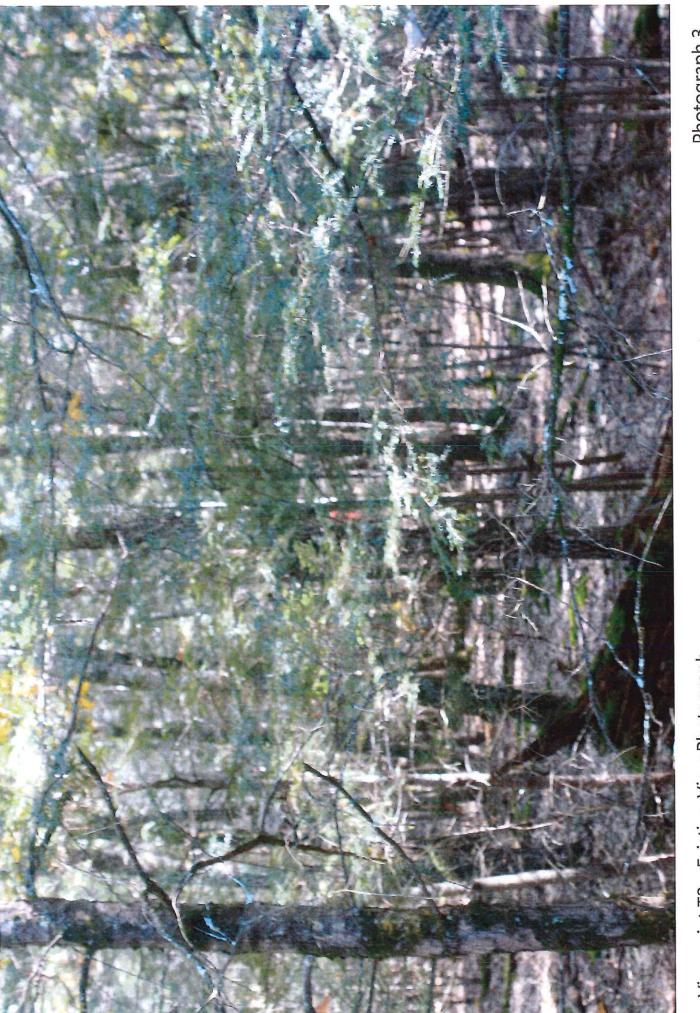







## **APPENDIX B**

## **Existing View Photographs**

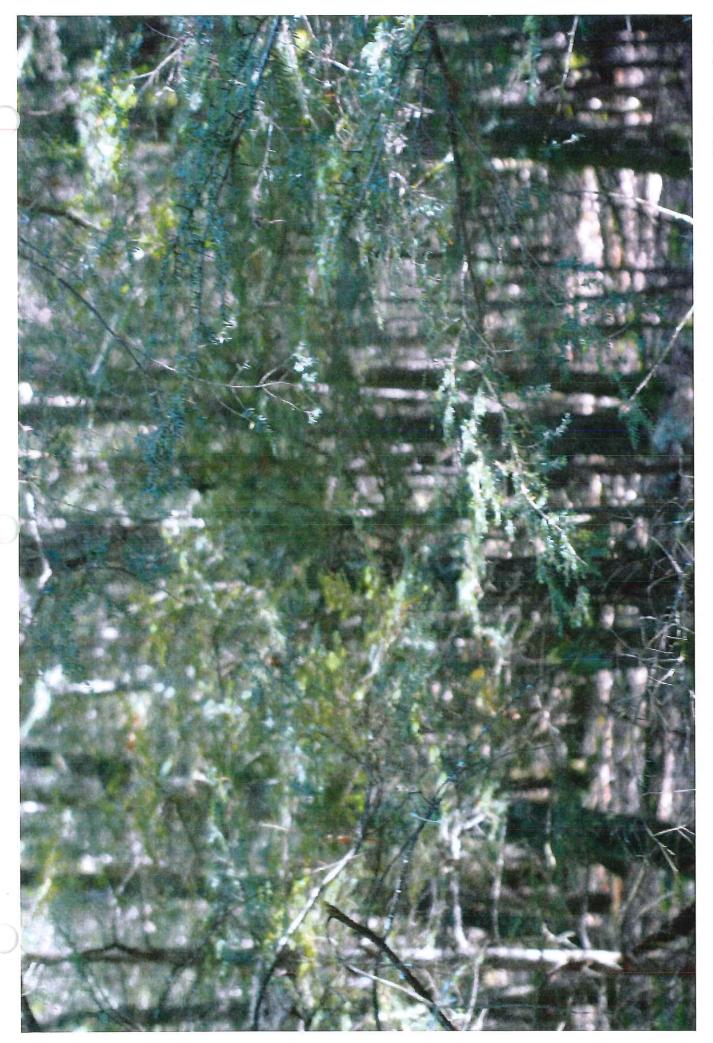



Viewpoint T1 - Existing View Photograph 50 mm F V Length



Viewpoint T1 - Existing View Photograph 85 mm Focal Length





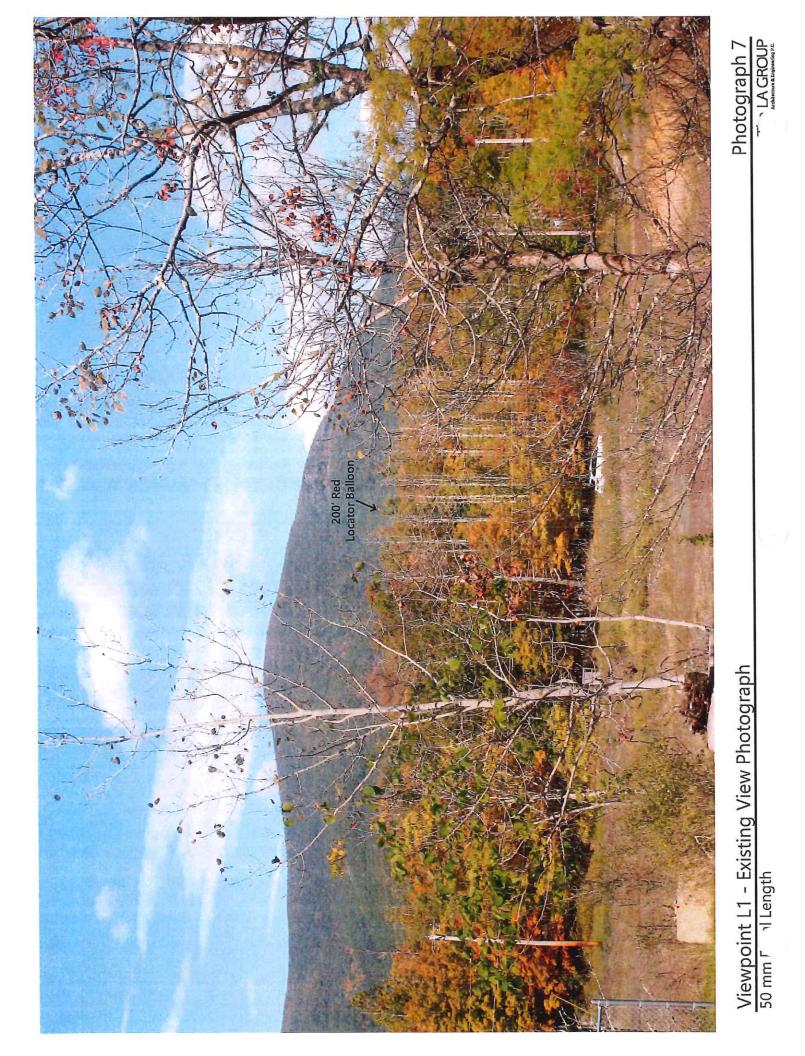

Viewpoint T2 - Existing View Photograph 50 mm r M Length

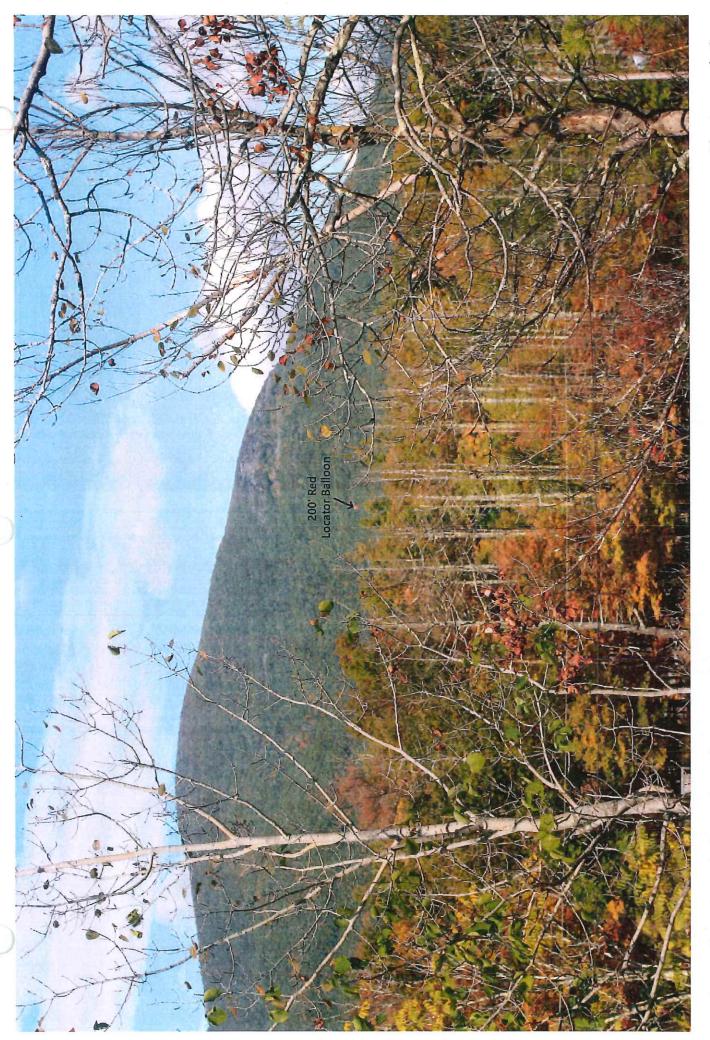
Photograph 3



Viewpoint T2 - Existing View Photograph 85 mm Focal Length





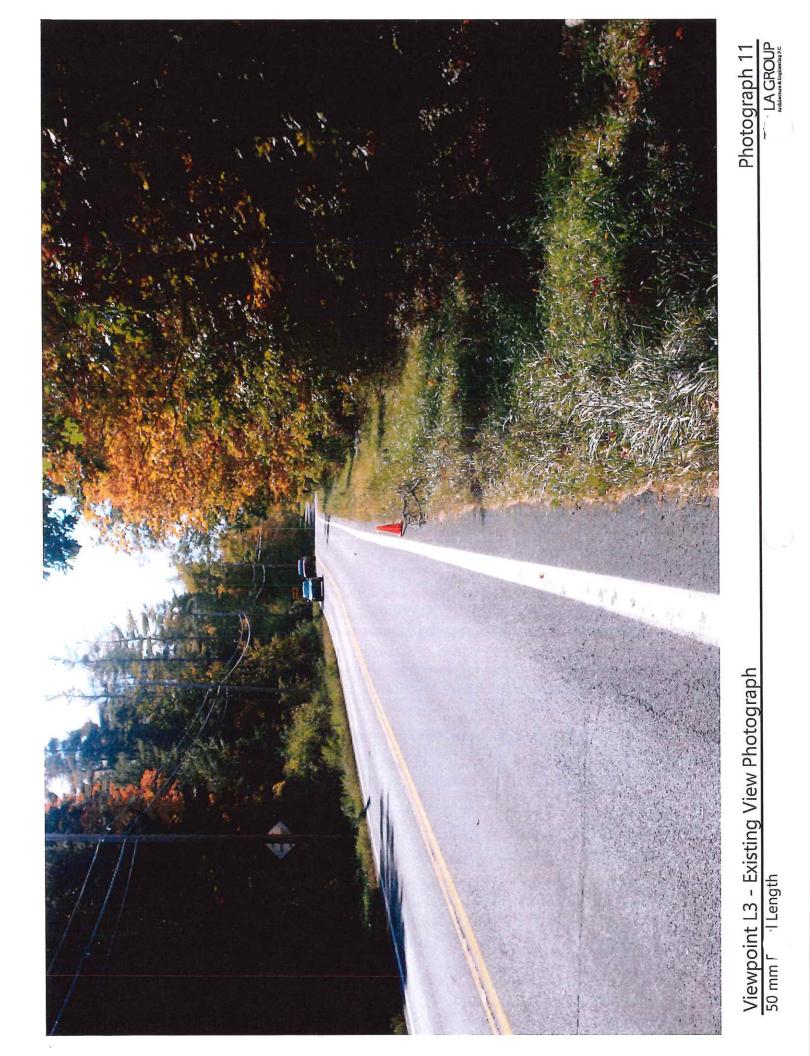


Viewpoint T3 - Existing View Photograph 50 mm F 1 Length



Viewpoint T3 - Existing View Photograph 85 mm Focal Length

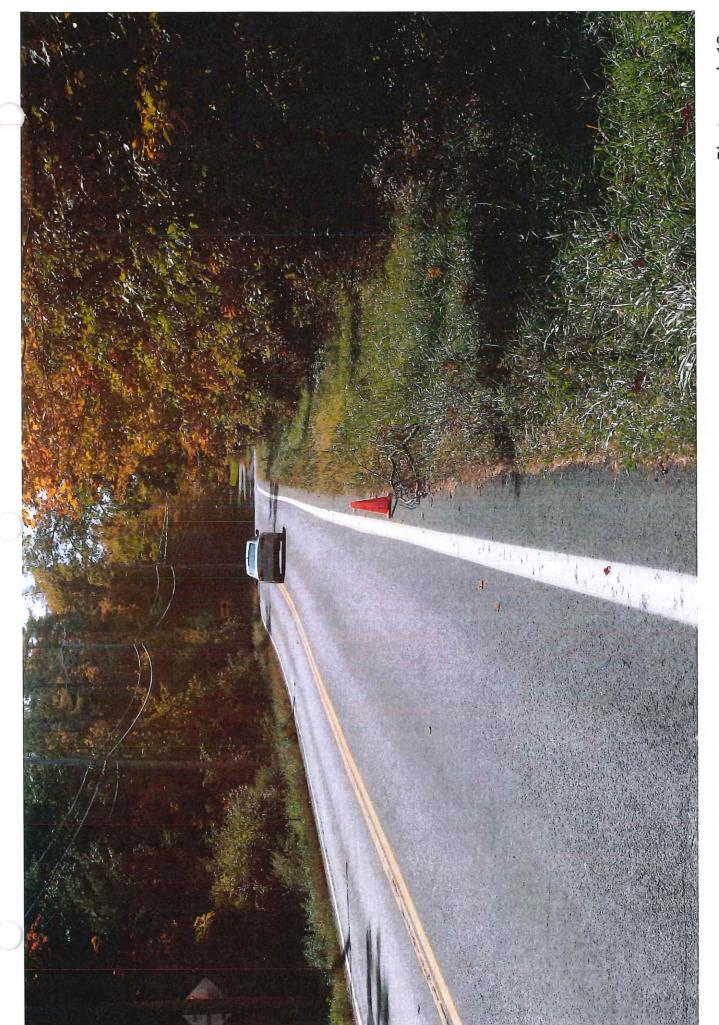


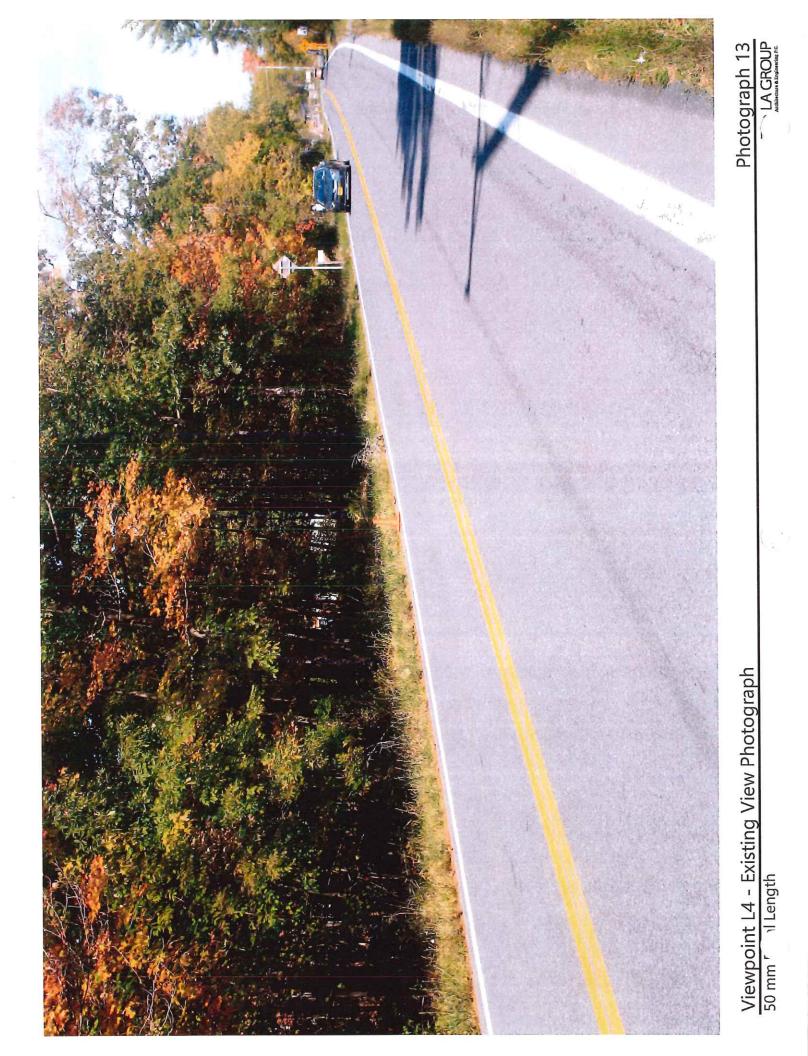





Viewpoint L1 - Existing View Photograph 85 mm Focal Length

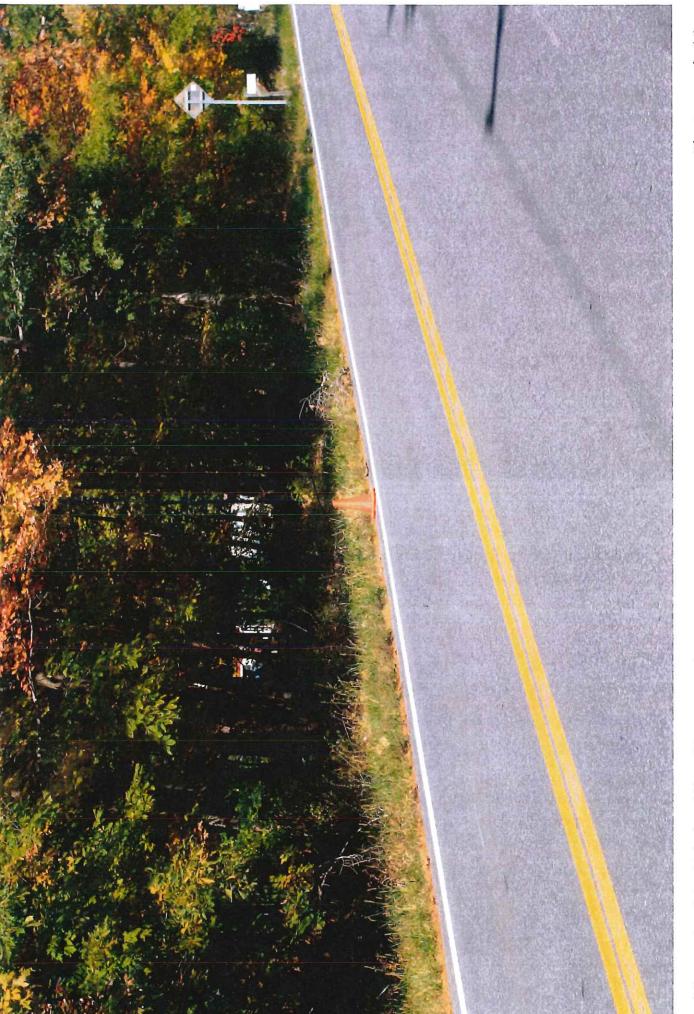
Photograph 8 The LA GROUP

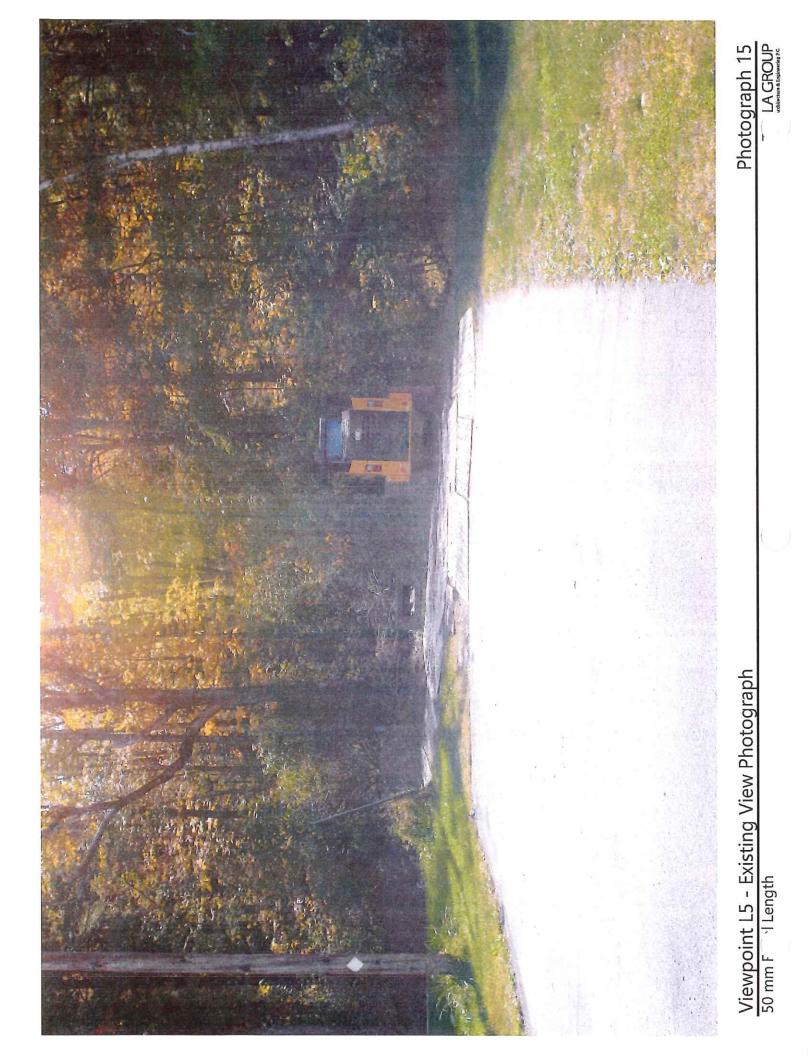


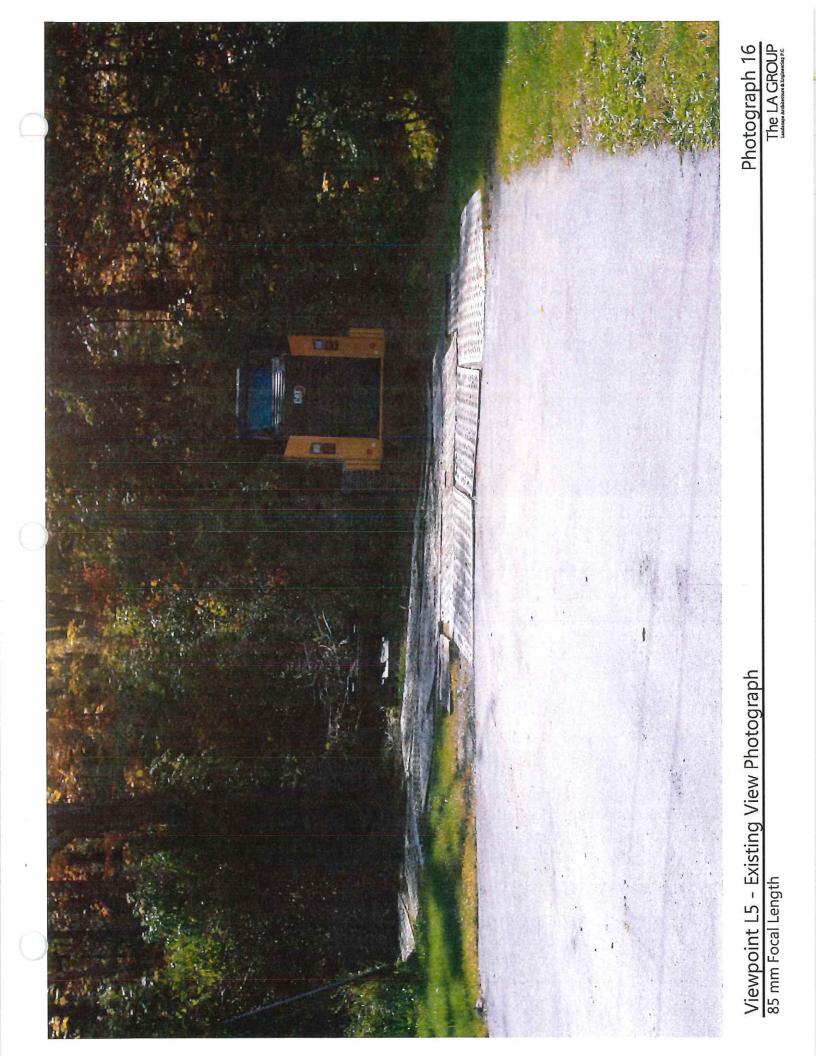









Viewpoint L3 - Existing View Photograph 85 mm Focal Length

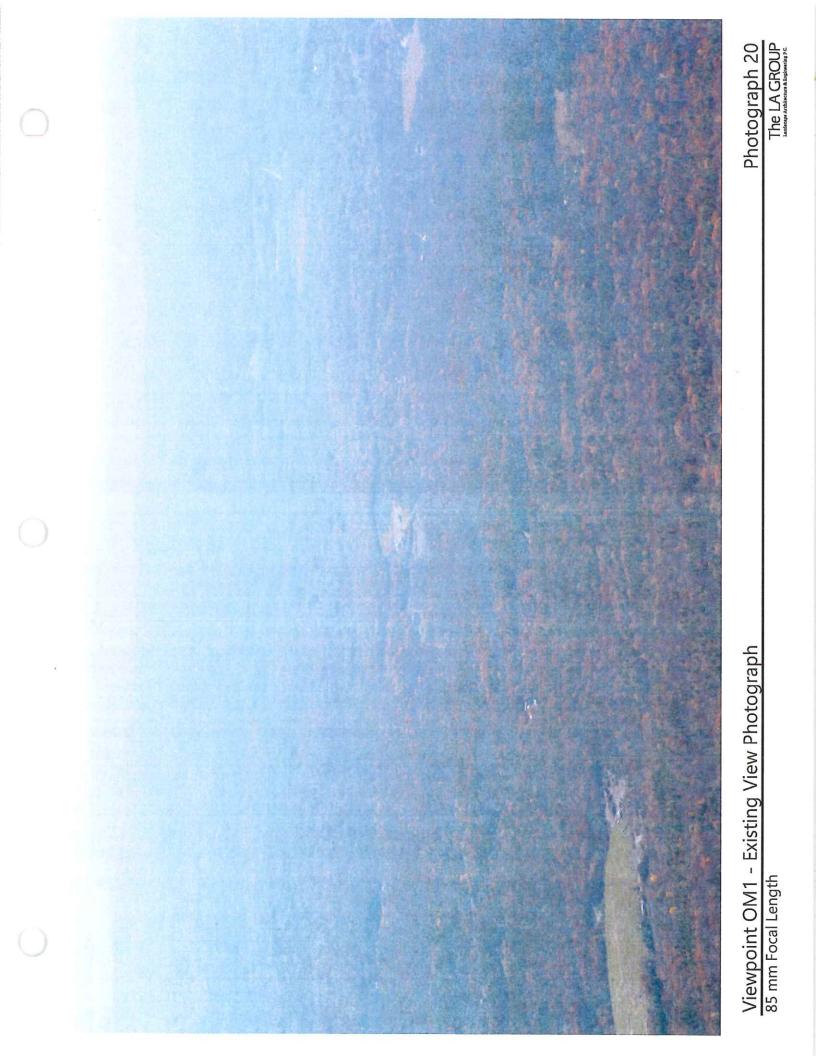





Viewpoint L4 - Existing View Photograph 85 mm Focal Length

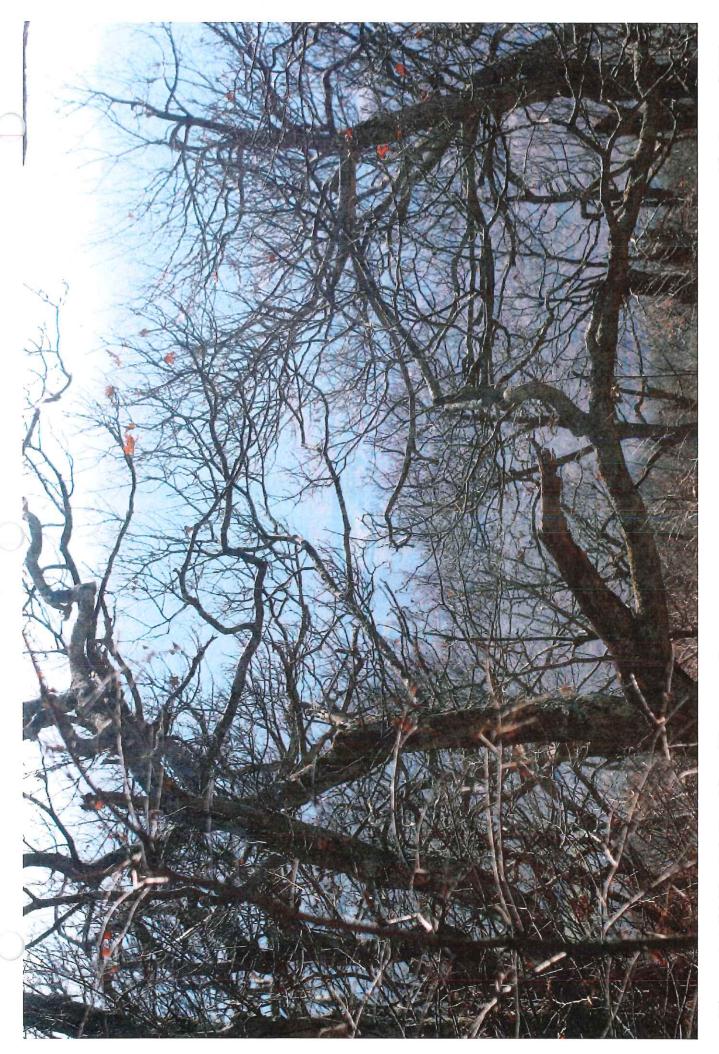


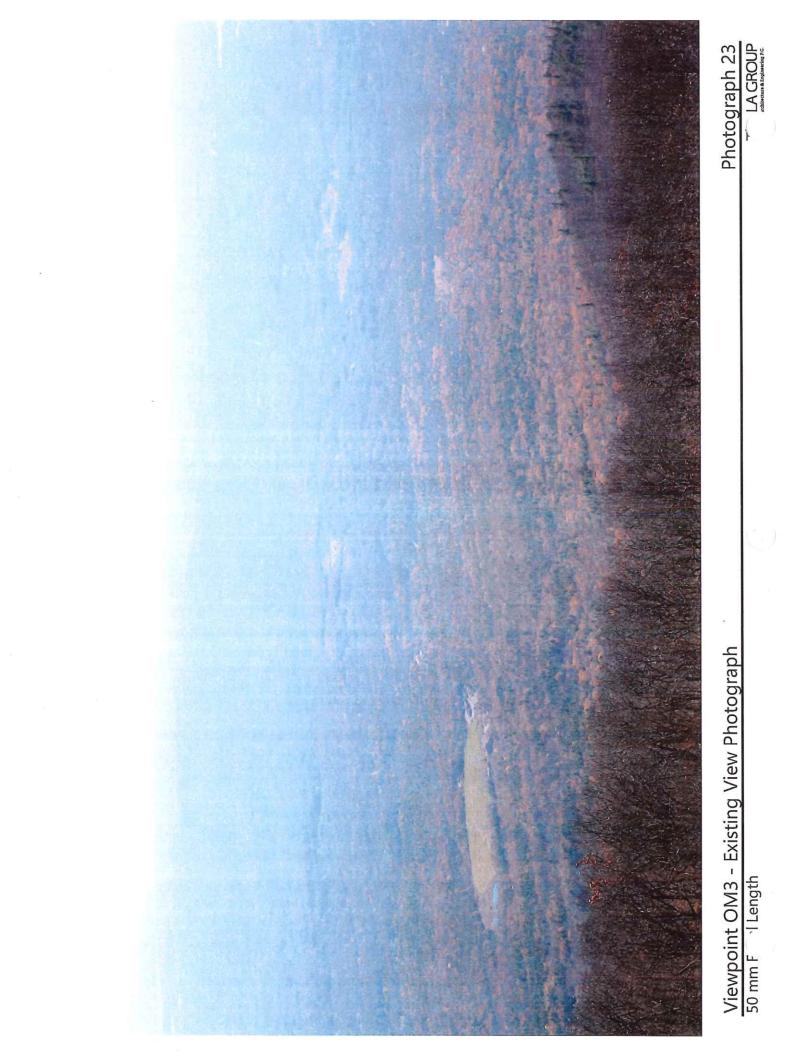


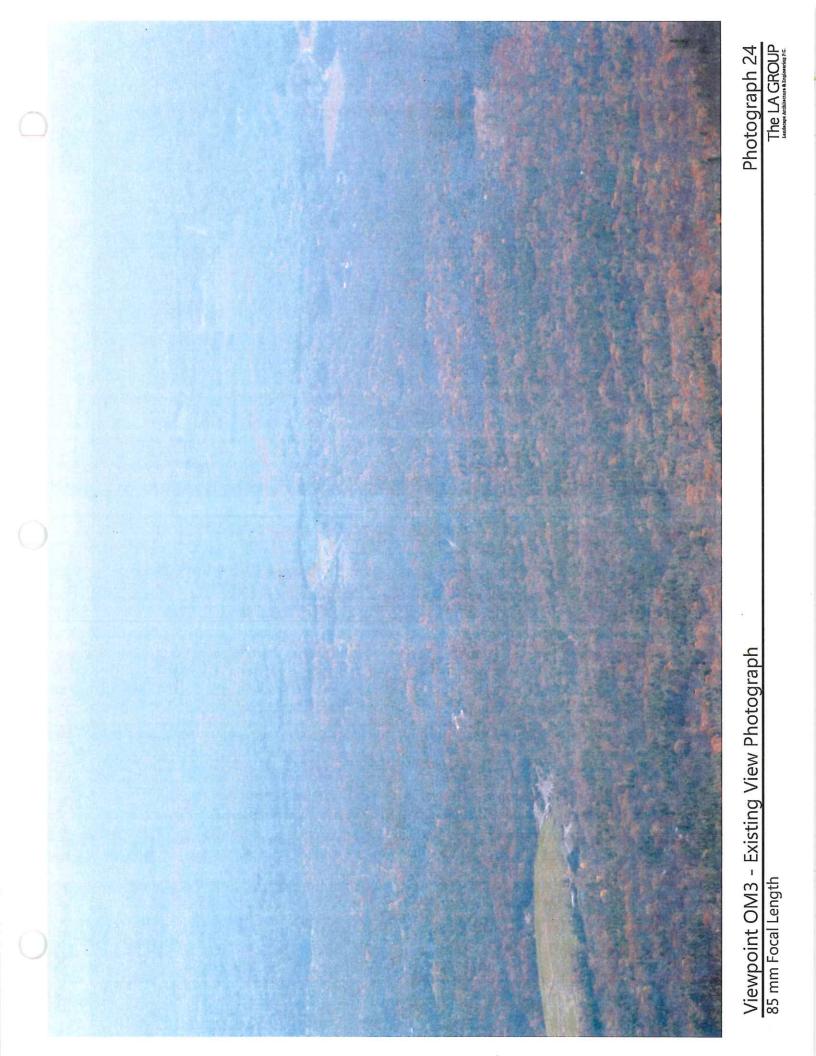









Viewpoint OM2 - Existing View Photograph 85 mm Focal Length




















### **APPENDIX C**

## Visual Impact Assessment Field Datasheets

|                            | and Eng      | ape Architecture fine<br>jineering, RC. fine<br>group.com | /top line heighters 121                                               |
|----------------------------|--------------|-----------------------------------------------------------|-----------------------------------------------------------------------|
| VIA FII                    | ELD FO       | <b>RM FOR INDIV</b>                                       | VIDUAL VIEWPOINTS                                                     |
|                            |              |                                                           | Page / of                                                             |
| Project Na                 | me Tog       | <u>Cets</u> LA                                            | G Project Number _ 2021144                                            |
| Viewpoint                  | Location #   | and Name Woody                                            | 35 Q TEGORY                                                           |
|                            |              | . –                                                       | Camera Used <u>Canon Eos</u>                                          |
|                            |              | 15                                                        |                                                                       |
|                            |              |                                                           | chur burre, 70                                                        |
| GPS Used                   |              | · · · · · · · · ·                                         | · · · ·                                                               |
| GPS Used_                  | JEDIE        |                                                           | GPS Point Taken? Yes D No                                             |
| Coordinate                 | *S X (E)     | 42. VH8 (4-1                                              | Y(N)74.0789.30                                                        |
| Bearing                    | Loolaing_    | ahim L Abu                                                | -rol tent SE 131"                                                     |
| View Locat                 | tion Descrip | ption (example "on sl                                     | houlder of the road, " or "down the bank looking                      |
| through tree               | es, " etc.)  |                                                           |                                                                       |
|                            |              |                                                           |                                                                       |
|                            |              |                                                           |                                                                       |
| -                          | -            |                                                           | · · · · · · · · · · · · · · · · · · ·                                 |
| Background                 | -            |                                                           |                                                                       |
| Locator Vis<br>Balloons Vi |              |                                                           | inoculars No inoculars No inoculars No                                |
| Project Site               |              |                                                           |                                                                       |
| ~                          |              | ible, but the site clearly                                |                                                                       |
| Picture                    | 7 com *      | Balloon Color/# Vi                                        |                                                                       |
| Number(s)                  |              |                                                           | sible Relationship to Other Dominant<br>Land Uses (check appropriate) |
| 436, 435,4                 | ·····        |                                                           | Not indigenous                                                        |
|                            |              |                                                           | Diversity of land Uses in View                                        |
| 433,22,31                  | 53           | NA                                                        | Consolidation of Intrusions                                           |
|                            | 65           | · /                                                       | View Durations (if applicable)                                        |
| 30,29                      |              |                                                           | 6 seconds +                                                           |
|                            |              |                                                           | 3-6 seconds                                                           |
|                            |              |                                                           | Less than 3 seconds                                                   |
|                            |              | 1                                                         |                                                                       |
|                            |              |                                                           | Other                                                                 |

ann stro @ 12

|                                                                       |                                                        | neering, P.C.                                                              | Ney 21×20 /2'VP                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | www.thelagn                                            | oup.com                                                                    | They are the the                                                                                                                                                                                                                                                                                                                                                 |
| VIA FIE                                                               | LD FOI                                                 | RM FOR INI                                                                 | DIVIDUAL VIEWPOINTS                                                                                                                                                                                                                                                                                                                                              |
|                                                                       |                                                        |                                                                            | Page Z of Z                                                                                                                                                                                                                                                                                                                                                      |
| Project Na                                                            | ne <u>Tor</u>                                          | CATE                                                                       | LAG Project Number92, 96, 01                                                                                                                                                                                                                                                                                                                                     |
| Viewpoint                                                             | Location # ;                                           | and Name                                                                   | Doin 45 / Buck Res.                                                                                                                                                                                                                                                                                                                                              |
| -<br>Date/Time                                                        | 10/7/22                                                | 2 13.20                                                                    | Camera Used Canon Eos                                                                                                                                                                                                                                                                                                                                            |
| Photograph                                                            |                                                        | 25 .                                                                       | Other Personnel                                                                                                                                                                                                                                                                                                                                                  |
|                                                                       |                                                        |                                                                            | Other Tersonner                                                                                                                                                                                                                                                                                                                                                  |
|                                                                       |                                                        | larity, wind, etc)                                                         |                                                                                                                                                                                                                                                                                                                                                                  |
| GPS Used_                                                             |                                                        |                                                                            | GPS Point Taken? Yes 🕅 No 🗌                                                                                                                                                                                                                                                                                                                                      |
| Coordinates                                                           | • / •                                                  | 42.04773                                                                   | <u>58 Y(N) 74.079357</u>                                                                                                                                                                                                                                                                                                                                         |
| Bearing                                                               | E 103                                                  | >                                                                          |                                                                                                                                                                                                                                                                                                                                                                  |
| View Locati                                                           | on Descrip                                             | tion (example "or                                                          | n shoulder of the road," or "down the bank looking                                                                                                                                                                                                                                                                                                               |
| through tree.                                                         |                                                        |                                                                            | , i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                          |
| Foreground I                                                          | Description                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |
| Middlegroun                                                           |                                                        | 1 ***                                                                      | house this b snewy                                                                                                                                                                                                                                                                                                                                               |
|                                                                       | -                                                      |                                                                            | ······································                                                                                                                                                                                                                                                                                                                           |
| Background                                                            | • -                                                    | ( <b></b> )                                                                | /                                                                                                                                                                                                                                                                                                                                                                |
| ¥                                                                     | ble Ye                                                 | es 📋 Yes w                                                                 | w/binoculars    No                                                                                                                                                                                                                                                                                                                                               |
| Locator Visi                                                          |                                                        | м П Улс и                                                                  | Whincombare   No   (\/A)                                                                                                                                                                                                                                                                                                                                         |
| Locator Visi<br>Balloons Vis<br>Project Site                          | ible Ye                                                |                                                                            | v/ binoculars No (V/)                                                                                                                                                                                                                                                                                                                                            |
| Balloons Vis<br>Project Site                                          | ible Ye<br>Visible Ye                                  |                                                                            | [Important especially in cases where                                                                                                                                                                                                                                                                                                                             |
| Balloons Vis<br>Project Site<br>balloons may                          | ible Ye<br>Visible Ye<br>not be visib                  | es No<br>ble, but the site clea                                            | [Important especially in cases where<br>early is]                                                                                                                                                                                                                                                                                                                |
| Balloons Vis<br>Project Site                                          | ible Ye<br>Visible Ye<br>not be visib                  | es 🗍 No                                                                    | [Important especially in cases where<br>early is]<br>Visible Relationship to Other Dominant                                                                                                                                                                                                                                                                      |
| Balloons Vis<br>Project Site<br>balloons may<br>Picture               | ible Ye<br>Visible Ye<br>not be visib                  | es No<br>ble, but the site clea                                            | [Important especially in cases where<br>early is]                                                                                                                                                                                                                                                                                                                |
| Palloons Vis<br>Project Site<br>balloons may<br>Picture<br>Number(s)  | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es No<br>ble, but the site clea                                            | [Important especially in cases where<br>early is]<br><b>Visible</b> Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                                                                                                                                              |
| Project Site<br>balloons may<br>Picture<br>Number(s)                  | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es D No<br>ble, but the site cles<br>Balloon Color/#                       | [Important especially in cases where<br>early is]<br><b>Visible</b><br><b>Relationship to Other Dominant</b><br>Land Uses (check appropriate)<br>Not indigenous                                                                                                                                                                                                  |
| Project Site<br>balloons may<br>Picture<br>Number(s)                  | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es D No<br>ble, but the site cles<br>Balloon Color/#                       | [Important especially in cases where early is]         # Visible         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions                                                                                                                          |
| ABalloons Vis<br>Project Site<br>balloons may<br>Picture<br>Number(s) | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es D No<br>ble, but the site cles<br>Balloon Color/#                       | [Important especially in cases where early is]         # Visible         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Change         View Durations (if applicable)                                                                                                        |
| ABalloons Vis<br>Project Site<br>balloons may<br>Picture<br>Number(s) | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es D No<br>ble, but the site cles<br>Balloon Color/#                       | [Important especially in cases where early is]         # Visible         # Visible         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         Important especially in cases where         View Durations (if applicable)         6 seconds + |
| Project Site<br>balloons may<br>Picture<br>Number(s)<br>7,24,25       | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>3 2 | es No<br>ble, but the site cles<br>Balloon Color/#<br>Red<br>20 x 20<br>72 | [Important especially in cases where early is]         # Visible         # Visible         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds +         3-6 seconds                         |
| ABalloons Vis<br>Project Site<br>balloons may<br>Picture<br>Number(s) | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *        | es D No<br>ble, but the site cles<br>Balloon Color/#                       | [Important especially in cases where early is]         # Visible         # Visible         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         Important especially in cases where         View Durations (if applicable)         6 seconds + |

;

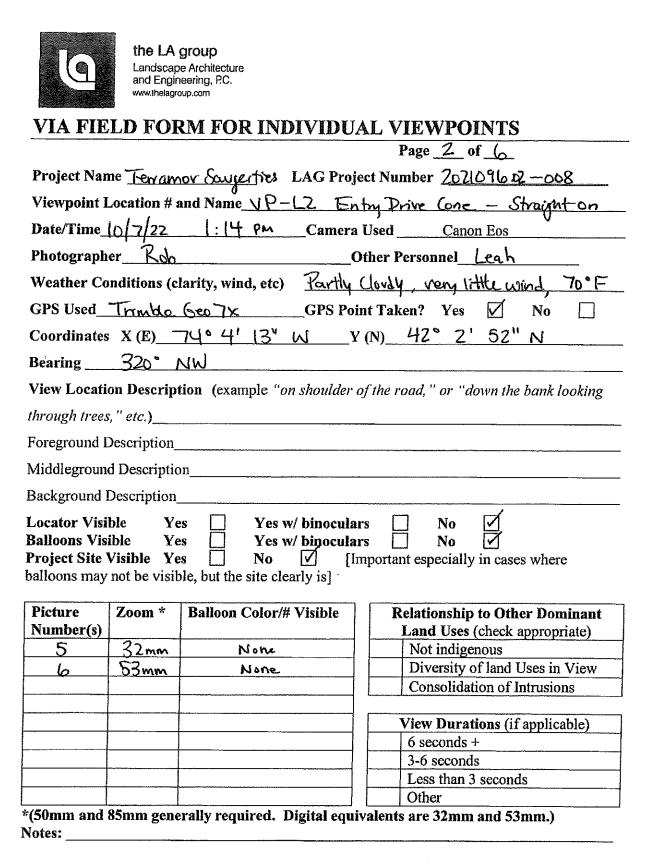
| Page 3 of 3         Project Name Colspan="2">OR Colspan="2">Colspan="2">Colspan="2">Colspan="2"         Viewpoint Location # and Name         Viewpoint Location # and Name         Manch K         Date/Time 10/7/22 3:00 Camera Used Canon Eos         Date/Time 10/7/22 3:00 Camera Used Canon Eos         Photographer         BUS Camera Used Canon Eos         Photographer         BUS Other Personnel LOT MGF         Weather Conditions (clarity, wind, etc)         GPS Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Viewpoint Location # and Name       Manchik       Fend         Date/Time_10/7/22_3:00       Camera Used       Canon Eos         Photographer       BUS       Other Personnel 105 M66         Weather Conditions (clarity, wind, etc)       Cloudier       Leccim         GPS Used       Hindle       GPS Point Taken? Yes       No         Coordinates X (E)       74°       4'42''       Y (N)       42'. 2'' 5''         Bearing       146°       5E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ę                                 |
| Date/Time $10 \left( 7 \left( 2.2 - 3 \right) : 0 \right)$ Camera UsedCanon EosPhotographerBUSOther Personnel $155 \ MGF$ Weather Conditions (clarity, wind, etc) $Cloudler$ $LecclureGPS Used41 \ MBUGPS Point Taken?YesCoordinatesX (E)74^{\circ}41 \ 42^{\prime\prime}Y (N)Gearing148^{\circ}56$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |
| Photographer       BUS       Other Personnel       BUS       Other Personnel       BUS       Bus         Weather Conditions (clarity, wind, etc)       Cloudier       Lecziu       Cloudier       Lecziu       Coordinates       No         GPS Used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |
| Weather Conditions (clarity, wind, etc)       Cloudier       Lection         GPS Used       Line       GPS Point Taken?       Yes         GPS Used       Line       GPS Point Taken?       Yes       Yes         Coordinates       X (E)       74°       H'       H2″       Y (N)       H2′.       Z       50         Bearing       146°       FE       SE       SE       SE       SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| GPS UsedGPS Point Taken? Yes $\overrightarrow{PK}$ NoCoordinates X (E) $74^{\circ}$ $4'$ $42''$ Y (N) $42'$ . $2'''$ 5''Bearing $146^{\circ}$ SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No [<br>'9"                       |
| Coordinates X (E) $74^{\circ} 4' 42''$ Y (N) $42^{\circ} 2''$ 50<br>Bearing $146^{\circ}$ FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No [<br>'q"                       |
| Bearing 148° SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9"                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| View Location Description (example "on shoulder of the road," or "down the ban                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ank looki                         |
| through trees, " etc.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Foreground Description Think the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |
| Middleground Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |
| Background Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |
| Locator VisibleYesYes w/ binocularsNo $\checkmark$ Balloons VisibleYesYes w/ binocularsNo $\checkmark$ Project Site VisibleYesNo $\Box$ (Important especially in cases where the site clearly is)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | W<br>where                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |
| Picture Zoom * Balloon Color/# Visible Relationship to Other D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Domina                            |
| Number(s) Land Uses (check appro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |
| Number(s)     Land Uses (check approximation of the sector o | propriate                         |
| Number(s)     Land Uses (check approximation of the sector o | propriate<br>es in Vie            |
| Number(s)     Land Uses (check approximation of the sector o | propriate<br>es in Vie            |
| Number(s)     Land Uses (check approximation of land Uses)       20     19     32       Not indigenous     Diversity of land Uses       Diversity of land Uses     Consolidation of Intrust       17     16     57       View Durations (if app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | propriate<br>es in Vie<br>rusions |
| Number(s)     Land Uses (check approximation)       20     14     32       Not indigenous     Diversity of land Uses       Diversity of land Uses     Consolidation of Intrus       17     16     57       View Durations (if apple 6 seconds +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | propriate<br>es in Vie<br>rusions |
| Number(s)       Land Uses (check approximation of land Uses)         20       14       32         Not indigenous       Diversity of land Uses         Diversity of land Uses       Consolidation of Intrust         17       16       57         View Durations (if app                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | propriate<br>es in Vie<br>rusions |



4

53 mm

the LA group Landscape Architecture and Engineering, P.C. www.thelagroup.com


| VIA FIE             | LD FOI             | <b>IM FOR</b>                                   | INDIVIDU             | A   | L VIEWPOINTS                          |
|---------------------|--------------------|-------------------------------------------------|----------------------|-----|---------------------------------------|
|                     |                    |                                                 |                      |     | Page 1 of 6                           |
| Project Nan         | ne Terram          | or Saugerti                                     | න් LAG Proj          | jec | t Number _2021096 .02 -008            |
| Viewpoint I         | Location # a       | and Name_                                       | VP-LI Savy           | ert | ies Transfer & Reading Station        |
| Date/Time_          | 10/22/22           | 12:31                                           | <u>Pm</u> Camera     | a T | Jsed Canon Eos                        |
| Photograph          | · _ /              |                                                 |                      |     | her Personnel Leah                    |
| Weather Co          | nditions (e        | larity, wind                                    | , etc) <u>Parthy</u> | (   | oudy, very little wind, 70°F          |
| GPS Used            |                    |                                                 |                      |     | t Taken? Yes 🗹 No 🗌                   |
| Coordinates         | X (E)              | <u>74° 4'                                  </u> | 30 " N               | Y ( | N) 42° 2' 36' N                       |
| Bearing             |                    |                                                 |                      |     |                                       |
| View Locatie        | on Descrip         | tion (examp                                     | ole "on shoulder     | of  | the road," or "down the bank looking  |
| through trees       | s," etc.) <u>2</u> | Standing .                                      | n road to -          | Th  | unster Station & Animal Shelter       |
|                     |                    | -                                               | & Raste N            |     |                                       |
| Middlegroun         | d Descriptio       | n Tree C                                        | anopy (above         | p   | roject site)                          |
|                     |                    |                                                 | in Goat hi           | •   |                                       |
| Locator Visi        |                    | es 🗹                                            | Yes w/ binocula      |     |                                       |
| <b>Balloons Vis</b> |                    | es 🗍                                            | Yes w/ binocula      |     |                                       |
| <b>Project Site</b> |                    |                                                 | No 🗹 []              | ſm  | portant especially in cases where     |
| balloons may        | not be visil       | ole, but the s                                  | ite clearly is]      |     |                                       |
| Picture             | Zoom *             | Balloon C                                       | olor/# Visible       | 1   | <b>Relationship to Other Dominant</b> |
| Number(s)           |                    |                                                 |                      |     | Land Uses (check appropriate)         |
| 1                   | 32 mm              | 200' Re                                         | 1 Locator            |     | Not indigenous                        |
| 2                   | 32 mm              | u u                                             | 4                    | .   | Diversity of land Uses in View        |
| 3                   | 53mm               | 74                                              | 11                   |     | Consolidation of Intrusions           |

| View Durations (if applicable) |
|--------------------------------|
| <br>6 seconds +                |
| 3-6 seconds                    |
| Less than 3 seconds            |
| Other                          |

\*(50mm and 85mm generally required. Digital equivalents are 32mm and 53mm.) Notes:

n

u V



Entry drive tractic lone visible from this lacation



## VIA FIELD FORM FOR INDIVIDUAL VIEWPOINTS

|                |              |                                | Page 3 of 6                             |
|----------------|--------------|--------------------------------|-----------------------------------------|
| Project Nan    | ne Terram    | y Saugerties LAG Pro           | ject Number <u>202109(0.02-008</u>      |
| Viewpoint I    | Location # a | and Name VP-13 Ent             | y Drive Cone - Westbound                |
| Date/Time_     | 10/7/22      | I: 18 PM Camera                | u Used <u>Canon Eos</u>                 |
|                | -            |                                | Other Personnel Leah                    |
|                |              |                                | (loudy, very little wind, 70°F          |
|                |              | ,                              | int Taken? Yes 🗹 No 🗌                   |
|                |              |                                | (N) 42° 2' 53" N                        |
| Bearing        |              |                                |                                         |
| View Locati    | on Descript  | tion (example "on shoulder     | of the road," or "down the bank looking |
| through trees  |              | 、 <b>1</b>                     |                                         |
| Foreground I   | Description  |                                |                                         |
| Middlegroun    |              |                                |                                         |
| -              | -            |                                | · · · · · · · · · · · · · · · · · · ·   |
| Background I   | Description_ |                                |                                         |
| Locator Visi   |              |                                | irs 🗌 No 🗹                              |
| Balloons Vis   |              |                                | Laurand Laurand                         |
| Project Site ' |              |                                | mportant especially in cases where      |
| balloons may   | not be visib | ole, but the site clearly is]  |                                         |
| T3* 4          | <b>a</b> •   |                                |                                         |
| Picture        | Zoom *       | <b>Balloon Color/# Visible</b> | Relationship to Other Dominant          |
| Number(s)      | 20           |                                | Land Uses (check appropriate)           |
| 7              | 32mm         | None                           | Not indigenous                          |
| 8              | <u>53 mm</u> | None                           | Diversity of land Uses in View          |
|                |              |                                | Consolidation of Intrusions             |
|                |              |                                |                                         |
|                |              |                                | View Durations (if applicable)          |
|                |              |                                | 6 seconds +                             |
|                |              |                                | 3-6 seconds                             |
|                | 1            |                                |                                         |
|                |              |                                | Less than 3 seconds<br>Other            |

\*(50mm and 85mm generally required. Digital equivalents are 32mm and 53mm.) Notes:

Entry Drive tractic Cone visible from this location



| VIA FI                                                                                                       |                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              |                                                                                                  |                                                                                                                               | Page 4 of 6                                                                                                                                                                                                                                                                                                                               |
| Project Na                                                                                                   | ame <u>Fervan</u>                                                                                | nov Sanger thes LAG Proje                                                                                                     | ct Number <u>2021 096. 62 - 088</u>                                                                                                                                                                                                                                                                                                       |
| Viewpoint                                                                                                    | Location # :                                                                                     | and Name VP-L4 En                                                                                                             | hy Drive (one - Eastbound                                                                                                                                                                                                                                                                                                                 |
|                                                                                                              |                                                                                                  | 1:21 PM Camera I                                                                                                              |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              |                                                                                                  | <u>ob0</u>                                                                                                                    |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              |                                                                                                  |                                                                                                                               | (loudy, very little wind, 700                                                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                                                  | 1                                                                                                                             | t Taken? Yes 🗹 No 🗌                                                                                                                                                                                                                                                                                                                       |
|                                                                                                              |                                                                                                  |                                                                                                                               | (N) 42° 2' 52" N                                                                                                                                                                                                                                                                                                                          |
|                                                                                                              |                                                                                                  | VE                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              |                                                                                                  |                                                                                                                               | f the road," or "down the bank looking                                                                                                                                                                                                                                                                                                    |
|                                                                                                              | -                                                                                                | (example of shoulder of                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                              |                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              |                                                                                                  |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |
| oreground                                                                                                    | Description_                                                                                     | an                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                              |                                                                                                  | on                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |
| Middlegrou                                                                                                   |                                                                                                  | on                                                                                                                            |                                                                                                                                                                                                                                                                                                                                           |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site                                       | nd Description<br>l Description<br>sible Ye<br>isible Ye<br>visible Ye                           | on<br>es Yes w/ binocular:<br>es Yes w/ binocular:                                                                            | s 🔲 No 🗹                                                                                                                                                                                                                                                                                                                                  |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma<br>Picture              | nd Description<br>l Description<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit         | on<br>esYes w/ binocular:<br>esYes w/ binocular:<br>esNo [Im                                                                  | s No S<br>s No S<br>portant especially in cases where<br>Relationship to Other Dominant                                                                                                                                                                                                                                                   |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma                         | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>Visible Ye<br>y not be visit           | onYes w/ binocular:<br>sYes w/ binocular:<br>sNo [Im<br>ble, but the site clearly is]                                         | s No S<br>s No S<br>portant especially in cases where                                                                                                                                                                                                                                                                                     |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma<br>Picture<br>Number(s) | nd Description<br>l Description<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit         | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No [Im<br>ble, but the site clearly is]<br>Balloon Color/# Visible           | s No Solutionship to Other Dominant Land Uses (check appropriate)                                                                                                                                                                                                                                                                         |
| Aiddlegrou<br>ackground<br>ocator Vis<br>alloons Vi<br>roject Site<br>alloons ma<br>Picture<br>Number(s)     | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit<br>Zoom * | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No I [Im<br>ole, but the site clearly is]<br>Balloon Color/# Visible<br>None | s No S<br>s No S<br>portant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous                                                                                                                                                                                                |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma<br>Picture<br>Number(s) | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit<br>Zoom * | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No I [Im<br>ole, but the site clearly is]<br>Balloon Color/# Visible<br>None | S       No       Image: No         s       No       Image: No         portant especially in cases where         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions                                                            |
| Aiddlegrou<br>ackground<br>ocator Vis<br>alloons Vi<br>roject Site<br>alloons ma<br>Picture<br>Number(s)     | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit<br>Zoom * | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No I [Im<br>ole, but the site clearly is]<br>Balloon Color/# Visible<br>None | s No S<br>s No S<br>portant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View                                                                                                                                                              |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma<br>Picture<br>Number(s) | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit<br>Zoom * | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No I [Im<br>ole, but the site clearly is]<br>Balloon Color/# Visible<br>None | s       No         s       No         portant especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                                             |
| Aiddlegrou<br>Background<br>Locator Vis<br>Balloons Vi<br>Project Site<br>alloons ma<br>Picture<br>Number(s) | nd Description<br>bescription<br>sible Ye<br>isible Ye<br>visible Ye<br>y not be visit<br>Zoom * | on Yes w/ binocular:<br>s Yes w/ binocular:<br>s No I [Im<br>ole, but the site clearly is]<br>Balloon Color/# Visible<br>None | s       No       Image: No         s       No       Image: No         portant especially in cases where         Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds + |

Entry Drive tratic cone visible from this location



### VIA FIELD FORM FOR INDIVIDUAL VIEWPOINTS

|                                                                               |                                                          |                                                                                             | Page <u>S</u> of <u>6</u>                                                                                                                                                                                                |
|-------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Nan                                                                   | ne Terramo                                               | Sousporties LAG Proje                                                                       | ect Number 2021096.02-008                                                                                                                                                                                                |
| Viewpoint I                                                                   | Location # a                                             | nd Name_VP-LS (                                                                             | ottontail Ln West                                                                                                                                                                                                        |
| Date/Time_                                                                    | 22/10/22                                                 | <u>l : 50 PM</u> Camera                                                                     | Used <u>Canon Eos</u>                                                                                                                                                                                                    |
|                                                                               |                                                          |                                                                                             | ther Personnel Leah                                                                                                                                                                                                      |
|                                                                               |                                                          | _                                                                                           | Loudy Slightly Windy, 70°F                                                                                                                                                                                               |
|                                                                               |                                                          |                                                                                             | nt Taken? Yes 🗹 No 🗌                                                                                                                                                                                                     |
|                                                                               |                                                          |                                                                                             | (N) <u>42° 3′ 7″ N</u>                                                                                                                                                                                                   |
| Bearing                                                                       |                                                          |                                                                                             |                                                                                                                                                                                                                          |
|                                                                               | -                                                        |                                                                                             | f the word " on "down the head to the                                                                                                                                                                                    |
|                                                                               |                                                          | -                                                                                           | of the road," or "down the bank looking                                                                                                                                                                                  |
| through trees                                                                 | s, " etc.)                                               |                                                                                             |                                                                                                                                                                                                                          |
| Foreground D                                                                  | Description_                                             |                                                                                             |                                                                                                                                                                                                                          |
| Middlegroun                                                                   | d Descriptio                                             | n                                                                                           |                                                                                                                                                                                                                          |
| Background I                                                                  | Description_                                             |                                                                                             |                                                                                                                                                                                                                          |
| agatar Visi                                                                   | ble Ye                                                   | s 🗍 Yes w/ binocular                                                                        | rs 🗌 No 🗹.                                                                                                                                                                                                               |
| Balloons Visi<br>Project Site V                                               | ible Ye<br>Visible Ye                                    | s 🔲 Yes w/ biŋoculai                                                                        |                                                                                                                                                                                                                          |
| Balloons Vis<br>Project Site V<br>Dalloons may                                | ible Ye<br>Visible Ye<br>not be visib                    | s Yes w/ binocular<br>s No I [Ir<br>le, but the site clearly is]                            | rs <b>No N</b><br>nportant especially in cases where                                                                                                                                                                     |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture                    | ible Ye<br>Visible Ye                                    | s 🗍 Yes w/ binocular<br>s 🗌 No 🗹 [Ir                                                        | rs No M<br>nportant especially in cases where<br>Relationship to Other Dominant                                                                                                                                          |
| Balloons Visi<br>Project Site V<br>balloons may<br>Picture<br>Number(s)       | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *          | s Yes w/ binocular<br>s No S [In<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                           |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture                    | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous                                                                                         |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *          | s Yes w/ binocular<br>s No S [In<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                           |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions                                                                 |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions                                                                 |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions<br>View Durations (if applicable)<br>6 seconds +                |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions<br>View Durations (if applicable)<br>6 seconds +<br>3-6 seconds |
| Balloons Visi<br>Project Site V<br>palloons may<br>Picture<br>Number(s)<br>il | ible Ye<br>Visible Ye<br>not be visib<br>Zoom *<br>32 mm | s Yes w/ binocular<br>s No Í [Ir<br>le, but the site clearly is]<br>Balloon Color/# Visible | rs No Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions<br>View Durations (if applicable)<br>6 seconds +                |

Notes: \_



## VIA FIELD FORM FOR INDIVIDUAL VIEWPOINTS

| Project Nar                                                                                                  | me Terrama                                                               | or Saugerties LAG Proje                                                                                                     | ect Number <u>2021096.02-008</u>                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                              |                                                                          | and Name_VP-Lb_G                                                                                                            |                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                          |                                                                                                                             | Used Canon Eos                                                                                                                                                                                                                                                                |
| »                                                                                                            | .0/ 1/2-                                                                 | 17 I                                                                                                                        | Callon Eos                                                                                                                                                                                                                                                                    |
|                                                                                                              |                                                                          |                                                                                                                             | Other Personnel Leah                                                                                                                                                                                                                                                          |
| Weather Co                                                                                                   | onditions (c                                                             | larity, wind, etc) Partly (                                                                                                 | loudy, Slighthy Windy, 70°F                                                                                                                                                                                                                                                   |
|                                                                                                              |                                                                          |                                                                                                                             | nt Taken? Yes 🗹 No 🗌                                                                                                                                                                                                                                                          |
| Coordinates                                                                                                  | s X (E)                                                                  | 74° 4' 19" W Y                                                                                                              | (N) <u>42° 3' 7" N</u>                                                                                                                                                                                                                                                        |
|                                                                                                              |                                                                          | Sw                                                                                                                          |                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                          |                                                                                                                             | of the road," or "down the bank looking                                                                                                                                                                                                                                       |
|                                                                                                              |                                                                          | · ·                                                                                                                         | 0                                                                                                                                                                                                                                                                             |
|                                                                                                              |                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                               |
|                                                                                                              |                                                                          |                                                                                                                             |                                                                                                                                                                                                                                                                               |
| municgroun                                                                                                   | u Desemptio                                                              | )II                                                                                                                         |                                                                                                                                                                                                                                                                               |
| Background )<br>Locator Visi                                                                                 | Description                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                               |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V                                               | Description<br>ble Ye<br>ible Ye<br>Visible Ye                           | es 🗌 Yes w/ binocular<br>es 🗌 Yes w/ binocular                                                                              | rs 🗌 No 🗹                                                                                                                                                                                                                                                                     |
| Background I<br>Locator Visi<br>Balloons Vis<br>Project Site<br>Palloons may                                 | Description<br>ble Ye<br>ible Ye<br>Visible Ye                           | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir                                                                     | rs No M<br>rs No M<br>nportant especially in cases where                                                                                                                                                                                                                      |
| Background D<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture                     | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit           | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [In<br>ble, but the site clearly is]                                    | rs No V<br>rs No Mo<br>nportant especially in cases where<br>Relationship to Other Dominant                                                                                                                                                                                   |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture                     | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit           | esYes w/ binocular<br>esYes w/ binocular<br>esNo[In<br>ble, but the site clearly is]                                        | rs No M<br>rs No M<br>nportant especially in cases where                                                                                                                                                                                                                      |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)          | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [In<br>ble, but the site clearly is]<br>Balloon Color/# Visible         | rs No V<br>rs No V<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                                                                   |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture<br>Number(s)<br>13  | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir<br>ble, but the site clearly is]<br>Balloon Color/# Visible<br>Nore | rs No M<br>rs No M<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous                                                                                                                                 |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site Y<br>Palloons may<br>Picture<br>Number(s)<br>13 | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir<br>ble, but the site clearly is]<br>Balloon Color/# Visible<br>Nore | rs No Mors No More Not Industry (Check appropriate) Not indigenous Diversity of land Uses in View Consolidation of Intrusions                                                                                                 |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture<br>Number(s)<br>13  | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir<br>ble, but the site clearly is]<br>Balloon Color/# Visible<br>Nore | rs No P<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions<br>View Durations (if applicable)                                         |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture<br>Number(s)<br>13  | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir<br>ble, but the site clearly is]<br>Balloon Color/# Visible<br>Nore | rs No P<br>rs No P<br>nportant especially in cases where<br>Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous<br>Diversity of land Uses in View<br>Consolidation of Intrusions<br>View Durations (if applicable)<br>6 seconds +               |
| Background )<br>Locator Visi<br>Balloons Vis<br>Project Site V<br>alloons may<br>Picture<br>Number(s)<br>13  | Description<br>ble Ye<br>ible Ye<br>Visible Ye<br>not be visit<br>Zoom * | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [Ir<br>ble, but the site clearly is]<br>Balloon Color/# Visible<br>Nore | rs No No nportant especially in cases where           Relationship to Other Dominant           Land Uses (check appropriate)           Not indigenous           Diversity of land Uses in View           Consolidation of Intrusions           View Durations (if applicable) |



| VIA | FIELD | FORM | FOR | <b>INDIVIDU</b> A | L | VIEWPOINTS |
|-----|-------|------|-----|-------------------|---|------------|
|     |       |      |     |                   |   |            |

|                                                                                                   |                                                                                  |                                                                                       | Page of 6                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Na                                                                                        | me <u>Ferrow</u>                                                                 | wy Saugerties LAG Proj                                                                | ect Number 2021096.02 - 009                                                                                                                                                                                                                                                                                                |
|                                                                                                   |                                                                                  | and Name_VP - OM1                                                                     | Fire Town                                                                                                                                                                                                                                                                                                                  |
| -<br>Date/Time                                                                                    | 11/3/22                                                                          | 11:58AM Camera                                                                        | Used Canon Fos                                                                                                                                                                                                                                                                                                             |
|                                                                                                   |                                                                                  |                                                                                       | Other Personnel R6F                                                                                                                                                                                                                                                                                                        |
|                                                                                                   |                                                                                  |                                                                                       | , Wind SMPH, Sunny, Very-few cloud                                                                                                                                                                                                                                                                                         |
| CPS Head                                                                                          | Trinchla                                                                         | $Con T \qquad CDC D :$                                                                | , WING SMITH, SUNNY, VERY-LEW CLOUD                                                                                                                                                                                                                                                                                        |
| GIS Useu_                                                                                         | N                                                                                | GPS Poi                                                                               | nt Taken? Yes 🗹 No 🗌                                                                                                                                                                                                                                                                                                       |
| Coordinate                                                                                        | es X (24)                                                                        | 42° 5' 6" N Y                                                                         | ( <b>()</b> ) <u>74° 5' 36" E</u>                                                                                                                                                                                                                                                                                          |
| Bearing                                                                                           | 61°S                                                                             |                                                                                       |                                                                                                                                                                                                                                                                                                                            |
| View Locat                                                                                        | ion Descrip                                                                      | otion (example "on shoulder of                                                        | of the road," or "down the bank looking                                                                                                                                                                                                                                                                                    |
|                                                                                                   |                                                                                  | · •                                                                                   |                                                                                                                                                                                                                                                                                                                            |
|                                                                                                   |                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                            |
|                                                                                                   |                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                            |
| maarogroup                                                                                        | iu Desempti                                                                      | on                                                                                    |                                                                                                                                                                                                                                                                                                                            |
|                                                                                                   |                                                                                  |                                                                                       |                                                                                                                                                                                                                                                                                                                            |
| Background                                                                                        | ·                                                                                |                                                                                       |                                                                                                                                                                                                                                                                                                                            |
| Locator Vis<br>Balloons Vis<br>Project Site                                                       | ible Y<br>sible Y<br>Visible Y                                                   | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs I No I NA<br>nportant especially in cases where                                                                                                                                                                                                                                                                         |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may                                        | ible Y<br>sible Y<br>Visible Y<br>v not be visi                                  | es Yes w/ binocular<br>es Yes w/ binocular<br>es No [In                               | Relationship to Other Dominant                                                                                                                                                                                                                                                                                             |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture                             | ible Yo<br>sible Yo<br>Visible Yo<br>not be visib<br>Zoom *<br>32 mm             | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs I No I NA<br>nportant especially in cases where                                                                                                                                                                                                                                                                         |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2      | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32 mm<br>32 mm       | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                                                                                                                                                                            |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2<br>3 | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32mm<br>32mm<br>53mm | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs       No       NA         nportant especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous                                                                                                                                                        |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2      | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32 mm<br>32 mm       | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs       No       NA         nportant especially in cases where       Relationship to Other Dominant         Land Uses (check appropriate)       Not indigenous         Not indigenous       Diversity of land Uses in View         Consolidation of Intrusions                                                            |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2<br>3 | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32mm<br>32mm<br>53mm | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | s       No       NA         aportant especially in cases where       Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous       Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                                                   |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2<br>3 | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32mm<br>32mm<br>53mm | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs       No       NA         nportant especially in cases where       Relationship to Other Dominant         Land Uses (check appropriate)       Not indigenous         Not indigenous       Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds + |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2<br>3 | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32mm<br>32mm<br>53mm | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | s       No       NA         aportant especially in cases where       Relationship to Other Dominant Land Uses (check appropriate)         Not indigenous       Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds +         3-6 seconds           |
| Locator Vis<br>Balloons Vis<br>Project Site<br>alloons may<br>Picture<br>Number(s)<br>1<br>2<br>3 | ible Y<br>sible Y<br>Visible Y<br>not be visit<br>Zoom *<br>32mm<br>32mm<br>53mm | esYes w/ binocular<br>esYes w/ binocular<br>esNo [In<br>ble, but the site clearly is] | rs       No       NA         nportant especially in cases where       Relationship to Other Dominant         Land Uses (check appropriate)       Not indigenous         Not indigenous       Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds + |



# VIA FIELD FORM FOR INDIVIDUAL VIEWPOINTS

|                                                                                                                |                                                   |                                                                                                                              | Page Z of 6                                                                                                                                                                                                                                                                                                    |          |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Project Name                                                                                                   | Ferramor S                                        | Saugerties LAG                                                                                                               | Project Number 2021 096.02 - 009                                                                                                                                                                                                                                                                               |          |
|                                                                                                                |                                                   | 0                                                                                                                            | Base of Fire Tower                                                                                                                                                                                                                                                                                             |          |
| Date/Time 11/3                                                                                                 | 1/22 1                                            | 2:28 PM Can                                                                                                                  | nera Used <u>Canon Eos</u>                                                                                                                                                                                                                                                                                     |          |
| Photographor                                                                                                   | RhE                                               |                                                                                                                              | Other Personnel                                                                                                                                                                                                                                                                                                |          |
| I notogi apnei                                                                                                 |                                                   |                                                                                                                              | Other Personnel <u>LRC</u>                                                                                                                                                                                                                                                                                     |          |
| Weather Condit                                                                                                 | tions (clari                                      | ity, wind, etc) <u>5</u> 1°1                                                                                                 | F, SMPH Winds, Sunny, very few (louds,                                                                                                                                                                                                                                                                         | _h       |
|                                                                                                                |                                                   |                                                                                                                              | Point Taken? Yes 🗹 No 🗌                                                                                                                                                                                                                                                                                        |          |
|                                                                                                                |                                                   |                                                                                                                              | _Y (N)_ 42° 5' 5" N                                                                                                                                                                                                                                                                                            |          |
| Bearing [                                                                                                      |                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                |          |
| View Location D                                                                                                | escription                                        | (example "on should                                                                                                          | der of the road," or "down the bank looking                                                                                                                                                                                                                                                                    |          |
|                                                                                                                |                                                   |                                                                                                                              | •                                                                                                                                                                                                                                                                                                              |          |
|                                                                                                                |                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                | _        |
|                                                                                                                |                                                   |                                                                                                                              | ······································                                                                                                                                                                                                                                                                         | -        |
|                                                                                                                |                                                   |                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                          |          |
| Rackground Deco                                                                                                | rintion                                           |                                                                                                                              |                                                                                                                                                                                                                                                                                                                | -        |
|                                                                                                                |                                                   |                                                                                                                              |                                                                                                                                                                                                                                                                                                                | -        |
| Locator Visible<br>Balloons Visible<br>Project Site Visib                                                      | Yes<br>Yes<br>De Yes                              | Yes w/ binoc                                                                                                                 | ulars No NA                                                                                                                                                                                                                                                                                                    | <b>-</b> |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>palloons may not b                                | Yes<br>Yes<br>le Yes<br>de visible, b             | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars No NA<br>[Important especially in cases where                                                                                                                                                                                                                                                            | -        |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>balloons may not b<br>Picture Zoo                 | Yes<br>Yes<br>le Yes<br>de visible, b             | ☐  Yes w/ binoc    ☐  Yes w/ binoc    ✓  No                                                                                  | ulars No NA<br>[Important especially in cases where<br>Relationship to Other Dominant                                                                                                                                                                                                                          |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>balloons may not b<br>Picture Zoo<br>Number(s)    | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)                                                                                                                                                              |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>palloons may not b<br>Picture Zoo<br>Number(s) 32 | Yes<br>Yes<br>le Yes<br>de visible, b             | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous                                                                                                                                       |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>balloons may not b<br>Picture Zoo<br>Number(s) 32 | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)                                                                                                                                                              |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>palloons may not b<br>Picture Zoo<br>Number(s) 32 | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions                                                            |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>balloons may not b<br>Picture Zoo<br>Number(s) 32 | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                     |          |
| Locator Visible<br>Balloons Visible<br>Project Site Visib<br>palloons may not b<br>Picture Zoo<br>Number(s) 32 | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds + |          |
| PictureZoeNumber(s)32                                                                                          | Yes<br>Yes<br>Dle Yes<br>De visible, b<br>Dm * Ba | ☐       Yes w/ binoc         ☐       Yes w/ binoc         ☑       No         ☑       No         □       the site clearly is] | ulars       No       NA         [Important especially in cases where         Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                     |          |



|                                                           |                          | Page 3 of 6                                                                                                                                                                                                    |
|-----------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Name                                              | Ferramor Saugerties      | LAG Project Number _2021 09 6.02 - 009                                                                                                                                                                         |
| Viewpoint Loc                                             | ation # and Name         | VP-6M3 Scenic Overlook 1                                                                                                                                                                                       |
| Date/Time 11                                              | 2/22 12.28 6             | PM Camera Used Canon Eos                                                                                                                                                                                       |
|                                                           |                          |                                                                                                                                                                                                                |
| Photographer_                                             | KGF                      | Other Personnel LRC                                                                                                                                                                                            |
| Weather Condi                                             | itions (clarity, wind, e | etc) <u>59°F, 5mpH winds, Sunny very Euroclouds</u> ,                                                                                                                                                          |
| GPS Used T                                                | rimble Geo Tr            | GPS Point Taken? Yes 🗹 No 🗌                                                                                                                                                                                    |
| Coordinatoo V                                             | THE CLAC                 |                                                                                                                                                                                                                |
|                                                           |                          | 9" E Y (N) 42° 5' 4" N                                                                                                                                                                                         |
| Bearing <u> </u> [(                                       | 23°S                     |                                                                                                                                                                                                                |
| View Location 1                                           | Description (example     | e "on shoulder of the road," or "down the bank looking                                                                                                                                                         |
|                                                           | 2tc.)                    |                                                                                                                                                                                                                |
|                                                           |                          |                                                                                                                                                                                                                |
|                                                           |                          |                                                                                                                                                                                                                |
| Middleground Da                                           | escription               |                                                                                                                                                                                                                |
| Background Desc                                           | cription                 |                                                                                                                                                                                                                |
| Locator Visible<br>Balloons Visible<br>Project Site Visil | Yes 🗍 Ye                 | Yes w/ binoculars No NA<br>Yes w/ binoculars No NA<br>Io [Important especially in cases where<br>e clearly is]                                                                                                 |
| alloons may not                                           |                          |                                                                                                                                                                                                                |
| ······································                    | om * Balloon Cole        | or/# Visible Relationship to Other Dominant                                                                                                                                                                    |
| Picture Zo                                                | om *   Balloon Colo      | Additional to Other Dominiant                                                                                                                                                                                  |
| Picture Zo<br>Number(s) 32                                | om * Balloon Cold        | or/# Visible Relationship to Other Dominant<br>Land Uses (check appropriate)<br>Not indigenous                                                                                                                 |
| Picture Zo<br>Number(s) 32                                |                          | Land Uses (check appropriate)                                                                                                                                                                                  |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm                     | Land Uses (check appropriate)           Not indigenous                                                                                                                                                         |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm<br>3 mm             | Land Uses (check appropriate)           Not indigenous           Diversity of land Uses in View           Consolidation of Intrusions                                                                          |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm<br>3 mm             | Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                                         |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm<br>3 mm             | Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds +                     |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm<br>3 mm             | Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds +         3-6 seconds |
| Picture Zo<br>Number(s)<br>7 32<br>8 5                    | 2 mm<br>3 mm             | Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds +                     |

······



|                |                  |                                                                                                              | Page 4_ of 6                                                    |
|----------------|------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Project Na     | ime <u>Terra</u> | mor Sangerties LAG Pro                                                                                       | ject Number <u>2021096.02 - 00 2</u>                            |
| Viewpoint      | Location #       | and Name VP-0M4                                                                                              | Scenic Overlook 2                                               |
| -<br>Date/Time | 11/3/22          | 1:05 PM Camer                                                                                                | a lised Canon Eas                                               |
| Photograp      | har G            | (6F                                                                                                          |                                                                 |
| I HOLOGI AD    | uci              |                                                                                                              | Uther Personnel CKC                                             |
| weather C      | onditions (      | larity, wind, etc) <u>57°F</u>                                                                               | SMPH Winds Sunny, Very few Clouds                               |
| GPS Used_      | Trimbl           | <u>6 600 7x GPS Po</u>                                                                                       | int Taken? Yes 🗹 No 🔲                                           |
| Coordinate     | s X (E)          | 740 5' 42" E                                                                                                 | (N) 42°5'5"N                                                    |
| Bearing        |                  |                                                                                                              |                                                                 |
| _              |                  | tion (example "on shouldon                                                                                   |                                                                 |
|                |                  |                                                                                                              | of the road," or "down the bank looking                         |
|                |                  | antinen en er en gele alt de la seconda de la seconda en en a seconda en |                                                                 |
| Foreground     | Description      |                                                                                                              |                                                                 |
| Middlegroun    | d Descriptio     | on                                                                                                           |                                                                 |
| Background     |                  |                                                                                                              |                                                                 |
| Locator Visi   | ble V            | es 🗌 Yes w/ binocula                                                                                         | rs 🗌 No 🗍 NA                                                    |
| Balloons Vis   |                  |                                                                                                              | how have here here here here here here here he                  |
| roject Site    |                  |                                                                                                              | mportant especially in cases where                              |
| alloons may    | not be visit     | ole, but the site clearly is]                                                                                |                                                                 |
| Picture        | Zoom *           | Balloon Color/# Visible                                                                                      | Belationalda (* 04) - D                                         |
| Number(s)      | - COUL           | Danoon Color/# Alsinic                                                                                       | Relationship to Other Dominant<br>Land Uses (check appropriate) |
| 10             | 32mm             | · · · · · · · · · · · · · · · · · · ·                                                                        | Not indigenous                                                  |
| 11             | 53 mm            |                                                                                                              | Diversity of land Uses in View                                  |
|                |                  |                                                                                                              | Consolidation of Intrusions                                     |
|                | i i              |                                                                                                              |                                                                 |
|                |                  |                                                                                                              |                                                                 |
|                |                  |                                                                                                              | View Durations (if applicable)                                  |
|                |                  |                                                                                                              | 6 seconds +                                                     |
|                |                  |                                                                                                              | 6 seconds +<br>3-6 seconds                                      |
|                |                  |                                                                                                              | 6 seconds +                                                     |

Notes:



|                                                             |                                          |                                             | Page 5 of 6                                                                                                                                                                                                                  |
|-------------------------------------------------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Na                                                  | me Terra                                 | mor Sweethes LAGP                           | roject Number _2021096.02 - 009                                                                                                                                                                                              |
| Viewpoint                                                   | Location #                               | and Name VP-004                             | 5 Scenic Overlook 3                                                                                                                                                                                                          |
| Date/Time                                                   | 11/2/22                                  | 1.17 fm Cam                                 | J Stenin Overward S                                                                                                                                                                                                          |
|                                                             | 0                                        |                                             | era Used <u>Canon Eos</u>                                                                                                                                                                                                    |
|                                                             |                                          |                                             | _Other Personnel                                                                                                                                                                                                             |
| Weather C                                                   | onditions (                              | clarity, wind, etc) <u>59°</u>              | F, SMPH Winds Sunny, very few cloud                                                                                                                                                                                          |
| GPS Used_                                                   | Trimbl                                   | e Geo Tx GPS                                | Point Taken? Yes 🗹 No 🗌                                                                                                                                                                                                      |
|                                                             |                                          |                                             | _Y (N) <u>42° 5' 4"</u> N                                                                                                                                                                                                    |
| Bearing                                                     |                                          |                                             |                                                                                                                                                                                                                              |
|                                                             | -                                        | tion (example "on should                    | low of the word " (1,                                                                                                                                                                                                        |
|                                                             |                                          |                                             | ler of the road," or "down the bank looking                                                                                                                                                                                  |
|                                                             |                                          |                                             |                                                                                                                                                                                                                              |
| oreground l                                                 | Description                              |                                             |                                                                                                                                                                                                                              |
| liddlegroun                                                 | d Descripti                              | on                                          |                                                                                                                                                                                                                              |
| ackground                                                   | Description                              |                                             |                                                                                                                                                                                                                              |
| ocator Visi                                                 | ble Y                                    | es 📋 Yes w/ binocu                          | ulars 🗌 No 🗍 NA                                                                                                                                                                                                              |
|                                                             | 43 X X Z                                 | es 🗍 Yes w/ binocu                          | ulars $\Box$ No $\Box$ NA                                                                                                                                                                                                    |
| alloons Vis                                                 | ible Y                                   |                                             |                                                                                                                                                                                                                              |
| roject Site `                                               | Visible Ya                               | es 🗌 No 🗍                                   | [Important especially in cases where                                                                                                                                                                                         |
| roject Site `                                               | Visible Ya                               | es [No [_]<br>ble, but the site clearly is] | [Important especially in cases where                                                                                                                                                                                         |
| roject Site `                                               | Visible Ya                               | ble, but the site clearly is]               |                                                                                                                                                                                                                              |
| roject Site `<br>alloons may                                | Visible Ye<br>not be visil               |                                             | Relationship to Other Dominant                                                                                                                                                                                               |
| roject Site `<br>alloons may<br>Picture                     | Visible Ye<br>not be visil               | ble, but the site clearly is]               |                                                                                                                                                                                                                              |
| roject Site<br>alloons may<br>Picture<br>Number(s)          | Visible Ye<br>not be visil<br>Zoom *     | ble, but the site clearly is]               | Relationship to Other Dominant         Land Uses (check appropriate)         Not indigenous                                                                                                                                  |
| roject Site `<br>illoons may<br>Picture<br>Sumber(s)<br>  2 | Visible Ye<br>not be visil<br>Zoom *<br> | ble, but the site clearly is]               | Relationship to Other Dominant<br>Land Uses (check appropriate)                                                                                                                                                              |
| roject Site `<br>alloons may<br>Picture<br>Number(s)<br>  2 | Visible Ye<br>not be visil<br>Zoom *<br> | ble, but the site clearly is]               | Relationship to Other Dominant<br>Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions                                                            |
| roject Site `<br>alloons may<br>Picture<br>Number(s)<br>  2 | Visible Ye<br>not be visil<br>Zoom *<br> | ble, but the site clearly is]               | Relationship to Other Dominant<br>Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                     |
| roject Site `<br>alloons may<br>Picture<br>Number(s)<br>  2 | Visible Ye<br>not be visil<br>Zoom *<br> | ble, but the site clearly is]               | Relationship to Other Dominant<br>Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)         6 seconds + |
| roject Site `<br>alloons may<br>Picture<br>Number(s)<br>  2 | Visible Ye<br>not be visil<br>Zoom *<br> | ble, but the site clearly is]               | Relationship to Other Dominant<br>Land Uses (check appropriate)         Not indigenous         Diversity of land Uses in View         Consolidation of Intrusions         View Durations (if applicable)                     |

Notes: \_\_\_\_\_

.

\*



|              |              |                                       | Page 10 of 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|--------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Na   | me Terrar    | Max Survey thes LAG Pro               | oject Number 2021696.02 -009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |              |                                       | Scenic Overlask 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Date/Time    | 11/3/22      | Camer                                 | a Used <u>Canon Eos</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Photograp    | her <u> </u> | <u>6</u> F                            | Other Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Weather C    | onditions (c | larity, wind, etc) <u>51°F</u>        | SMPH Winds Sunny very few clouds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GPS Used_    | Trimble      | 600 7x GPS P                          | oint Taken? Yes 🗹 No 🗌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |              | •                                     | Y (N) 42° 5' 5" N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| bearing      | 128 2        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| View Locat   | ion Descrip  | tion (example "on shoulder            | of the road," or "down the bank looking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| through tree | s, " etc.)   | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Foreground   | Description  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |              | on                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Background   | Description  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Locator Visi |              |                                       | have a second seco |
| Balloons Vis | ible Yo      | es 🗌 Yes w/ binocul                   | ars 🗌 No 🗌 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 'roject Site | Visible Ye   | s 🖸 No 📋 [                            | Important especially in cases where                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| alloons may  | not be visit | ole, but the site clearly is]         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Picture      | Zoom *       | Balloon Color/# Visible               | Relationship to Other Dominant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Number(s)    |              |                                       | Land Uses (check appropriate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 14           | 32mm         | · · · · · · · · · · · · · · · · · · · | Not indigenous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IS           | 53 mm        |                                       | Diversity of land Uses in View                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |              |                                       | Consolidation of Intrusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .,           |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| i            |              |                                       | View Durations (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |              | ,                                     | 6 seconds +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |              |                                       | 3-6 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |              |                                       | Less than 3 seconds<br>Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

K

. J

NEW YORK STATE OF OPPORTUNITY

#### Parks, Recreation, and Historic Preservation

KATHY HOCHUL Governor ERIK KULLESEID Commissioner

February 10, 2022

Robert Fraser The LA Group, P.C. 266 Locust Grove Road Greenfield, NY 12833

Re: SEQRA Terramor Camping Facility, Saugerties Town of Saugerties, Ulster County, NY 22PR00774

Dear Robert Fraser:

Thank you for requesting the comments of the Office of Parks, Recreation and Historic Preservation (OPRHP). We have reviewed the project in accordance with the New York State Historic Preservation Act of 1980 (Section 14.09 of the New York Parks, Recreation and Historic Preservation Law). These comments are those of the OPRHP and relate only to Historic/Cultural resources. They do not include potential environmental impacts to New York State Parkland that may be involved in or near your project. Such impacts must be considered as part of the environmental review of the project pursuant to the State Environmental Quality Review Act (New York Environmental Conservation Law Article 8) and its implementing regulations (6 NYCRR Part 617).

Based upon this review, it is the opinion of OPRHP that no properties, including archaeological and/or historic resources, listed in or eligible for the New York State and National Registers of Historic Places will be impacted by this project.

If further correspondence is required regarding this project, please be sure to refer to the OPRHP Project Review (PR) number noted above.

Sincerely,

Daniel Mich

R. Daniel Mackay

Deputy Commissioner for Historic Preservation Division for Historic Preservation L



#### **TECHNICAL MEMORANDUM**

Date: August 30, 2022

To: Ahmed Helmi / Kimberly White, Terramor Campgrounds Kevin Franke, The LA Group

From: Michael R. Wieszchowski, P.E. PTOE

Subject: Summer Traffic Counts NYS Route 212 & Glasco Turnpike, Town of Saugerties, Ulster County, NY

Greenman-Pedersen, Inc. (GPI) performed a turn movement traffic count at the Route 212 and Glasco Turnpike intersection on August 9, 2022 in order to compare typical summer peak hour traffic volumes to those used in the traffic impact study dated June 2022. For that study the traffic counts were collected in February 2022, but were adjusted up by 20% based on NYSDOT seasonal adjustment factors, to convert February counted volumes to Average Annual Peak Hour Volumes. The volumes from the traffic study are shown in the figure below.

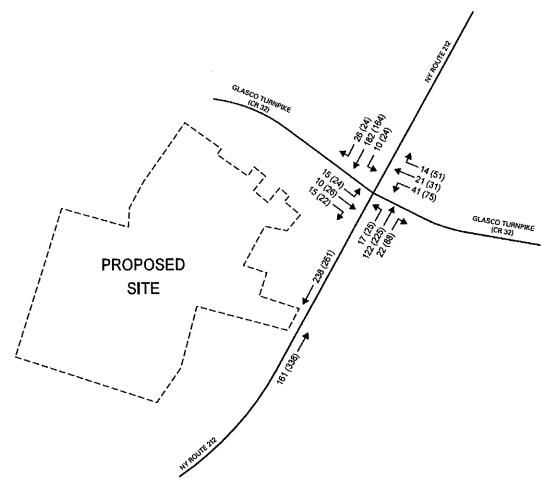



Figure 1: 2022 Exiting Traffic Volumes as Shown in the June 2022 Traffic Impact Study

In the traffic impact study, the PM peak hour was the period with highest traffic volumes, and as such, was the critical period for determining traffic impacts. For that period, the traffic study analyzed traffic volumes that included 779 vehicles entering the Route 212 and Glasco Turnpike intersection and 599 vehicles along Route 212 adjacent to the Terramor development.

For the Summer count, conducted on August 9, 2022, the maximum hourly volume entering the Glasco Turnpike intersection was 574 vehicles and the maximum roadway volume adjacent to the site was 476 (see the attached traffic count data sheet). These counted volumes are 25% less than what was used to analyze the intersection, and 20% less that the volumes show in the study adjacent to the intersection.

Based on these counts, the volumes used in the traffic study are significantly higher than those present during either the summer or winter months and provide a very conservative analysis of the traffic impacts.

Attachments:

Traffic Count Data Sheet

|                      |            | ROUTE 212  | E 212        |        | 5       | GLASCO TPKE | TPKE    |        |      | ROUTE 212  | E 212   |        | 5      | GLASCO TPKE | TPKE    |        | Overall      |
|----------------------|------------|------------|--------------|--------|---------|-------------|---------|--------|------|------------|---------|--------|--------|-------------|---------|--------|--------------|
|                      |            | Southbound | pond         | 1      | 1 2 2 1 | Westbound   | punc    |        |      | Northbound | ound    |        |        | Eastbound   | pund    |        | Intersection |
| Start Time           | Left       | Thru       | Right        | U-Turn | Left    | Thru        | Right L | U-Turn | Left | Thru       | Right   | U-Turn | Left   | Thru        | Right U | U-Turn | Volume       |
|                      | 0          | 27         | -            | 0      | 4       | ю           | 2       | 0      | 0    | 16         | 2       | 0      | ~      | 2           | e       | 0      | 61           |
|                      | ო          | 26         | Ð            | 0      | 1       | 2           | ~       | 0      | 0    | 17         | ~       | 0      | 2      | 0           | 4       | 0      | 72           |
|                      | ~          | 44         | -            | 0      | 5       | ო           | ~       | 0      | ~    | 16         | 4       | 0      | 2      | 2           | 2       | 0      | 82           |
| 7:45 AM              | 0          | 35         | ω            | 0      | 00      | 4           | 4       | 0      | 4    | 22         | 0       | 0      | 2<br>2 | ٣           | 4       | 0      | 66           |
| 8:00 AM              | 4          | 44         | ~            | 0      | 5       | 0           | 0       | 0      | ÷    | 22         | 9       | 0      | 2      | -           | e       | 0      | 89           |
| 8:15 AM              | 9          | 51         | 2            | 0      | 11      | 9           | 0       | 0      | Ю    | 29         | 11      | 0      | Ю      | 9           | 10      | 0      | 138          |
| 8:30 AM              | 4          | 39         | က            | 0      | 14      | ъ           | 4       | 0      | 9    | 30         | თ       | 0      | Ю      | 4           | 14      | 0      | 135          |
| 8:45 AM              | 4          | 53         | 7            | 0      | 13      | 13          | 3       | 0      | 3    | 40         | 22      | 0      | 3      | 17          | 7       | 0      | 185          |
| Peak Hour            | 18         | 187        | 13           | 0      | 43      | 24          | 7       | 0      | 13   | 121        | 48      | 0      | 11     | 28          | 34      | 0      | 547          |
| Overall Total        | 24         | 319        | 28           | 0      | 71      | 36          | 15      | 0      | 18   | 192        | 57      | 0      | 21     | 33          | 47      | 0      | 861          |
| L                    |            |            |              |        |         |             |         |        |      |            |         |        |        |             |         |        | 0            |
|                      |            | ROUT       | ROUTE 212    |        | 0       | GLASCO TPKE | TPKE    | 18     |      | ROUTE 212  | = 212   |        | 5      | GLASCO TPKE | TPKE    |        | Overall      |
|                      | No while a | Southbound | ponuq        |        |         | Westbound   | punc    |        |      | Northbound | puno    |        | A IN   | Eastbound   | pund    | 1.19.2 | Intersection |
| Start Time           | Left       | Thru       | Right U-Turn | U-Turn | Left    | Thru        | Right L | U-Turn | Left | Thru       | Right 1 | U-Turn | Left   | Thru        | Right U | U-Turn | Volume       |
| 4:00 PM              | ~          | 39         | 6            | 0      | 7       | 4           | 5       | 0      | З    | 47         | 17      | 0      | 4      | 4           | 9       | 0      | 146          |
| 4:15 PM              | 7          | 37         | 9            | 0      | ω       | 9           | S       | 0      | -    | 50         | 17      | 0      | e      | 9           | 7       | 0      | 153          |
| 4:30 PM              | ო          | 41         | 4            | 0      | 12      | ო           | 4       | 0      | 4    | 41         | 10      | 0      | 9      | 4           | 9       | 0      | 138          |
| 4:45 PM              | 2          | 37         | က            | 0      | 8       | -           | 4       | 0      | 4    | 46         | 80      | 0      | -      | 9           | 2       | 0      | 122          |
| 5:00 PM              | 4          | 49         | 4            | 0      | о       | ო           | 4       | 0      | 9    | 53         | 14      | 0      | n      | 9           | 9       | 0      | 161          |
| 5:15 PM              | 0          | 40         | 4            | 0      | 12      | 4           | 4       | 0      | 2    | 45         | 1       | 0      | ъ<br>С | £           | 4       | 0      | 136          |
| 5:30 PM              | 2          | 35         | 7            | 0      | ი       | 4           | 9       | 0      | ю    | 45         | 00      | 0      | 7      | 4           | 10      | 0      | 140          |
| 5:45 PM              | 0          | 47         | 8            | 0      | 9       | 2           | 2       | 0      | 3    | 36         | 11      | 0      | 4      | 2           | 0       | 0      | 121          |
| Peak Hour            | 16         | 164        | 17           | 0      | 37      | 13          | 17      | 0      | 15   | 190        | 49      | 0      | 13     | 22          | 21      | 0      | 574          |
| <b>Overall Total</b> | 19         | 325        | 45           | 0      | 71      | 27          | 34      | 0      | 26   | 363        | 96      | 0      | 33     | 37          | 41      | 0      | 1117         |

Study Name 1-NY ROUTE 212 & GLASCO TURNPIKE Start Date 08-09-2022 Start Time 7:00 AM Site Code

# Μ

Nicola LaPiana Associate Destrict Mirectar Navianse Dasshaannat



September 15<sup>th</sup>, 2022 Kevin Franke 40 Long Alley Saratoga Springs, NY, 12866 By E-mail

#### Re: Glasco Turnpike SBL 27.002-8-28 & 27.2-8-32.11

Mr. Kevin Franke:

I am writing concerning the new service located on Glasco Turnpike, notated as SBLs 27.002-8-28 and 27.2-8-32.11 Central Hudson Gas and Electric Corp., 284 South Ave., Poughkeepsie, N.Y. 12601 is committed to providing electric service to the site in accordance with our filed tariff.

For more information, please view our tariff filed with the NYS Department of Public Service by visiting: <u>https://www.cenhud.com/account-resources/rates/</u>

I wish you success with the operation of your venture. If you have any questions I may be reached by email at <u>nlapiana@cenhud.com</u> or phone at 845-334-3522

Sincerely,

Nicola LaPiana Associate District Director, Business Development

284 South Avenue Poughkeepsie, NY 12601

(845) 452-2000 Direct: (845) 486-5474 email: jdoane@cenhud.com www.CentralHudson.com

# N



November 11, 2022

Kim White Project Manager Kampgrounds of America Inc. d/b/a Terramor Outdoor Resort 550 N 31st St. Billings, MT 59101 kwhite@koa.net

#### RE: Noise Assessment Report – Terramor Catskills Project Alliance Project No. AQM-2022-0033

Dear Ms. White,

Alliance Technical Group (Alliance) is pleased to provide Terramor this noise assessment for the proposed Terramor Catskills Project (Project) in Saugerties, NY. We understand the proposed Project will consist of operating outdoor camp units on a land parcel adjacent to NY Route 212. The goal of this noise assessment was to evaluate sound from Project operation with respect to noise impact significance criteria at the Project property line and nearest noise-sensitive receptors. Noise-sensitive receptors (NSRs) are areas where human activity may be adversely affected by noise such as residences, schools, churches, and public recreation areas.

#### **Project Description**

The Project will consist of operating an approximately 77-acre camping facility featuring 75 camping units and associated facilities including a welcome center, lodge, pavilion and event area, pool, grill areas, dog parks (2), wellness facility, maintenance area/building, general manager's house, employee housing, and wastewater treatment plant. Camping units and associated facilities will operate within a 50-foot setback from the site perimeter except for along the northwest property line which has a 100-foot setback. The overall Project site plan is presented in Figure 1.

The Project site will be open seasonally each year from May through October, operating 7 days per week, with quiet hours from 10 pm to 8 am. Operation will include arrival and departure of guest vehicles (Peak hour: AM-17; PM-22), and use of guest pull carts for on-site luggage transport. Additional vehicles onsite will include box truck deliveries (2 to 3 per day), garbage truck visits (Peak season: 3 per week), and electric golf carts for staff maintenance and housekeeping. The primary location for daily food and activity will be the lodge, but sound-generating activity will also take place at a welcome center, pavilion, pool and cabana area, two dog parks, several guest grill stations, and campfires at each camping unit site. In addition, operations support areas will include a maintenance area, wastewater treatment plant (WWTP), employee housing area, and general manager's house.

#### **Noise Impact Significance Criteria**

The Town of Saugerties Zoning Code Section 245-11.I standard limits sound levels to 70 A-weighted decibels (dBA) at the property line. Otherwise, there are no New York State or Federal decibel level limits on noise applicable to the Project. Therefore, noise significance of project operational sources was evaluated at the nearest property line for compliance with the 70 dBA limit. Project sound sources predicted to be 70 dBA or below at the nearest property line would indicate compliance with the Town of Saugerties limit. Sound source predicted to be above 70 dBA would indicate need for mitigation.

In addition to the local property line limit, further guidance to assess noise impact significance in the community is provided by the New York State Department of Environmental Conservation (NYSDEC) in its program policy document "Assessing and Mitigating Noise Impacts."<sup>1</sup> The policy document evaluates community noise impacts at noise-sensitive receptor areas according to the increase in existing ambient A-weighted (dBA) sound pressure level (SPL) at the receptor due to the noise source. A noise-sensitive receptor is a location such as an occupied residence, church, hospital or public facility where excess noise can negatively impact activities. The policy states "In non-

<sup>1</sup> New York State Department of Environmental Conservation (NYSDEC) in its Program Policy document "Assessing and Mitigating Noise Impacts", NYSDEC, October 76, 2000; revised February 2, 2001.

CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121



industrial settings, the SPL should probably not exceed ambient noise by more than 6 dBA at the receptor." Therefore, noise impact significance of Project operations in the surrounding community was evaluated using this NYSDEC 6 dBA increase guidance. Predicted increases in the ambient sound level over 6 dBA at a noise-sensitive receptor due to Project operations would indicate a potential significant adverse noise impact and recommendation for mitigation. Predicted increases in the ambient sound level of 6 dBA or lower would indicate no significant adverse noise impact or need for mitigation.

#### **Community Receptors and Existing Ambient Sound Levels**

The nearest noise-sensitive receptor areas to the Project are adjacent properties with residences within approximately 100 feet of the Project property line located on three sides of the Project site as identified in Figure 1 and described as follows:

- NSR-SE: Residences along Route 212 and on Osnas Lane, southeast of the Project site
- NSR-NE: Residences along Glasco Turnpike and on Cottontail Lane, northeast of the Project site
- NSR-NW: Residences along Raybrook Drive, northwest of the Project site

A sound survey was conducted on August 25, 2022 to document existing ambient sound levels near the Project property line in the direction of each receptor area and to be used with predicted Project operational sound levels to assess potential community noise impacts using NYSDEC guidance. Measurements of existing ambient sound levels were conducted at three monitoring locations and characterize the acoustical environment adjacent to each receptor. Monitoring locations (ML-S, ML-E, and ML-NW) are identified in Figure 1. At each monitoring location, A-weighted sound levels were continuously measured during a daytime and evening period of 30-minutes each using a Type I integrating sound level analyzer. The analyzer was field-calibrated before and after each monitoring period. Field forms and calibration certificates are presented in Enclosure A.

During each measurement period, winds were calm to light ( $\leq$ 3 mph), and there was no rain. Prominent background sounds consisted of distant traffic sound, insect sound (especially in the evening), and construction vehicle sound during the daytime at location ML-NW. Other major noise sources identified during the measurements included leaf movement in the wind, airplane traffic, a dog barking (ML-NW) and an electric string trimmer at an adjacent residence on Cottontail Lane (ML-E).

Sound levels for each monitoring period were summarized in terms of the following two descriptors: 1) the background sound level ( $L_{90}$ ) and 2) the average sound level ( $L_{eq}$ ). The  $L_{90}$  is the near-minimum residual sound level exceeded 90 percent of the monitoring period and excludes loud but short-duration sounds. The  $L_{eq}$  is the energy-equivalent steady-state sound level equal to the time-varying sound over the monitoring period, considering short duration and loud intrusive sounds. Existing ambient sound survey results for the proposed Project site are presented in Table 1.

| Monitoring  | NOD                  |       | Survey        | Existing Ambient              | Sound Level (dBA)                       |
|-------------|----------------------|-------|---------------|-------------------------------|-----------------------------------------|
| Location ID | NSR<br>Characterized | Туре  | Time<br>(EDT) | Background (L90) <sup>a</sup> | Average (L <sub>eq</sub> ) <sup>b</sup> |
| MIG         | NOD OF               | Day   | 1519 to 1549  | 43                            | 47                                      |
| ML-S        | NSR-SE               | Night | 1959 to 2029  | 50°                           | 55                                      |
|             | NOD NUT              | Day   | 1606 to 1636  | 50°                           | 55                                      |
| ML-E        | NSR-WE               | Night | 2042 to 2112  | 58°                           | 58                                      |
|             | NOD NIW              | Day   | 1420 to 1450  | 34                            | 42                                      |
| ML-NW       | NSR-NW               | Night | 1900 to 1930  | 31                            | 37                                      |

#### Table 1. Existing Ambient Sound Survey Results - August 25, 2022


\* Near-minimum (residual) sound level exceeded 90 percent of the monitoring period (L<sub>90</sub>).

<sup>b</sup> Energy-equivalent average sound level for the monitoring period (L<sub>eq</sub>).
<sup>c</sup> Prominent insect sound.

Tioninicht histor sound.

CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601

256.351.0121





#### **Operational Sound Survey**

To predict sound levels during Project operations, a sound survey was conducted on September 9 and 10 at the Terramor facility located in Bar Harbor Maine (Bar Harbor). The Bar Harbor site is a similar-sized model for and the same type of outdoor use as the Catskills Project. Measurements were conducted at four monitoring locations identified in Figure 2 selected to characterize onsite sound levels in specific areas of the proposed Project site and Project receptor areas as follows:

- BH-E and BH-D: Bar Harbor/Project entrance, lodge and primary parking areas (Project NSR-SE)
- BH-M: Bar Harbor/Project maintenance, waste/water management and employee housing areas (Project NSR-NE)
- BH-D : Bar Harbor/Project parking, camping unit and guest activity areas (Project NSR-NW)

At each monitoring location, A-weighted sound levels were continuously measured during a morning, afternoon and evening period of 30-minutes each using a Type I integrating sound level analyzer. The analyzer was field-calibrated before and after each monitoring period. Field forms are presented in Enclosure B.

During each monitoring period, winds were calm to light ( $\leq 2$  mph), and there was no rain. At each monitoring location, continuous background sounds consisted of distant offsite traffic sound. Intermittent onsite operational sound was audible at times and included vehicle, golf cart or pull cart sound primarily tires on the gravel, guest/employee conversations, campfires and activities such as the Yoga instruction and music at the lodge.

Consistent with the existing ambient sound levels measured at the proposed Project site, sound levels for each monitoring period were summarized in terms of the L<sub>90</sub> and L<sub>eq</sub>. The operational sound survey results are presented in Table 2.

| Bar Harbor                | Community                 |           | Survey Time - | <b>Operational So</b>            | und Level (dBA)                         |
|---------------------------|---------------------------|-----------|---------------|----------------------------------|-----------------------------------------|
| Monitoring<br>Location ID | Receptor<br>Characterized | Туре      | (EDT)         | Background<br>(L90) <sup>a</sup> | Average (L <sub>eq</sub> ) <sup>b</sup> |
|                           |                           | Morning   | 0830-0900     | 45                               | 50                                      |
| BH-E                      | NSR-SE                    | Afternoon | 1611-1641     | 48                               | 52                                      |
|                           |                           | Night     | 1925-1955     | 45                               | 50                                      |
|                           |                           | Morning   | 1023-1053     | 39                               | 44                                      |
| BH-M                      | NSR-WE                    | Afternoon | 1533-1603     | 42                               | 45                                      |
|                           |                           | Night     | 2123-2153     | 45                               | 47                                      |
|                           | NSR-SE                    | Morning   | 0906-0936     | 40                               | 45                                      |
| BH-D                      |                           | Afternoon | 1654-1724     | 38                               | 44                                      |
|                           |                           | Night     | 1830-1900     | 38                               | 44                                      |
|                           |                           | Morning   | 0940-1010     | 39                               | 45                                      |
| BH-B                      | NSR-NW                    | Afternoon | 1731-1801     | 39                               | 45                                      |
|                           |                           | Night     | 2040-2110     | 39                               | 43                                      |

 Table 2. Operational Sound Survey Results – September 9 and 10, 2022

<sup>b</sup> Energy-equivalent average sound level for the monitoring period (L<sub>eq</sub>).

Both the L<sub>90</sub> and L<sub>eq</sub> may both be used for evaluating increases in ambient sound levels. For continuous sound sources, increases in the L<sub>90</sub> are generally evaluated. For short-duration or intermittent sound sources, evaluating increases in the Lea is often appropriate. Project operation will primarily consist of mostly intermittent sources; however, Project operation will include a few continuous sound sources consisting of the wastewater treatment system blower, poolhouse pumps, and building HVAC units including staff housing air conditioners. Therefore, to assess both continuous and intermittent ambient sound levels, predicted increases to both the L<sub>90</sub> and L<sub>eq</sub> were evaluated.

CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121



#### **Project Source Sound Levels and Predicted Property Line Compliance**

Anticipated major sound sources for the Project are presented in Table 2. With the exception of the Welcome Center<sup>2</sup> and WWTP, these same types of sound sources are also located at the Terramor Bar Harbor facility since it is the base model for the approach and design of the Project. Therefore, sound levels of operational sources were measured at the Bar Harbor facility and used as reference sound levels for Project source sound level predictions at the property line.

Measurements were conducted using a Type 1 sound level meter at a distance of 10 to 100 feet away from the source and were recorded as the maximum A-weighted sound level as observed from the instrument display. Since sources were measured at various distances, the maximum sound level measured for each source was corrected to a standard 50-foot reference sound level for use in modeling predictions of the sound source to the Project property line. Observations at Bar Harbor indicated overall Project sources are normally brief at any given location and do not typically occur simultaneously at the same location at the same moment. The exceptions are those sources identified as continuous, which consist of the WWTP compressor/blower, pool-house motor, and at times the lodge HVAC and employee housing air conditioner units.

Project sound source maximum sound levels at 50 feet and predicted sound levels at the nearest property line for each Project area type (Developmental Component) are summarized in Table 3. Predicted sound level modeling results for each individual Project sound source are presented in Table A, in Attachment A. Field data sheets are presented in Enclosure C. Predicted sound levels modeling calculation included only reductions due to standard distance attenuation due to hemispherical radiation, which is 6 dBA per doubling of the reference distance. Conservatively, modeling of additional sound reductions where applicable due to vegetative attenuation (trees) and intervening topography was excluded.

| Development<br>Component | Primary Sound Sources                                                                                       | Operating<br>Quantity/Period                                                                  | Maximum<br>Sound Level<br>@ 50 feet<br>(dBA) | Minimum<br>Distance (ft)<br>to Property<br>Line (ID) | Predicted<br>Sound Level<br>at Property<br>Line (dBA) | Comments                                                                             |
|--------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|
| Entrance                 | Guest vehicles,<br>Delivery/garbage trucks                                                                  | 12-15 cars/hr @ peak;<br>3-4 trucks/day@ peak                                                 | 59-62                                        | 20<br>(SE)                                           | 67-70                                                 | Predicted max sound levels from entrance pass-bys near Rt 212.                       |
|                          |                                                                                                             | 2-15 cars/hr @ peak;<br>3-4 buses/day@ peak                                                   | 53-63                                        | 60-470<br>(SE)                                       | 45-59                                                 | Golf cart: tires on gravel;<br>Guest vehicle: arrive/leave/doors                     |
| Lodge                    | Golf carts, pull carts,<br>delivery trucks, music,<br>conversations, lodge HVAC                             | Deliveries during day;<br>music - selected<br>evenings                                        | 52-63                                        | 70-170<br>(NW/SW)                                    | 25-60                                                 | Delivery trucks incl. backup alarm<br>sound at lodge;<br>Lodge HVAC: 31 dBA at NW PL |
|                          | Pull carts, guest vehicles, fire pit                                                                        | Non-quiet hours:<br>8 AM to 10 PM                                                             | 43-63                                        | 80-370 (NW)                                          | 35-54                                                 | No TVs, radios or other amplified sounds permitted                                   |
| Activity<br>Areas        | Conversations/voices, yoga<br>instructor/ music, pool-house<br>motor, pool waterfall/<br>bubbler, dog parks | Non-quiet hours:<br>8 AM to 10 PM;<br>Pool-house motor and<br>waterfall/bubbler<br>continuous | 48-65                                        | 70-700<br>(NW/SE)                                    | 25-59                                                 | Pool-house motor and waterfall/<br>bubbler: ≤29 dBA at NW PL                         |
| Maintenance              | Garbage truck, golf carts                                                                                   | Garbage pickup<br>4x/week peak season                                                         | 59-63                                        | 170-200<br>(NW)                                      | 47-52                                                 | Garbage pickup 2x/month off-<br>season                                               |
| WWTP                     | Compressor/blower package                                                                                   | Compressor/blower<br>operates continuously                                                    | 52                                           | 130<br>(NE)                                          | 44                                                    | Compress./blower: 44 dBA NE PL                                                       |
| Employee                 | Golf carts; conversations in gathering area, staff vehicles, trailer air conditioning                       | Trailer air conditioning<br>(AC) is episodic and<br>continuous at times                       | 43-65                                        | 70-150<br>(NW/NE)                                    | 40-57                                                 | Trailer AC: 40 dBA at NW PL                                                          |
| Sitewide                 | Guest vehicles, golf carts,<br>mowers/trimmers, gas<br>chainsaw                                             | Daytime landscaping as needed                                                                 | 59-67, and 85<br>(chainsaw)                  | 50-200<br>(All)                                      | 47-67 and 85<br>(chainsaw)                            | Chainsaw is ≤70 dBA at≥200 feet<br>from PL assuming 100' of woods                    |

 Table 3. Predicted Maximum Project Sound Levels at Property Lines

<sup>2</sup> At Bar Harbor the welcome center activities are performed at the lodge.

CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121



As indicated in Table 3, maximum sound levels from Project sources ranged from 43 to 67 dBA at 50 feet and 25 to 70 dBA at the nearest property line except for gas chainsaw use which is anticipated to be 85 dBA at 50 feet and nearest property line<sup>3</sup>. Therefore, the Table 3 indicates maximum sound levels from project source will be within and thus comply with the 70 dBA limit for all Project sources except use of the gas chainsaw. Maximum sound levels from operation of the chainsaw are predicted to comply with the 70 dBA property line limit when activity is at least 200 feet away from the property lines assuming woods assuming 100 feet of intervening woods is present. Mitigation of noise when removing tree within 200 feet of the property line could potentially be accomplished using alternative cutting methods (e.g., battery-powered electric chainsaw).

#### **Community Sound Level Prediction and Noise Impact Assessment**

At each receptor, potential noise impacts from the Project were assessed by evaluating the predicted increase of the existing ambient  $L_{90}$  and  $L_{eq}$  at each receptor using onsite Project operational sound levels from the Bar Harbor sound survey. Daytime and evening (non-quiet-time) levels were evaluated as the times experiencing the highest potential sound levels. Overnight sound levels during quiet time at the resort (10 pm to 8 am), would be quietest since most sound source are not operating.

Onsite Project operational sound levels were acoustically modeled to each receptor using the standard distance attenuation due to hemispherical radiation, which reduces the reference sound level by 6 dBA per doubling of the reference distance to the receptor. Additional reductions in sound were also predicted due to vegetative screening of the forested areas and barrier insertion loss from intervening topography for NSR-SE. Predicted Project sound levels at each receptor were added to the existing ambient sound level for each receptor resulting in the predicted total sound level at each receptor. Both the  $L_{90}$  and  $L_{eq}$  were evaluated at each receptor. The decibel increase of total sound level over the existing ambient sound level at each receptor was then compared with the 6 dBA noise impact criteria. Acoustical modeling results for each receptor are presented in Table 4. Nearest receptor distances represent the distance of each receptor to the nearest area of onsite Project operations and were used to determine the sound reduction due to hemispherical radiation assuming operational sound sources to be within a radius of 200 feet of that onsite location. Additional sound reduction was also predicted as follows:

- Vegetative Screening Sound attenuation due to screening from woods between the Project land the property line is based on the NYSDEC program policy stating 100 feet of woods results in 3 to 7 dBA of sound attenuation. Conservatively, the minimum 3 dBA per 100 feet was used for this assessment.
- Intervening Topography Barrier insertion loss, where applicable, from line-of-sight intervening topography between the Project source location and nearest property line.<sup>4</sup>

|                |                 | 119 11010                                      | e moocoom                                              | contraceoutito                                      | 1 / Curroreu                           | 110/001 201             | and the tree one                    | e mi atteepi | 0.15        |                                  |
|----------------|-----------------|------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|----------------------------------------|-------------------------|-------------------------------------|--------------|-------------|----------------------------------|
|                |                 | Onsite                                         |                                                        | Sound                                               | Reductions (                           | dBA)                    | Predicted                           | Existing     | Total Sound | Sound Leve                       |
| Receptor<br>ID | Eval.<br>Type   | Onsite<br>Sound<br>Level <sup>a</sup><br>(dBA) | Nearest<br>Receptor<br>Distance <sup>a</sup><br>(feet) | Hemispheric<br>Radiation<br>(Distance) <sup>b</sup> | Vegetative<br>Screening<br>Attenuation | Topography<br>Insertion | Sound Level<br>at Receptor<br>(dBA) | Ambient      | Level at    | Increase at<br>Receptor<br>(dBA) |
| NOD OF         | L <sub>90</sub> | 48                                             | 250                                                    | -2                                                  | -6°                                    | -5 <sup>f</sup>         | 35                                  | 43           | 44          | 1                                |
| NSR-SE         | Leg             | 52                                             | 250                                                    | -2                                                  | -6°                                    | -5 <sup>f</sup>         | 39                                  | 47           | 48          | 1                                |
| NOD NE         | L90             | 42                                             | 400                                                    | -6                                                  | -9°                                    | 0                       | 27                                  | 50           | 50          | 0                                |
| NSR-NE         | Leq             | 45                                             | 400                                                    | -6                                                  | -9°                                    | 0                       | 30                                  | 55           | 55          | 0                                |
| NOD NIN        | L90             | 39                                             | 250                                                    | -2                                                  | -6°                                    | 0                       | 31                                  | 31           | 35          | 3                                |
| NSR-NW         | Leg             | 43                                             | 250                                                    | -2                                                  | -6°                                    | • 0                     | 35                                  | 37           | 40          | 2                                |

#### Table 4. Community Noise Assessment Results - Predicted Project Sound Increase at Receptors

\* Highest measurement period recorded at Bar Harbor survey for a similar period measurement

<sup>b</sup> 6 dBA reduction per doubling of distance = 20Log(Receptor Distance/Reference Distance). Assumes operational source reference distance of 200 feet.

<sup>c</sup> From existing ambient sound survey results; the lowest measured sound level (L<sub>90</sub>/L<sub>eq</sub>) was conservatively used.

d Decibel sum of predicted Project sound level and existing ambient sound level.

\* Attenuation due to intervening woods (-3 dBA per 100 feet).

<sup>f</sup> Insertion loss for intervening line-of-sight topography barrier between NSR-SE and the Project sound sources (0.01 foot barrier path length difference).

<sup>4</sup> Hoover, Robert M. and Reginald H. Keith, Noise Control for Buildings, Manufacturing Plants, Equipment and Products, Hoover and Keith, Inc., 1994. A minimum barrier path-length difference of 0.01 feet was conservatively assumed.

255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121

<sup>&</sup>lt;sup>3</sup> Assumes normal chainsaw cutting activity is not performed within the 50-foor property line buffer.



As indicated in Table 4, the predicted increase in ambient sound levels was 3 dBA or less at all receptors, which is well within the noise impact significance criteria of 6 dBA. Therefore, Project operations are predicted to result in no significant adverse noise impact on the community and no mitigation is needed.

Sincerely, Alliance Technical Group

furactor

Scott Manchester Director, Ambient Services

× .

Figure 1. Catskills Project Site Layout, Sound Survey Locations and Receptor Areas Figure 2. Bar Harbor Sound Survey Locations

Attachment A. Table A. Catskills Project Sound Sources and Predicted Property Line Sound Level

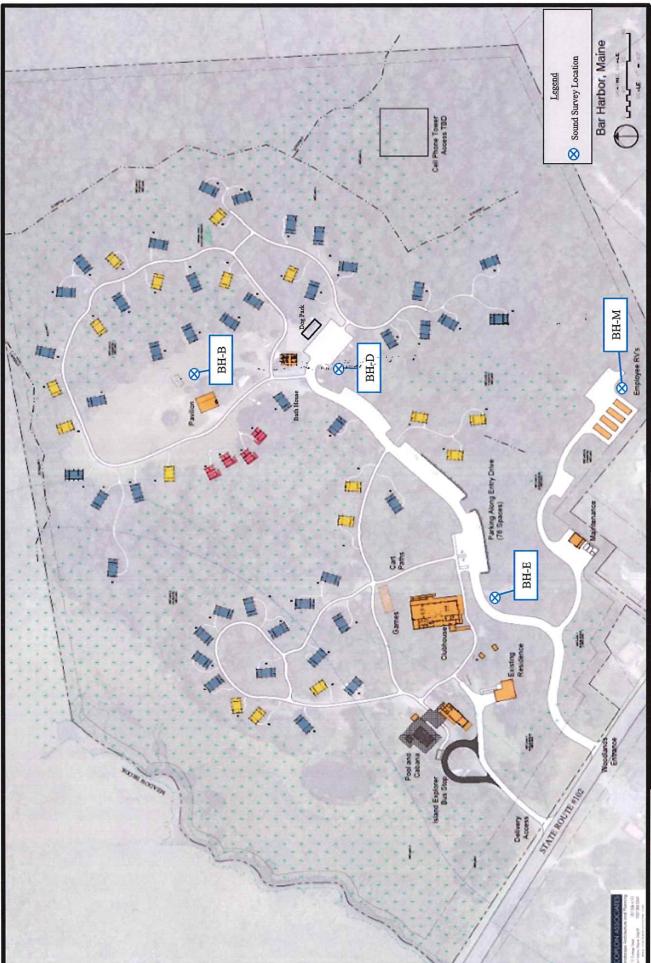
**Enclosure A.** Catskills Sound Survey Field Forms and Calibration Certificates **Enclosure B.** Bar Harbor Sound Survey Field Forms **Enclosure C.** Bar Harbor Source Sound Field Data Sheets



CORPORATE OFFICE 255 Grant St. SE, Suite 600 Decatur, AL 35601 256.351.0121



Figures
















Attachment A. Table A. Catskills Project Sound Sources and Predicted Property Line Sound Level

#### Table A. Catskills Project Sound Sources and Predicted Property Line Sound Level

| Development<br>Component              | Sound Types                  | Source                                         | Туре                       | Time Period                                                 | Quantity or<br>Frequency<br>(if not daily)  | Max SPL<br>@50'<br>(dBA)" | Min<br>Distance<br>to Pl. (ft) | Nearest<br>PL   | Distance<br>Attenuation<br>(dBA) | SPL @PL<br>(dBA) | Notes/<br>Empirical Reference                              |
|---------------------------------------|------------------------------|------------------------------------------------|----------------------------|-------------------------------------------------------------|---------------------------------------------|---------------------------|--------------------------------|-----------------|----------------------------------|------------------|------------------------------------------------------------|
| Entrance                              | Vehicle                      | Passby                                         | Intermittest               | See sitewide general                                        | 1                                           | 59                        | 20                             | SE              | -8                               | 67               |                                                            |
| Entrance                              | Delivery                     | Passby                                         | Intermitteat               | See sitewide general                                        |                                             | 62                        | 20                             | SE              | -8                               | 70               | Proximal to Rt 212                                         |
| Welcome Center                        | Guest Vehicle                | Arrive/Leave                                   | Intermittent               |                                                             |                                             | 52                        | 70                             | SE              | 3                                | 49               |                                                            |
| Welcome Center                        | Guest Vehicle                | Arrive/Leave                                   | Intermittent               | peaks @ 10:30-11:15<br>and 3:30-5:30                        | 12-15 cars/hour<br>@ peaks                  | 62                        | 70                             | SE              | 3                                | 59               | From Lodge at Bar Harbor                                   |
| Weicome Center                        | Guest Vehicle                | Door Open/Close                                | Intermittent               |                                                             |                                             | 54                        | 70                             | SE              | 3                                | 51               |                                                            |
| Welcome Center                        | Electric Golf Cart           | Tires on gravel                                | Intermittest               | 1                                                           |                                             | 62                        | 130                            | SE              | 8                                | 53               |                                                            |
| Welcome Center                        | Guests                       | Conversation                                   | Intermittent               |                                                             |                                             | 56                        | 170                            | \$E             | 11                               | 45               |                                                            |
| Lodge Area                            | Guest Vehicle                | Arrive/Leave                                   | Intermittent               |                                                             |                                             | 52                        | 400                            | NW              | 18                               | 34               |                                                            |
| Lodge Area                            | Guest Vehicle                | Door Open/Close                                | Intermitteat               |                                                             |                                             | 54                        | 400                            | NW              | 18                               | 36               |                                                            |
| Lodge Area                            | Guests                       | Conversation                                   | Intermitteat               |                                                             |                                             | 56                        | 400                            | NW              | 18                               | 38               |                                                            |
| Lodge Area                            | Walker                       | Shoes on gravel path                           | Intermittent               |                                                             |                                             | 44                        | 450                            | NW              | 19                               | 25               |                                                            |
| Lodge Area                            | Recreation/<br>Entertainment | Acoustic Music - open doors                    | Episodic                   | 6-8pm                                                       | 1-2x/week<br>Indoor/Outdoor                 | 60                        | 400                            | NW              | 18                               | 42               | Guitar with amp within 10° o<br>door                       |
| Lodge Area                            | Recreation/<br>Entertainment | Acoustic Music - closed doors                  | Episodic                   |                                                             |                                             | 51                        | 400                            | NW              | 18                               | 33               |                                                            |
| Lodge Area                            | Ventilation Units            | HVAC + Roof Kitchen Exhaust                    | Steady                     |                                                             |                                             | 49                        | 400                            | NW              | 18                               | 31               |                                                            |
| Lodge Area                            | Guest Vehicle                | Deliveries (box trucks, propane)               | Intermitteat               |                                                             | 2-3 per day                                 | 62                        | 470                            | NW              | 19                               | 42               |                                                            |
| Lodge Area                            | Guest Vehicle                | Garbage pickup - commercial sevice             | Intermittent               |                                                             | 1 commercial<br>truck; 4x/wk<br>peak season | 63                        | 470                            | NW              | 19                               | 43               |                                                            |
| Lodge Area                            | Delivery Truck               | Deliveries                                     | Episodic                   | Before 9am                                                  | 3-4 Days/Week                               | 62                        | 60                             | SW              | 2                                | 60               | Motor Sound                                                |
| Lodge Area                            | Delivery Truck               | Back up atarms                                 | Episodic                   |                                                             | 1                                           | 63                        | 170                            | SW              | 11                               | 52               | Side exposure                                              |
| Tents                                 | Guests                       | Campfire Conversations and Fire<br>Crackling   | Intermittent               | Quiet Hrs 10pm-8am                                          | Max 5 people<br>@ a site                    | 55                        | 80                             | NW              | 4                                | 50               | no TVs, radios, amplified<br>sounds allowed                |
| Tents                                 | Guest Vehicle                | Car tires on parking lot gravel                | Intermitteat               |                                                             |                                             | 60                        | 100                            | NW              | 6                                | 54               |                                                            |
| Tents                                 | Guests                       | Walking on gravel path                         | Intermittent               | ]                                                           |                                             | 43                        | 130                            | NW              | 8                                | 35               |                                                            |
| Tents                                 | Guests                       | Talking Child on Path                          | Intermittent               |                                                             |                                             | 58                        | 130                            | NW              | 8                                | 50               |                                                            |
| Tents                                 | Guests                       | Conversation in Parking Lot                    | latermitteat               |                                                             |                                             | 49                        | 100                            | NW              | 6                                | 43               |                                                            |
| Tents                                 | Guests                       | Child Conversation In Parking Lot              | Intermittent               |                                                             |                                             | 58                        | 100                            | NW              | 6                                | 52               |                                                            |
| Tents                                 | Guest Vehicle                | Car Door Open/Close                            | latermitteat               |                                                             |                                             | 50                        | 100                            | NW              | 6                                | 44               |                                                            |
| Tents                                 | Guest Vehicle                | Car Door Open/Close                            | Intermittent               |                                                             |                                             | 49                        | 100                            | NW              | 6                                | 43               |                                                            |
| Tents                                 | Guest Vehicle                | Car Beep                                       | Intermittent               |                                                             |                                             | 56                        | 100                            | NW              | 6                                | 50               |                                                            |
| Tents                                 | Pull Cart                    | Cart Rattling                                  | Intermittent               |                                                             |                                             | 54                        | 100                            | NW              | 6                                | 48               |                                                            |
| Tents                                 | Pull Cart                    | Cart Bang                                      | Intermittent               |                                                             |                                             | 59                        | 100                            | NW              | 6                                | 53               |                                                            |
| Tents                                 | Puil Cart                    | Cart Bang                                      | Intermittent               |                                                             | ļ                                           | 63                        | 370                            | NW              | 17                               | 45               |                                                            |
| Tents                                 | Guests                       | Child Crying                                   | Intermittent               |                                                             |                                             | 58                        | 80                             | NW              | 4                                | 54               |                                                            |
| Tents                                 | Pull Cart                    | 2 Carts on Path                                | Internittent               |                                                             | L                                           | 58                        | 130                            | NW              | 8                                | 50               |                                                            |
| Activity Area                         | Pavillion Event              | Yoga - Music and Instructor                    | Episodic                   |                                                             |                                             | 56                        | 600                            | NW              | 22                               | 34               |                                                            |
| Activity Area                         | Grill Stations               | Outdoor Conversations                          | Intermittent               | 5pm-9pm                                                     | 6 stations; 80%<br>booked peak<br>season    | 48                        | 70                             | NW              | 3                                | 45               |                                                            |
| Activity Area                         | Pool                         | Guest Adult Conversation                       | Intermittent               | 4pm-7pm                                                     |                                             | 58                        | 700                            | NW              | 23                               | 35               | Peak: 12; Avg 4-8/slow day                                 |
| Activity Area                         | Pool                         | Guest Kids Voices                              | Internittent               |                                                             |                                             | 61                        | 700                            | NW              | 23                               | 38               |                                                            |
| Activity Area                         | Pool                         | Guest Combined Voices                          | Intermittent               |                                                             |                                             | 65                        | 700                            | NW              | 23                               | 42               |                                                            |
| Activity Area                         | Pool                         | Waterfall and bubblers                         | Intermittent               | continuous                                                  | 1                                           | 52                        | 700                            | NW              | 23                               | 29               |                                                            |
| Activity Area                         | Peol                         | Poolhouse Mators/Pump                          | Intermittent               | continuous                                                  | 1                                           | 50                        | 700                            | NW              | 23                               | 27               |                                                            |
| Activity Area                         | Pool                         | Poolhouse Motors/Pump                          | Internittent               | continuous                                                  | 1                                           | 48                        | 700                            | NW              | 23                               | 25               |                                                            |
| Activity Area<br>Maintenance Facility | Dog Parks<br>Trash Pick Up   | Barking<br>Garbage Truck Motor                 | Occasional<br>Episodic     |                                                             | 2<br>4x wix Peak                            | 63<br>62                  | 80<br>170                      | SE<br>NW        | 4                                | 59<br>51         |                                                            |
|                                       | ·····                        |                                                | -                          |                                                             | Season<br>4x wk Peak                        | 63                        | 170                            | NW              | 11                               | 52               |                                                            |
| Maintenance Facility                  | Trash Pick Up                | Garbage Truck Backup Alarm                     | Episodic                   |                                                             | Season                                      |                           |                                |                 |                                  |                  | golf cart trips in/out for                                 |
| Maintenance Facility                  | Electric Golf Cart           | Tires on gravel                                | Intermittent               |                                                             |                                             | 59                        | 200                            | NW              | 12                               | 47               | supplies, garbage, etc.                                    |
| Maintenance Facility<br>WWTP          | Staff Vehicle<br>Maintenance | Garbage pickup<br>Wastewater Compresser/Blower | Epirodic<br>Steady         |                                                             |                                             | 59<br>52                  | 200<br>130                     | NW<br>NE        | 12<br>8                          | 47               | Refr: Manufacturer (Kaeser)<br>PWL: 84 dBA + H&K Table 6-3 |
|                                       |                              |                                                |                            |                                                             |                                             | -                         |                                |                 |                                  |                  | DT @50' (-32 dBA)                                          |
| Employee Housing                      | Staff                        | outdoor gathering area                         | Intermittent               | Quiet Hrs: 10pm-8am                                         | ļ                                           | 52                        | 150                            | NW              | 10                               | 42               |                                                            |
| Employee Housing                      | Vehicle                      | Golf Cart                                      | Intermittent               |                                                             |                                             | 55                        | 120                            | NW              | 8                                | 47               |                                                            |
| Employee Housing                      | Housing                      | Trailer AC                                     | Intermittent               | <b>T</b>                                                    |                                             | 43                        | 70                             | NW              | 3                                | 40               |                                                            |
| Employee Housing                      | Staff                        | Staff Talking                                  | Intermittent               | Two staff                                                   | }                                           | 52                        | 70                             | NW              | 3                                | 49               | <u>}</u>                                                   |
| Employee Housing                      | Vehicle                      | Car In Parking Area                            | Intermittent               |                                                             | 1                                           | 55                        | 130                            | NW              | 8                                | 46               |                                                            |
| Employee Housing<br>Sitewide          | Vehicle<br>Guest Vehicles    | Car Beep<br>On-site                            | Occasional<br>Intermittent | overall: 6AM-10 PM;<br>peaks @ 10:30-11:15<br>and 3:30-5:30 | 12-15 cars/hour<br>@ peaks                  | 65<br>59                  | 130<br>60                      | <u>NW</u><br>SW | 2                                | 57<br>57         |                                                            |
| Sîtewide                              | Landscaping                  | Grounds Maintenance                            | As-needed                  | 10am-3pm                                                    | riding & push<br>mower +<br>trimmer         | 67                        | 50                             | NW              | 0                                | 67               | As needed, 1 day/week;<br>Mower Refr: JASA, Aug, 2005      |
| Sitewide                              | Landscaping                  | Chainsaw work                                  | As-needed                  | 10am-3pm                                                    | chainsaw - gas                              | 85                        | 50                             | Alī             | 0                                | 85               | As needed, 1 day/week;<br>Refr: H&K Table 8-6              |
| Sitewid <del>e</del>                  | Electric Golf Cart           | Site operations                                | Intermittent               | 7:30am-10pm                                                 | 2 carts/day                                 | 59                        | 200                            | NW              | 12                               | 47               |                                                            |
| Sitewide                              | Electric Golf Cart           | Site operations                                | Intermittent               | 9am-5pm                                                     |                                             | 59                        | 200                            | NW              | 12                               | 47               | Avg: 20 tents per day, 3 Got<br>Carts                      |
| References:                           | H&K                          | Hoover & Keith, Inc., 1994. Noise C            |                            |                                                             | e Plants                                    |                           |                                |                 |                                  |                  | ļ                                                          |
|                                       | JASA                         | Journal of The Acoustical Society of           |                            |                                                             | I                                           | 1                         | l                              |                 |                                  | · · ·            |                                                            |
| 1                                     | Kaeser                       | Kaeser Compressors, 2018. Manufa               |                            |                                                             | eries Rotary Lobe                           | Blower Pa                 | ckages                         |                 | L                                | <b> </b>         | <b></b>                                                    |
|                                       |                              |                                                |                            |                                                             |                                             |                           | 1                              |                 |                                  |                  |                                                            |
| Notes:                                | <sup>a</sup> from measurem   | ents at Terramor Bar Harbor Outdoo             | r Resort unles:            | s otherwise referenced                                      | ļ                                           | ļ                         |                                |                 |                                  |                  |                                                            |
| Notes:                                | * from measurem              | ents at Terramor Bar Harbor Outdoo             | r Resort unles:            | s otherwise referenced                                      |                                             |                           |                                |                 |                                  |                  |                                                            |



#### Enclosure A. Catskills Sound Survey Field Forms and Calibration Certificates



205

|      | Chent/Location                          | Project N                                                                                                        | omber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D D            | are                             | Conducted By           |
|------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------------------|------------------------|
|      | Ferramor - Catalailles                  | Apm-2022-                                                                                                        | 0133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 825            | 4                               | · S. Marcheste         |
|      | So                                      | and Level Meter                                                                                                  | Microph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | one            | Calibrator                      | Pre-Ans<br>Pertonphone |
|      |                                         | 0824 .                                                                                                           | 377 820                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | CAL-200                         | DRM 902                |
|      | Serial Nomber                           | A2585                                                                                                            | LW 1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -25            | . 8779                          | 2544                   |
|      | Calibration Results                     | 1000 02.094.0 db.                                                                                                | 93.8 dBA -0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B) (B)         | 250 hz (124.0)                  | dB.1150 dBA20.5dB)     |
| •    | Initial                                 | 94.0                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | K                               |                        |
|      | 20031                                   | 94.0                                                                                                             | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                 |                        |
| ·,   | Winds                                   |                                                                                                                  | ure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hum            | idity                           | Precipitation          |
|      | alm.                                    | 8355                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54             |                                 | Non                    |
|      | Site Location                           |                                                                                                                  | Test ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | International                   | Time Period            |
|      | ML-NW                                   |                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •              | 1420                            | - 1450                 |
|      | SPI.                                    | 1/1 or 1/3                                                                                                       | (circle one) ();                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lave Band      | Sound Levels (d                 | B)                     |
|      | Decriptor 25 31.5                       | 40 S0 63                                                                                                         | 80 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 125            | 150 200 2                       | 50 315 400 500         |
|      |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                 |                        |
| •    | 630 800                                 | 1 <b>K</b> 13K 16                                                                                                | C 28 2 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.2K           | 4K 5K 6.                        | K 3K 10K               |
|      |                                         | ······                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | <u> </u>                        |                        |
|      |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                 |                        |
|      | Weighting<br>(Ent/A/C) L <sub>max</sub> | Le Le                                                                                                            | tal Sound Lev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                 |                        |
|      |                                         |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 60<br>       | L <sub>or</sub> L <sub>or</sub> | La La                  |
|      | Untrusive Evenus                        | T                                                                                                                | caffic Informa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                 |                        |
|      | Spurce dBA                              | Street                                                                                                           | AREA EROLDIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Count          | <u> </u>                        | te Location Sketch     |
|      | Construction voluch 40-44<br>Bound to N | 45                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                 |                        |
|      | amplone upo à                           |                                                                                                                  | g (ar / M - ) ( M and ) days - S days |                |                                 |                        |
|      | pet (distant) up 43-49<br>anglans 48.   | and the second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                 | <b>æ</b>               |
|      | woushing inter 2, 20                    | •                                                                                                                | round Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Some           | Rank                            | 8<br>1 L-AUW           |
| (]ou | Distant trifle knows 32-38              | 101                                                                                                              | North. (moh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m).            |                                 | 7                      |
|      | 212                                     |                                                                                                                  | icasion bang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | N                               |                        |
|      | Comments Sund level                     | • 59 dBx wi                                                                                                      | 1. In the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | There a        |                                 | . +                    |
|      | Conchester and sta                      | 5 all 2 . 4                                                                                                      | - 1- A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A A            | down town                       |                        |
|      | Construction for & Shop                 | W D est 120Th                                                                                                    | anto flue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>(R</b> 174) | anoped to ~?                    | 150 4.                 |
| L    | High worshing to NW                     | toward under                                                                                                     | - wind the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e visitere     | the tree mas man                | t 203 yde              |
|      | <u> </u>                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |                                 | · • • • •              |



|     | Cilient/Loocation                  |                      | Number             |                             | Date                 | Conduct                                |                                                                    |
|-----|------------------------------------|----------------------|--------------------|-----------------------------|----------------------|----------------------------------------|--------------------------------------------------------------------|
| •   | Tenanir                            | Atem-202             | 2-0033             | <u>l</u>                    | B/25/22              | 5. Mane                                | Amp                                                                |
|     | Model                              | Sound Level Meter    |                    | phone                       | Calibrato<br>CAL 200 | r Rino                                 | aphone                                                             |
|     | Serial Nomber                      | LD824 ·<br>A2585     | 377 E<br>LW 1      | 84525                       | 8779                 | - DRM<br>25%                           | 902                                                                |
| · . | Calibration Results                |                      | 6 03 8 JEA         | n 548)                      | 250 hz (12           | OUB TISO ABA                           |                                                                    |
| •   | lenel                              | 94                   |                    |                             | <u> </u>             |                                        | 1                                                                  |
|     | Final                              | 94.                  | <u>ð</u>           |                             | •                    |                                        |                                                                    |
| ъ.  | Winds<br>Alm                       | Temper<br>S          | rature<br>?4       | H<br>I                      | nmidity<br>/         | Precipit<br>None                       |                                                                    |
|     | Site Locat<br>ML-S                 | ion                  |                    | 11D<br>20                   | ~ 15                 | Time Period<br>Ú <sup>rr</sup> (519-15 |                                                                    |
| ÷ . | SPL                                |                      |                    |                             | nd Sound Leve        |                                        |                                                                    |
|     |                                    |                      |                    |                             |                      |                                        | 400 500                                                            |
|     |                                    |                      |                    |                             |                      |                                        |                                                                    |
|     | 630                                | 800- 1 <b>K</b> 1.3K | <u>16K 2K</u>      | 2,516 3.21                  | <u>, 4K 5K</u>       | 63K 8K                                 |                                                                    |
|     |                                    |                      |                    |                             |                      |                                        |                                                                    |
|     | Weighting                          |                      | Loral Second       | Levels (dB                  | dBAyor dBC           | •                                      | ······································                             |
|     | (Lin/A/C) L <sub>max</sub>         | Lei Lio              |                    |                             |                      | L <sub>mm</sub> L.,                    |                                                                    |
|     |                                    |                      |                    |                             |                      |                                        |                                                                    |
|     | Intrusive Event                    |                      | Eraffic Info       | Con                         |                      | Site Location S                        | interen                                                            |
|     | ltziz traffic                      | 1000 SULT 202 47     | Visible<br>barrely | 14 m                        | 2 minutes            |                                        | 中                                                                  |
|     | pistant amplane .<br>then nearly   | orto 52 through the  | neco psé           |                             |                      | m                                      | -51                                                                |
|     |                                    | Ba                   | ekground So        | 17663                       | Rank                 | •                                      | <b>e</b> <sup>x</sup> <b>·</b> · · · · · · · · · · · · · · · · · · |
|     |                                    | <i>pren</i>          | treffic. ac        | hve pessily s<br>f distant. |                      | .)                                     |                                                                    |
|     |                                    |                      |                    |                             |                      | K N                                    |                                                                    |
|     | Comments                           | store well . m       | and minal          | de la                       | 105 117 /se          | r) a manual s                          | at den                                                             |
| h   |                                    | pice of residu       |                    | - par                       |                      | y represent y                          | P VIII (C                                                          |
|     | Faciliti Faciliti Faciliti Kiy-Dis | - 1                  |                    | ·····                       |                      |                                        |                                                                    |
|     |                                    | ·                    |                    |                             |                      |                                        |                                                                    |



|                | Chent Continue                                                                                                  | Project Number<br>Arm-2012-0133                           | 8/13                          | Date<br>172                   | Conducted B<br>S. Marshith                                     |                               |
|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|-------------------------------|----------------------------------------------------------------|-------------------------------|
|                | Model LC                                                                                                        | 1824 . 3776                                               | ophone                        | Calibrator<br>CAL 200<br>8779 |                                                                |                               |
| • .<br>•       | Calibration Results in<br>Initial                                                                               | 1903hz 704.a dh. 938 dBA<br><u>94.1</u><br>94.0           | <u>0.58B)</u>                 | 250 hz (124<br>               | 0 dB 1150 dB 50 sd                                             | B)                            |
| •              | Winds<br>Calm / 3                                                                                               | Temperature<br>83                                         |                               | midity<br>7                   | Precipitation<br>None                                          |                               |
|                | Site Location<br>MLE                                                                                            | Ter<br>2 (                                                | nt ID                         | · .                           | Fine Period<br>-/666-1636                                      |                               |
|                |                                                                                                                 | E/I or I/3 (circle on<br>40 36 63 80<br>K 1.3K 1.6K 2K    |                               |                               | 250 315 400                                                    | 500                           |
| ·              | Weighting<br>(Linu/A/C) Linux I                                                                                 | iotal Source<br>million Lice                              | 1007 01000 area and 2000 0000 | dBA or dB()                   |                                                                |                               |
| Ele if<br>(DC) | Incuence Events<br>Source dia<br>ic weedwacher 658,6<br>Our party ~ 57,56<br>Uncut fit Keen 55<br>Auglans 55,57 | I calfie Int<br>Struct<br>0,55 (Not en travous)<br>58,45. | 600<br>441444                 | II Smin                       | Sure Location Sketter                                          | f Rate<br>fer sate<br>residen |
|                |                                                                                                                 | Hackground So<br>"Traffec paralys<br>front Some @ So      | + distant                     | <u>Rank</u>                   | Culver                                                         |                               |
|                | Mic position ~5' for                                                                                            | ed wacking in sends                                       | me to N                       | 601 Cottonta                  | l lane)                                                        |                               |
|                | Periodal Paren Borenasad Inte<br>*                                                                              | 3                                                         |                               |                               | Madayana ay aharang a tang ang ang ang ang ang ang ang ang ang |                               |



| Chemplocation<br>Tenamer                                                                                                                            | Project Nur<br>Aqm-2022-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1             | 134<br>R124       | 1e<br>5   22-                           |                 | iducted By                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-----------------------------------------|-----------------|---------------------------------------------|
| Mottel LU                                                                                                                                           | 10 Devel Moter<br>0824<br>12585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 16                | Calibrato<br>CAL 200<br>8779            | r               | Pre-Ang<br>Philosophilan<br>DRM 902<br>2544 |
| Calibration Results 1<br>Initial<br>Email                                                                                                           | 000 hz (94.0 sh. 9<br>94. 0<br>94.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.830BA (0.50 | B)                | 250 hz (124                             |                 | dRA (0.5dB)                                 |
| Winds<br>Colm                                                                                                                                       | Temperatu<br>Sl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F8            | Humi<br>62        | dity                                    |                 | cipitation<br>Soc                           |
| Site Focation<br>ML-NW                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TellD<br>23   | •                 |                                         | Time Pi<br>1709 | riod<br>—1930                               |
| SPL<br>Decriptor 25 31.5                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                   |                                         |                 |                                             |
| Weighting<br>(LineA/C) L <sub>max</sub>                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tal Sound Lev | els (dB, dB<br>La | 101101010100000000000000000000000000000 |                 | co Eug                                      |
| Intrusive Events<br>Source (IBA<br>Ovz N rendere 39 (<br>Iraffer v Laybord 40<br>Angel Wirendere 34<br>Crew 32 (4<br>Vorce to NW<br>rendere toby 34 | (12)<br>Hackberry back<br>(12)<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackberry<br>Hackb |               | Count             | Rank                                    | Site Focat      | ion Skeich                                  |
| Comments Insub                                                                                                                                      | e 6300 kh f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8m Hz         |                   |                                         |                 |                                             |
| Fernilau Fa.x». Sco-pased inks                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1             |                   |                                         |                 |                                             |



| Client/Location                          |                            |                               | 10ate<br>8 25 22                      |                                       | Conducted By<br>S. Manchester   |
|------------------------------------------|----------------------------|-------------------------------|---------------------------------------|---------------------------------------|---------------------------------|
| · /                                      | ound Beyel Meter           | Microphon                     | Ca                                    | ibrator                               | Pic-Any<br>Pistonphone          |
| Serial Nomber                            | L0824<br>A2585             | 377 B20<br>LW 13452           |                                       | 179                                   | DBM 902<br>2544                 |
| Calibration Results                      | 1000 hz 094 0 dh.<br>G4 \/ | 93 S dBA W.5dB                | 250                                   | 17 (124)0.dB                          | 150 dBA (0.5dB)                 |
| Final                                    | 473.9                      |                               |                                       | · · · · · · · · · · · · · · · · · · · |                                 |
| Winds<br>Calm                            | Temperat<br>76             | иге<br>                       | Bumidity<br>84                        |                                       | Precipitation                   |
| Site Location<br>m/L - S                 |                            | Test ID                       |                                       | Tin<br>1959 -                         | ne Period<br>202.9              |
| SFL                                      | E/d or 1/3<br>i 40 50 6    | (cirde oue) Octa              | ve Band Spand                         | Levels (dB)                           |                                 |
|                                          |                            |                               |                                       |                                       |                                 |
| 630 800                                  | 16 136 16                  | K 2K 25K                      | 3.2K 4K                               | 5K 6.3K                               | 816 1016                        |
|                                          |                            |                               |                                       |                                       |                                 |
| Weighting<br>(Lint/A/C) L <sub>msz</sub> | եր, երը                    | otal Sound Leve               | A Standard and an a state war war and | dBC)<br>Luia                          | E <sub>30</sub> E <sub>40</sub> |
| Intritsive Events                        |                            | Laffic Informati              |                                       | Site I                                | acation Sketch                  |
| At vi hopla 52                           | 153 RA 2                   |                               | Count<br>13 in 5 min                  |                                       |                                 |
| fet si                                   | BAAA (are mercere .        | mdAA)                         | hum                                   | 2                                     |                                 |
|                                          | Back                       | cound Sources<br>Kt 212 + Jun | ETS.                                  |                                       |                                 |
| Sindu                                    | i (Low) de                 | stant) (th                    | 54).                                  |                                       |                                 |
| Comments Ingert.                         | 5 3160pt 10 12             | soo He.                       |                                       |                                       |                                 |
|                                          | pun<br>s                   | penh                          | -                                     |                                       |                                 |
|                                          |                            | 4                             |                                       |                                       |                                 |



| ChentrLocation                          | Broject Nam         | nber               | Dare                                         | Conducted By           |
|-----------------------------------------|---------------------|--------------------|----------------------------------------------|------------------------|
| 7eminor - Catalans                      | Aam-2022-           | 0733               | P/25/22                                      | Simonchesto            |
|                                         | nd bevel Meter      | Microphone         | Calibrato                                    | Pre-Ang<br>Pietonphoan |
|                                         | 0824                | 377 820            | CAL-200                                      | DRM 902                |
| Serial Nember                           | 42585               | LW 134525          | 8779                                         | 2544                   |
|                                         | 1900 hz (94,0 db, 9 | 3.8 dBA (0.5dB)    | 250 hz 0124                                  | 0 dB, 1150 dBA70.5dB)  |
| Initial<br>Final                        | 94.0                | •                  |                                              |                        |
| 5.007                                   | 94.0                | ····               | <u> </u>                                     |                        |
| Winds                                   | Temperatu           | 1                  | Hamidny                                      | Precipitation          |
| Celm                                    | 73                  |                    | 91                                           | NONE                   |
| Site Location                           |                     | Test ID            |                                              | Time Period            |
| ML-E                                    |                     | 25                 |                                              | 2042-2112              |
| SPL<br>Decriptor 25 + 31.5              |                     |                    | e Band Spand Level                           |                        |
| Dempter 25 31.5                         | 40 50 63            |                    |                                              | 250 315 400 500        |
|                                         |                     |                    |                                              |                        |
| 634 800                                 | 1K 138 168          | 2K 258             | 32K 4K 5K                                    | 6.3K 8K 10K            |
|                                         |                     |                    | ·····                                        |                        |
|                                         |                     |                    |                                              |                        |
| Weighting<br>(E-m/A/C) L <sub>max</sub> |                     | tal Sound Levels   | (dB, dBA, or dBC)<br>Las                     | enin Lieg Lega         |
|                                         |                     |                    |                                              |                        |
| Intrusive Evenus                        | Ī                   | raffic Information | u                                            | Site Location Sketch   |
| Solucio alta<br>Inf (an increm) 57      | 1                   |                    | Count<br>en D                                |                        |
| 1 1 mar 1 mar                           | sie Colomfail 1     |                    | [1] m 10/4                                   |                        |
| Sinen - No invited ~ 58-1               | ( TPK)              | -++                | l'I minube                                   | :                      |
| to south the days<br>Burne (Al ataul 59 |                     | round Sources      | Rank                                         |                        |
|                                         | tot Ins             | ects Continuous    | and the second second second                 | •                      |
|                                         |                     |                    | -                                            |                        |
| L                                       | 1                   |                    | <u>.                                    </u> |                        |
| Comments Liserts                        | 2,000-63,00         | £ 12500 f          | 26,00                                        |                        |
| Coffic on 212 and the a                 | + times             | ······             |                                              |                        |
| 🚱 Revoluti Pelin, Scipinased inks       |                     |                    |                                              |                        |
|                                         |                     |                    |                                              |                        |



, <sup>2</sup>

CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

#### **CERTIFICATE OF CALIBRATION**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ISSUED TO    | EQUIPMENT INFORMATION      |                                                                                                                             |                        |          |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------|----------|----------|--|--|
| ALLIANCE SOURCE TESTING<br>6515 BASILE ROWE<br>EAST SYRACUSE NY 13057<br>CUSTOMER PO NUMBER: CREDIT CARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                            | ASSET NUMBER 824A2585<br>MANUFACTURER LARSON<br>MODEL NUMBER 824<br>DESCRIPTION SOUND LEVEL METER<br>SERIAL NUMBER 824A2585 |                        |          |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | TEST F                     | ESULTS                                                                                                                      |                        |          |          |  |  |
| CERTIFICATE NUMBER715728PROCEDURE33K3-4-2895-1AS RECEIVEDIN TOLERANCEINTERVAL12 MONTHSAS RETURNEDPASSCALIBRATION DATE8/4/2022LAB TEMPERATURE73.0 FCALIBRATION DUE DATE8/4/2023LAB HUMIDITY39.0 %TECHNICIANZACK VAN VORST                                                                                                                                                                                                                                                                                                                                                                              |              |                            |                                                                                                                             |                        | T        |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MANUFACTURER | CALIBRATIO<br>MODEL NUMBER | N STANDA<br>SERIAL NUMBER                                                                                                   | RDS<br>DESCRIPTION     | CAL DATE | CAL DUE  |  |  |
| ASSET NUMBER<br>CAL-00039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GENRAD       | 1986                       | 02061                                                                                                                       | SOUND LEVEL CALIBRATOR | 1/4/2022 | L/4/2023 |  |  |
| CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949, ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above. |              |                            |                                                                                                                             |                        |          |          |  |  |

CERTIFIED BY

8/4/2022

ZACK VAN VORST

Joen los losure



#### Larson Davis 824 Sound Level Meter with 377C20 Microphone

| ID Number          | 824A2585       |
|--------------------|----------------|
| Certificate Number | 715728         |
| Technician         | Zack Van Vorst |
| Date               | 08/04/22       |

#### Section 1: Range and Linearity Tests @ 1 KHz.

| UUT Range | Standard | Minimum  | As Found | As Left | Maximum  | Cal Result |
|-----------|----------|----------|----------|---------|----------|------------|
| Normal    | 114.0 dB | 113.3 dB | 114.1 dB |         | 114.7 dB | Pass       |
| Normal    | 104.0 dB | 103.0 dB | 104.0 dB |         | 105.0 dB | Pass       |
| Normal    | 94.0 dB  | 93.0 dB  | 94.0 dB  |         | 95.0 dB  | Pass       |
| Normal    | 84.0 dB  | 83.0 dB  | 84.0 dB  |         | 85.0 dB  | Pass       |
| Low       | 84.0000  | 83.0 dB  | 84.2 dB  |         | 85.0 dB  | Pass       |

#### Section 3: System "A" Weighting

| Frequency | Standard | Minimum | As Found | As Left | Maximum | Cal Result |
|-----------|----------|---------|----------|---------|---------|------------|
| 4 KHz     | 94.0 dB  | 94.0 dB | 94.5 dB  |         | 96.0 dB | Pass       |
| 2 KHz     | 94.0 dB  | 94.2 dB | 94.5 dB  |         | 96.2 dB | Pass       |
| 1 KHz     | 94.0 dB  | 93.0 dB | 94.0 dB  |         | 95.0 dB | Pass       |
| 500 Hz    | 94.0 dB  | 89.8 dB | 91.2 dB  |         | 91.8 dB | Pass       |
| 250 Hz    | 94.0 dB  | 84.4 dB | 86.0 dB  |         | 86.4 dB | Pass       |
| 125 Hz    | 94.0 dB  | 76.9 dB | 77.0 dB  |         | 78.9 dB | Pass       |

#### Section 4: System "C" Weighting

| Frequency | Standard | Minimum | As Found | As Left | Maximum | Cal Result |
|-----------|----------|---------|----------|---------|---------|------------|
| 4 KHz     | 94.0 dB  | 92.2 dB | 93.7 dB  |         | 94.2 dB | Pass       |
| 2 KHz     | 94.0 dB  | 92.8 dB | 93.8 dB  |         | 94.8 dB | Pass       |
| 1 KHz     | 94.0 dB  | 93.0 dB | 93.9 dB  |         | 95.0 dB | Pass       |
| 500 Hz    | 94.0 dB  | 93.0 dB | 94.0 dB  |         | 95.0 dB | Pass       |
| 250 Hz    | 94.0 dB  | 93.0 dB | 94.3 dB  |         | 95.0 dB | Pass       |
| 125 Hz    | 94.0 dB  | 92.8 dB | 93.4 dB  |         | 94.8 dB | Pass       |

Notes:

- <sup>- -</sup>

Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

**Revision 1** 

Page 1 of 1



CalSource, Inc. 1005 West Fayette St Suite 4D Syracuse, NY 13204 866-895-8648 calsource.com

#### **CERTIFICATE OF CALIBRATION**

|                                                                                                                                                                                                                                      | ISSUED TO                      | EQUIPMENT INFORMATION      |                                      |                                                                                                                           |                      |                      |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--|
| ALLIANCE SOURCE TESTING<br>6515 BASILE ROWE<br>EAST SYRACUSE NY 13057<br>CUSTOMER PO NUMBER: CREDIT CARD                                                                                                                             |                                |                            | MANUFACTU<br>MODEL NUM<br>DESCRIPTIO | ASSET NUMBER 8779<br>MANUFACTURER LARSON<br>MODEL NUMBER CAL200<br>DESCRIPTION SOUND LEVEL CALIBRAT<br>SERIAL NUMBER 8779 |                      |                      |  |
|                                                                                                                                                                                                                                      |                                | TEST R                     | ESULTS                               |                                                                                                                           |                      |                      |  |
| TEST RESULTSCERTIFICATE NUMBER715729PROCEDURE33K3-4-2945-1AS RECEIVEDIN TOLERANCEINTERVAL12 MONTHSAS RETURNEDPASSCALIBRATION DATE8/4/2022LAB TEMPERATURE73.0 FCALIBRATION DUE DATE8/4/2023LAB HUMIDITY39.0 %TECHNICIANZACK VAN VORST |                                |                            |                                      |                                                                                                                           |                      | T                    |  |
| ASSET NUMBER                                                                                                                                                                                                                         | MANUFACTURER                   | CALIBRATIO<br>MODEL NUMBER | N STANDA                             | RDS<br>DESCRIPTION                                                                                                        | CAL DATE             | CAL DUE              |  |
| CAL-00030<br>CAL-00039                                                                                                                                                                                                               | AGILENT TECHNOLOGIES<br>GENRAD | 34401A<br>1986             | MY47009293<br>02061                  | DIGITAL MULTIMETER<br>SOUND LEVEL CALIBRATOR                                                                              | 5/3/2022<br>1/4/2022 | 5/3/2023<br>1/4/2023 |  |

CalSource certifies this instrument to have been calibrated using standards with accuracies traceable to the National Institute of Standards and Technology, derived from natural physical constants, derived from ratio measurements, or compared to consensus standards. CalSources' calibration system complies to the requirements of ISO-9001, ISO/IEC 17025, ISO/TS 16949, ANSI/NCSL Z540-1-1994 and MIL-STD-45662A Unless otherwise indicated, the Test Uncertainty Ratio (TUR) for each calibrated parameter is at least 4:1. The results contained are valid only for the unit listed above.

CERTIFIED BY

Joen you hours

8/4/2022

ZACK VAN VORST

Calsource - Cal Cert CS 4 to 1.rpt Ver 2012-1 This certificate may not be reproduced, except in full, without CalSource approval. Page 1 of 1
Printed 8/4/2022



#### Larson Davis CAL200 Sound Level Calibrator

| ID Number          | 8779           |
|--------------------|----------------|
| Certificate Number | 715729         |
| Technician         | Zack Van Vorst |
| Date               | 08/04/22       |

#### Section 1: Sound Level (TUR = 1:1)

| Nominal  | Minimum  | As Found | As Left | Maximum  | Cal Result |
|----------|----------|----------|---------|----------|------------|
| 94.0 dB  | 93.8 dB  | 94.0 dB  |         | 94.2 dB  | Pass       |
| 114.0 dB | 113.8 dB | 114.1 dB |         | 114.2 dB | Pass       |

#### Section 2: Frequency

| Frequency | Minimum   | As Found    | As Left | Maximum   | Cal Result |
|-----------|-----------|-------------|---------|-----------|------------|
| 1.000 kHz | 0.990 kHz | 1.00020 kHz |         | 1.010 kHz | Pass       |

Notes:

х 1911 г.

> Sound Level Compared Directly Against Calsource Standard SLC (TUR = 1:1) Out of Tolerance Readings Highlighted All Transferred Values Reviewed for Accuracy Unless otherwise stated, As Left = As Found

**Revision** 1

Page 1 of 1



Enclosure B. Bar Harbor Sound Survey Field Forms



.

·· •

۰.

# Sound Level Survey Field Form

.

| Client/Location          | Project N                                                       |                    | Date                                    | in the second | Conduct<br>S March |           |
|--------------------------|-----------------------------------------------------------------|--------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| Tenamo                   | a am-                                                           | 2022-0333          | 7/9/2                                   | 2                                                                                                               | 5 11(ancl<br>erc-  |           |
| E.                       | iound Level Meter                                               | Microphon          | e                                       | Calibrator                                                                                                      |                    | aphta     |
| Model                    | L0824                                                           | 377 820            |                                         | CAL 200                                                                                                         |                    | 902       |
| Serial Nomber            |                                                                 | LW 18452           | C T                                     | 8779                                                                                                            | . 25               |           |
|                          | A2585                                                           | 200 10130          | <u> </u>                                |                                                                                                                 |                    | · 18 - 3- |
| libration Results        | 1000 hz (94.0 db                                                | 93.8 dBA 70.5dB    |                                         | S017 0 24 9                                                                                                     | 00, 015 U db/      | ð0,5dB)   |
| Initial                  | 94.0                                                            |                    |                                         | ~                                                                                                               |                    | :         |
| Final                    | 93.9                                                            |                    |                                         | · .                                                                                                             |                    |           |
|                          |                                                                 |                    |                                         | ÷ .                                                                                                             |                    |           |
| Winds                    | Tempera                                                         |                    | Flamid                                  | hy                                                                                                              | Precipit           | ation     |
| Calm-2 h                 | . 78                                                            |                    | 53                                      |                                                                                                                 | Non                |           |
|                          |                                                                 |                    |                                         |                                                                                                                 | Time Reriod        |           |
| Site Locatio             | <u> </u>                                                        | Test JD            | #29                                     |                                                                                                                 | Xr-                |           |
| Blf-m                    |                                                                 | Day                | -27                                     |                                                                                                                 | P                  |           |
| SPL                      | E/1 or 1                                                        | 3 (circle one) Oct | ave Band S                              | ound Lievels                                                                                                    | (dB)               |           |
| eoripter 20 JJ           |                                                                 |                    | 125                                     | 60 200                                                                                                          | 2-04-015           | 200 500   |
| <                        |                                                                 |                    |                                         |                                                                                                                 |                    |           |
|                          |                                                                 |                    |                                         |                                                                                                                 |                    |           |
| 630 80                   | 1K 13K 1                                                        | TEK 2K 208         | 2K                                      | ikSi                                                                                                            | <u>0.9K 8K</u>     | 10K       |
|                          |                                                                 |                    |                                         |                                                                                                                 |                    |           |
|                          |                                                                 |                    |                                         |                                                                                                                 |                    |           |
|                          |                                                                 |                    |                                         |                                                                                                                 |                    |           |
| eighting                 |                                                                 | Total Sound J ev   | TOTAL SALES CONTRACTOR OF A CONTRACT OF |                                                                                                                 | mi L <sub>eo</sub> | Lan       |
| bin/A/C) Lmx             | Lav Lia                                                         |                    |                                         |                                                                                                                 |                    |           |
| ÷.                       |                                                                 |                    |                                         | ( «                                                                                                             |                    |           |
| Intrusive Events         |                                                                 | Traffic Informa    |                                         |                                                                                                                 | Site Location      | Sketch    |
| Source                   | dba Sira                                                        |                    | Count                                   |                                                                                                                 | · ·                |           |
| Jet / Ruplone "          | 12,47 andres                                                    | يبيب الأهيم الم    | <u>NR</u>                               |                                                                                                                 |                    |           |
| deploard (1 faint        | ) 54×2 Machoverycle                                             | a highing Estable. | 3                                       |                                                                                                                 | , can - be         | rped.     |
| itistway                 | vehicha                                                         | highway; 49 50     |                                         |                                                                                                                 | <u>_</u>           |           |
| ci il the land           | 15 Ba                                                           | ekground Source    | s in the second                         | Rank                                                                                                            |                    |           |
| Bunged toped             | COMPACTION OF THE OWNER AND | n Sound Cad        |                                         |                                                                                                                 |                    | A TAN     |
| Mecord 324               | 1. 2.                                                           | A Course Cours     |                                         | '                                                                                                               |                    |           |
| The second               | 4 <b>4</b>                                                      |                    |                                         |                                                                                                                 |                    | (اف       |
| <u>~~r~~r~~</u>          | 59                                                              | · · · · ·          | <u>`</u>                                | ł                                                                                                               |                    |           |
| omercilla                |                                                                 |                    |                                         |                                                                                                                 |                    |           |
|                          |                                                                 |                    |                                         |                                                                                                                 |                    |           |
|                          | -<br>-                                                          | ·····              |                                         |                                                                                                                 |                    |           |
| E Fersten Fare. Env-Dass | 1083                                                            |                    |                                         |                                                                                                                 |                    |           |
|                          | ·····                                                           |                    |                                         |                                                                                                                 |                    |           |



| Chent/Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P                                     | oject Nomber                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dute                    | Conducted By                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------|
| Tenamo tou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (harher 1                             | 40m-2022-00                            | 33 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19/22                   | S. Manchester                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sound Leve                            | Meter N                                | liccophone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calibrator              | Pier- And<br>Pierophone               |
| Motiel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L0824                                 | 3-                                     | 17 B20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAL 200                 | DRM 902                               |
| Serial Momber                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A2585                                 | L4                                     | 134525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8779                    | 2544                                  |
| Calibration Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000 bz (                             | 94.0 db 93.8 dl                        | BA D.5dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250 hz (124)f           | AB. TISO (BAT) SHE                    |
| Lottial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | 93.9                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 94.1                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>.</u>                |                                       |
| Winds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | emperature                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | umikiny                 | Precipitation                         |
| Calm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | 79                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62                      | None                                  |
| Site Lucati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | сn                                    |                                        | Test JD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | Time Period                           |
| BH-E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Dag                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | -<br>1111                             |
| SP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | <u> </u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and Sound Levels        | · · · · · · · · · · · · · · · · · · · |
| CANOL DAGA CAN DE LA CANOL DE LA C |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 160 200               |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| 630 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 38 108 2                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | 6.3 <b>K 8K </b> 40K                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| Weighting<br>(Lin/A/C) L <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Len                                   | CONTRACTOR OF CONTRACTOR OF CONTRACTOR | Charles and the second s | . dBA, or dBC)<br>Las L | Les Lan                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| Intrusive Evenu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | Traffic                                | Internation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | Site Location Sketch                  |
| Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | diBA                                  | Street                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unt                     | 7                                     |
| thede en - Brie off<br>Brie Sing<br>1/2 durase hallie / ant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57 Check<br>54,54,58 Dr H<br>54,54,63 | e In + out                             | <u>4</u> ## 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | Karse )                               |
| Chiphrony haffic 1822                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 54,54,63                              |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | Juna                                  |
| anplane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$°                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| Care infort declar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52155154,54 /                         | Background                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rank .                  |                                       |
| Care infort, declar<br>Chystown 15a2<br>Staff Walter ~ 201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46<br>52                              |                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                                       |
| Stoff Wellen - co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>26</i>                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | , mg                                  |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u></u>                               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| 😸 Fechniki Felini, Suppased                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i laks                                |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 1                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                                       |



| Client/Location                                                                                                | Project Number                        | 1                   | Jate                                                                                                            | Conducted By           |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|
| Terramor Berthuber                                                                                             | ARM-2022-0033                         | 9/9                 | 122                                                                                                             | · S. Monchester        |
| Soan                                                                                                           | Level Meter Micro                     | phone               | Calibrator                                                                                                      | Pre-Any<br>Pieronehone |
| The second s | 824 · 377B                            |                     | CAL200                                                                                                          | DRM 902                |
|                                                                                                                | 1                                     | 34525               | 8779                                                                                                            | . 2544                 |
| -                                                                                                              |                                       |                     | · ·                                                                                                             |                        |
| Calibration Results in<br>Initial                                                                              |                                       | UXIGH)              | 250 hz (124/030                                                                                                 | 8, 115,0 dBA-0,5dB)    |
| Final                                                                                                          | <u>94.1</u><br>94.0                   |                     |                                                                                                                 | <u></u>                |
|                                                                                                                | •/1.0                                 | <u> </u>            |                                                                                                                 |                        |
| Winds                                                                                                          | Temperature                           |                     | nidity                                                                                                          | Precipitation          |
| Cilm .                                                                                                         | 79                                    | ·. 6                | 2                                                                                                               | Mie                    |
| Site Location                                                                                                  | Tes                                   | D                   |                                                                                                                 | fime Period            |
| RK-D                                                                                                           | Paul                                  | 31                  | . 1654                                                                                                          |                        |
|                                                                                                                |                                       |                     | •                                                                                                               |                        |
| SPL<br>Decriptor 25 31:5                                                                                       | 1/1 or 1/3 (tircle one<br>0 50 63 80  |                     |                                                                                                                 | 0 315 400 500          |
|                                                                                                                |                                       |                     |                                                                                                                 |                        |
|                                                                                                                |                                       |                     |                                                                                                                 |                        |
| 630 800 1                                                                                                      | K 1.3K 1.6K -2K                       | 25% <del>1</del> 2K | <u>ak 58 63</u>                                                                                                 | K 8K IOK               |
|                                                                                                                |                                       |                     |                                                                                                                 |                        |
|                                                                                                                |                                       |                     | <u> </u>                                                                                                        |                        |
| Weighting                                                                                                      | Total Sound                           | Truck (18.4         | BA.or.dBC)                                                                                                      |                        |
| (Lin(A/C) L <sub>no</sub> , L                                                                                  |                                       |                     | Lus Linn                                                                                                        | Leo Lan                |
|                                                                                                                |                                       |                     |                                                                                                                 |                        |
| Intrusive Events                                                                                               | Iraffic Info                          | rration             | Sir                                                                                                             | e Location Sketch      |
| Courses JD 4                                                                                                   | Street                                | Сонд                | 1977 2078 Contraction (Contraction Contraction Contraction Contraction Contraction Contraction Contraction Cont |                        |
| B- depect + chepberry 53,01<br>(70) (30)                                                                       | Nebrale Enter Lot<br>(54 ABA) sparker | ///                 | 1                                                                                                               | ang Paula              |
| vorces Greest children) 54                                                                                     | Car 2 - 54 dA4.<br>Car 3 - 54 4       |                     | <u>ب</u>                                                                                                        |                        |
| Dour shul 55                                                                                                   |                                       |                     |                                                                                                                 | Perking lot mostly     |
| this heavy explorence 58<br>Vehicher 41,44                                                                     | Background Sou                        | rces                | Rank I: C                                                                                                       | 1 Full                 |
| Burplane 47                                                                                                    | Distant Highman                       | Sound               |                                                                                                                 | so Hiterit             |
| Welkess a Read (2) 40-41<br>Cort Lang? (Catea) 53                                                              | <b>ب</b> ې                            | *                   |                                                                                                                 | BH-D                   |
| () FOR CHER at 75! 45,4                                                                                        | }                                     |                     |                                                                                                                 | 2-64                   |
| Comments Cart ratting                                                                                          | -50 ; Car hup \$                      | ава (1119)          | @~751 / scross L                                                                                                | st)                    |
| Nor day that si' - 50 1k                                                                                       | A No Loco obse                        | wed in Ba           | < Parke                                                                                                         | /                      |
| 🛞 Freise and Pality, Soy-Dasted Intes                                                                          |                                       |                     | <b>-</b>                                                                                                        |                        |
| L                                                                                                              |                                       |                     |                                                                                                                 |                        |



| Client/Location<br>Tynamor benk                                                                                     |                                          | oiect Number<br>form - Jote-o                                  | 113                             | Date<br>9/9/es              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ducted By                                  |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------|---------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Mödel<br>Sarial Namber                                                                                              | Sound Level<br>LD824<br>A2585            | . 37                                                           | ксторате<br>7 В 20<br>9 1345 25 | Calibrat<br>CAL 201<br>8779 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | еле- Ану<br>Вакона Вана<br>Dem 902<br>2544 |
| Calibration Results<br>initial<br>Fund                                                                              | 1000 hz (                                | 94.0<br>94.0<br>94.0                                           | A WECE)                         | 250 hz (12                  | 10 dB 1150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dBA-0.5dB)                                 |
| Winds<br>Cilr .                                                                                                     | 1                                        | emperature<br>74                                               |                                 | umidity<br>83               | Pre<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cipitation<br>Ne                           |
| Site Location<br>BH - B                                                                                             | m                                        | Øny                                                            | list iD<br>#                    | 32 173                      | Time Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | riod                                       |
| SPL<br>Decriptor 25 31                                                                                              | 5 40                                     | 9 ar 1/3 (pirele )<br>6 63 80                                  | one) Octave Ba                  | Ind Seand Leve              | s. (dB)<br>256 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 400 300                                    |
|                                                                                                                     |                                          | 38 TOK 21K                                                     |                                 |                             | SJK SK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |
| Weighting<br>(LinkAfC) L <sub>max</sub>                                                                             | Emi                                      | CARDON CONTRACTOR AND      | nd Levels (dB                   | dBA, or dBC]                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a I <sub>la</sub>                          |
| Ainplines<br>2 Cartin peth<br>~7 clany (59)<br>traffic on highway<br>Carle Station from "for<br>+quest relien at up | ава<br>42<br>54<br>57<br>8<br>10-44<br>5 | Traffic I<br>Sireci<br>Urplane<br>Background<br>Jicci Juffic a |                                 | int<br>Rank<br>I            | Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provident<br>Provid | Part H D P                                 |
|                                                                                                                     |                                          | @^20ps free                                                    | n                               |                             | Ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Lot                                        |
| Personal Phase Societies 1                                                                                          | N£5                                      | 1                                                              |                                 |                             | •••••••••••••••••••••••••••••••••••••••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |



| Chent/Location                    | 0                                      | Broject No                          | mber                                      |                                        | Date                        |              | Concurred B         | X        |
|-----------------------------------|----------------------------------------|-------------------------------------|-------------------------------------------|----------------------------------------|-----------------------------|--------------|---------------------|----------|
| Tenaren Bar                       | Herba                                  | Asm-2                               | 022-0035                                  | 9                                      | 19/22                       |              | 5 Marchester        |          |
|                                   | Sound Le                               | vel Meter                           | Mien                                      | phone                                  | Calif                       | rator        | Pre-Ant<br>Retempte | ine      |
| Model                             | L082                                   | <u> </u>                            | 3778                                      | 20                                     | CAL                         | .200         | 0RM 902             |          |
| Secial Number                     | A 258                                  | <u>۲</u>                            | LWI                                       | 84525                                  | . 87                        | 79           | 2544                |          |
| Calibration Results               | 10001                                  | z (24.0 dib.                        | 98.8 d19 A                                | 0.5dB)                                 | 250 hz                      | (124.0 dB)   | II.5.0 dBAF0.5      | (B)      |
| Initial                           |                                        | 94.0                                | •                                         |                                        |                             | <u> </u>     |                     |          |
| Final                             |                                        | 95.8                                |                                           | ······································ |                             | -            |                     |          |
| Winds                             |                                        | Temperat                            | ure                                       | H                                      | umidity                     |              | Precipitation       |          |
| Calm                              | <u></u>                                | 70                                  | ·····                                     |                                        | 84                          |              | Nme                 |          |
| Site Loca                         | tian                                   |                                     |                                           | HD.                                    |                             | È            | ne Period           |          |
| BH-D                              | •                                      | Ertro                               | Lang Er                                   | owng \$                                | 133                         |              |                     |          |
| SPL                               |                                        | 1/1 07 1/3                          | <u> </u>                                  | Octave Br                              | na Spanial                  | ievels folki |                     |          |
| Decriptor 25                      | 91.5 40                                | <u> </u>                            | 80                                        | 100 12                                 | 160                         | 200 250      | 315 400             | 500      |
|                                   |                                        |                                     |                                           |                                        |                             |              |                     | <u> </u> |
| 630                               | 800 IK                                 |                                     |                                           |                                        |                             |              | 8K 10K              |          |
|                                   |                                        |                                     |                                           |                                        |                             |              |                     |          |
|                                   |                                        |                                     |                                           |                                        |                             |              |                     |          |
| Weighting                         |                                        | Ť                                   | oral Sminnd                               | Levels (iB                             | dBA.or di                   | 30.          |                     |          |
| (Lin/A/C) Lmax                    |                                        | Loo                                 | A PARTY AND A CONTRACTOR OF A PARTY AND A | AND FREE PROPERTY AND ADDRESS OF       | THE PROPERTY AND ADDRESS OF | Lm           | L.                  | Lo       |
|                                   |                                        |                                     |                                           |                                        |                             |              |                     |          |
| Intrusive Event                   |                                        | al e cadre a constructe parte de la | ceffic Inc                                |                                        |                             | Site         | Location Sketc      | h        |
| Source<br>Car Entre 41            | dBA<br>SS Car                          | Street                              |                                           | <u>Сэ</u><br>Сэі                       | mt                          | 1 × 7        | •                   |          |
| Dour elusa<br>Can Enterandolo con | ųn -                                   | WIT Lo                              | F                                         | <u> </u>                               |                             | •            |                     |          |
| eres to Los                       | 52+                                    |                                     |                                           |                                        |                             |              |                     |          |
| Distar bark-like<br>Sound Estimat | 45-44                                  | Back                                | eround-Set                                | nees                                   | Rank                        |              |                     |          |
| anglass                           | 43-44                                  | Highwan                             |                                           |                                        | )                           | ÷.           |                     |          |
|                                   |                                        | with                                | - voices f                                | s nert .                               |                             |              |                     |          |
|                                   |                                        | ·····                               | ······                                    |                                        | <u> </u>                    | <u> </u>     |                     |          |
| Comments                          | ************************************** | <u> </u>                            |                                           |                                        |                             |              |                     |          |
|                                   | · · · · ·                              |                                     | - <del> </del>                            |                                        |                             |              |                     |          |
| Bernyan Parm. Soy-mas             | ad links                               | <u> </u>                            |                                           |                                        |                             |              |                     |          |
|                                   |                                        |                                     | ••••••••••••••••••••••••••••••••••••••    |                                        |                             |              |                     | ]        |

ł



| Chent/Location                          |              | Brajee Nin                             | mber        |                                        | Date          |             | Conducted By                    |           |
|-----------------------------------------|--------------|----------------------------------------|-------------|----------------------------------------|---------------|-------------|---------------------------------|-----------|
| Lerramon der                            | ttabor a     | <u>om-2022</u>                         | 2-0033      | 9                                      | 19/22         | 2           | Manchester                      |           |
| Model                                   | SoundLe      | el Meter                               | Man         | phone                                  | Calibr        | atox        | Pre-Ang<br>Ristonphone          |           |
| SeculNember                             | L082'        |                                        | 3776        |                                        | CAL.          |             | DRM 902                         |           |
|                                         | A 258.       |                                        |             | 34525                                  | . 877         |             | 2544                            | ]         |
| Calibration Results<br>Initial          | 1000 h       | 2094.0 db. 2                           | 3.8 dBA     | 0.5dH)                                 | 250 hz        | (124/0 313, | N.S.U dBAFUS2B)                 |           |
| Final                                   |              | <u>93.9</u><br>94.0                    |             |                                        | •             |             | <u> </u>                        |           |
| Winds                                   | a            |                                        |             |                                        | •             |             |                                 |           |
| Celm                                    |              | Temperati<br>67                        | 116         |                                        | imidity<br>95 |             | None                            |           |
| Site Locat                              |              |                                        | •           | 10                                     |               |             |                                 |           |
| BH-E                                    |              | Even                                   |             |                                        | #35           | 1924        | ne Period                       |           |
| SPL                                     |              |                                        | <u>ు</u>    | ) Octave Ba                            |               |             |                                 | ·<br>     |
| Decriptor 25 3                          | 1.5 40       |                                        |             | 100 124                                |               |             | 315 400 50                      | 0         |
|                                         |              |                                        |             |                                        |               |             |                                 | $\square$ |
| 630                                     | 00 16        | 1.3K 1.68                              | < 2K        | 2 SK 1 32K                             | THE S         | K 6 %       | 8 <b>16</b> 1010                |           |
|                                         |              |                                        |             |                                        | <u> </u>      |             |                                 |           |
|                                         |              |                                        |             |                                        |               |             |                                 | $\geq$    |
| Weighting<br>(Lau/A/C) L <sub>mov</sub> | Let          |                                        |             | Levels (dB,                            |               |             | L <sub>se</sub> L <sub>an</sub> |           |
|                                         |              |                                        |             |                                        | L/05          |             | L <sub>e</sub> L <sub>un</sub>  |           |
| Intrasive Event                         | •            | ī                                      | raffic Info | mation                                 |               | Site        | Jocation Sketch                 |           |
| Source                                  | dBA          | Street                                 |             | Соц                                    |               | × ~         | s deser                         |           |
| Con Exit                                | 48.58        | cleckin                                | R           | 11111                                  |               |             | Kal                             |           |
| Voices of brest                         | 50,57        |                                        |             |                                        |               |             |                                 |           |
| passing by check and + eatening copy    | 50.          | Backg                                  | round Sou   | FCES                                   | Rank          | /           |                                 | _         |
| Candeor                                 | 48           | theharan                               |             |                                        | 1             | 11          | B                               |           |
| Can idding sufrait                      | 45-46        | - 0                                    |             | •                                      |               |             | өн-е                            |           |
|                                         |              | •••••••••••••••••••••••••••••••••••••• | ·····       | ······································ |               |             |                                 |           |
|                                         |              |                                        |             |                                        |               |             | Smores Event                    |           |
| at come of Loby 1                       | antrole). dr | scendle d                              | themes      | of Lover h                             | reffer lear   | 4           |                                 |           |
| Recorded Packs, Sov-Dask                | il Inks      |                                        |             |                                        |               |             |                                 |           |
|                                         |              |                                        |             |                                        |               |             |                                 |           |



| Chent/Location                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roject Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Date                                            | Conducted By           |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------|------------------------|
| Tenama bar                                        | Jacker Ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M-2022-0033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/                 | 9/21                                            | S. Manchester          |
| Model                                             | Sound Leve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | phone .            | Calibrator                                      |                        |
| Serial Nomber                                     | L0824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 320<br>345-25      | CAL-200<br>8779                                 | Diality put            |
| -                                                 | A2585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | -                                               | 2544                   |
| Calibration Results<br>Initial                    | 1000 Eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>194,0 db, 93,8 dba</u><br>94,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.5dB)             | 250 hz (124                                     | 0 dB, 115.0 dBA70,5dB) |
| Final                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | ·                                               |                        |
| Winds                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lemperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H                  | ,<br>Indity                                     | Precipitation          |
| Calm                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | rs                                              | None                   |
| Site Locati                                       | an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tJD                |                                                 | Time Period            |
| BH-B                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | 36 20                                           |                        |
| SPL                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/1 or 1/3 (circle.on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                 |                        |
| Decriptor 25 3                                    | 15 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 63 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 125            | 160 200                                         | 256 315 400 500        |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                 |                        |
| <u>(</u> ) () () () () () () () () () () () () () | 00 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JK LOK-7K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.10 3778          | <b>746.</b> 35.                                 | 6.3K 8K 10K            |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                 |                        |
| Weighting                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | dBA.ordBC                                       | l                      |
| (Lan/A/C) L <sub>max</sub>                        | Lm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONTRACTOR OF A DESCRIPTION OF A DESCRIP | Levels (1.13,      | STREET OF LOTS CONTRACTOR CONTRACTOR CONTRACTOR | Leo Lan                |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                 |                        |
| Intrusive Events<br>Source                        | dBA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Eraffic Infi<br>Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | armation<br>Cou    |                                                 | Site Location Sketch   |
| Clipbrad + hog                                    | 56,51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Can a Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45                 | an c                                            |                        |
| auglance                                          | 48,5850<br>SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cane LA<br>Cane Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43<br>45           | Ĉ                                               | The                    |
| Can Altighurany<br>Gwents at fire ~75'            | 42.43 4450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                 |                        |
| Voices-childri                                    | 42-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Background So<br>Astant bref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | WWXNN              | Rank                                            | 15 At 8 175' ant       |
| Walter a Path                                     | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | بعاد الطريمية معمر | si                                              | ۱ <i>۲</i> /           |
| Blf how dised                                     | 47-48 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Voices and.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cound - faiter     | ient 1                                          |                        |
| Cont Bung at Carol                                | in to ast: St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1st Lents          |                                                 | lit unide              |
|                                                   | (The company of the c |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101 JUNI           | in long one                                     | pr sarille             |
| 🛞 Perkum Polyel Soy-daso                          | i mis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |                                                 |                        |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                 |                        |



| Client Location<br>Jenamer Bon Honbor                                                  | Project Nin<br>20m - 2022             |                    | 9 9 2    | Date                                                                                                           |                                           | Conducted              |         |
|----------------------------------------------------------------------------------------|---------------------------------------|--------------------|----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|---------|
|                                                                                        |                                       |                    |          |                                                                                                                |                                           | i Monchester<br>erc-An | ì       |
|                                                                                        | and Level Moter<br>.0824              | Microph<br>377 B20 |          | Calibr<br>CAL :                                                                                                |                                           | Dem 90                 |         |
| Serial Nonther                                                                         | A 2585                                | LW 134             |          | 8774                                                                                                           |                                           | 2544                   | <u></u> |
|                                                                                        | 1000 hz (94,0 ch)                     | 93.8 dBA 70.5      | eB)      | 250 hz (                                                                                                       | 24 0 88.                                  | US 0 dEA 0.            | 4B)     |
| Initial<br>Final                                                                       | 934                                   |                    |          |                                                                                                                | <u> </u>                                  |                        |         |
|                                                                                        | 93                                    |                    |          | •<br>•                                                                                                         | ۹<br>۶.                                   |                        |         |
| Winds<br>Calm                                                                          | Temperat<br>45                        |                    | - 87     | midity                                                                                                         |                                           | Precipitatio<br>None   | D.      |
| Site Location                                                                          |                                       | Test II            |          |                                                                                                                | Tin                                       | ne Period              |         |
| BH-M                                                                                   | Éven                                  |                    |          | 37                                                                                                             |                                           |                        |         |
| SPL                                                                                    | Ed or 1/3                             | (circle one) (     |          |                                                                                                                |                                           |                        |         |
| Decriptor 25 31.5                                                                      | 40 50 63                              |                    | 20 125   | 168 20                                                                                                         | 0.0.250                                   | 315 400                | 500     |
|                                                                                        |                                       |                    |          |                                                                                                                |                                           |                        |         |
| 050 <u>6</u> 149                                                                       | IK 138 18                             |                    |          | 4K 51                                                                                                          | 6.3K                                      | 8 <b>K</b> 10K         |         |
|                                                                                        |                                       |                    |          | İ.                                                                                                             |                                           |                        |         |
| Weighting<br>(Lio/A/C) L <sub>max</sub>                                                |                                       | otal Sound Le      |          | The state and the second s |                                           |                        |         |
| (Lin/A/C) L <sub>max</sub>                                                             | L <sub>16</sub>                       | Leo                | Epon     | Lgp                                                                                                            | Lmm                                       | Lea                    |         |
| Intrusive Events                                                                       |                                       | caffic Enform      | ation    |                                                                                                                | Site I                                    | location Sket          | :b      |
| 2 Stall gravit Trader (19                                                              |                                       |                    |          | <u>C</u>                                                                                                       | 2 × 1                                     | . Janle                | yr -    |
|                                                                                        | "م در د                               |                    | Ĵ,       |                                                                                                                | Г                                         | - Junio                | 3       |
| De to went noves 47<br>Cougt 50<br>Cougt 50<br>Courses 50<br>25 all return to DI 48-51 | Ak                                    |                    |          |                                                                                                                | Kannang tang tang tang tang tang tang tan |                        | 刯       |
| 2 Staffreture to DI 485                                                                | 8 Highway D                           | round Source       | 35       | Rank -                                                                                                         | $\neg$                                    | U U U U U U G G @      | ٩       |
| Shippe OI optione 45.49<br>Winde annes 48-5                                            |                                       | <i>a</i> -µ.0      |          |                                                                                                                | <b>L</b> ada                              |                        | 2       |
| centerna found to west 53                                                              |                                       |                    | <u> </u> |                                                                                                                |                                           |                        |         |
| Comments fundo                                                                         | 27 min to answe                       | · grefon fr        | um Ster  | 1. check                                                                                                       | date our                                  | r to pause             | a a     |
|                                                                                        | • • • • • • • • • • • • • • • • • • • |                    |          | *                                                                                                              | -                                         |                        |         |
| Reported Paper Soy-based take                                                          |                                       |                    |          |                                                                                                                |                                           |                        |         |
|                                                                                        |                                       | ***                |          | ·                                                                                                              | •                                         |                        |         |



| Client/Location                       |                                          | Brojed No          | miner       |                | Date       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Conducted By          |       |
|---------------------------------------|------------------------------------------|--------------------|-------------|----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| Tenamor Bin Ha                        | ubon a                                   | om 2022            | 0033        | 9/1            | 0/22       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S. Mankest            | en    |
|                                       | Sound Le                                 | el Meler           | Miero       | phone          | Cal        | ibrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pic-Ant<br>Pistonphor | HP.   |
| Model                                 | L082                                     | Y .                | 377 E       | 320            | CA         | L 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DRM 902               |       |
| Serial Number                         | A 258                                    | <u> </u>           | LWI         | 84525          | . 8        | 779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . 2544                |       |
| Calibration Results                   | 1000 1                                   | z (94:0-dt).       | 95.8 dBA    | 0.5(B)         | 250        | 7 (1 <b>24</b> ,0 (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L'INSO ADA DISA       | Ŋ     |
| Initial                               |                                          | 99.0               | •           |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>               |       |
| Fingl                                 | <u> </u>                                 | 94.1               | ·····       |                |            | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |       |
| Winds                                 |                                          | Temperat           | ure         | H              | unandiny   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Precipitation         |       |
| Calm                                  |                                          | 68.                |             | · <u> </u>     | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pme                   |       |
| Site Locat                            | ion                                      |                    | Tes         | 1 JD           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | time Period           |       |
| BH-E                                  |                                          | Am.                |             | •<br>•         | 38         | 083.0-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54.00                 |       |
| SPL                                   |                                          |                    |             | ).Octave Br    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Decriptor 25 3                        | 1.5 40                                   | <u>\$0 6.</u>      | 80          | 100 12         | <u>160</u> | 200 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 15 400              | 500   |
|                                       |                                          |                    |             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | ••••• |
| 630 8                                 | 10 <b>IK</b>                             | 1.36 1.6           |             | 256 32         | § 4K       | SK 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K SK IOK              |       |
|                                       |                                          |                    |             |                |            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |       |
|                                       |                                          |                    |             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Weighting                             |                                          |                    |             | Levels (dB     |            | And a state of the second |                       |       |
| (Lin/A/C) L <sub>rea</sub>            | Looi                                     | 1.110              | L.80        | Lign           | Eug        | Linie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | da.   |
|                                       |                                          | 1                  |             | L.             | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>              |       |
| Antrusive Events<br>Source            | ALL AND AND A                            | Sircet             | catfic Init | C <sub>2</sub> |            | Sil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Location Sketch     |       |
| Vehicles possiby                      | <i>ⅎ</i> ⁻ⅎ, <b>ና ₿</b> <sup>°°</sup> Vi | threfe Pars        | hys         | HITH           | T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Dusbank hehind ledge<br>Crow          |                                          | is tappic          |             | L              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Hashway Troplic                       | 55,58                                    |                    |             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Golf Cart passing<br>~75" (mits road) | 58;56                                    | Backy<br>steefwrog | round Soi   | IFCES          | Ran        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| STR.                                  |                                          |                    | 1           |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
|                                       |                                          |                    |             | <u> </u>       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Commente Star                         |                                          |                    | kiev/       | ·····          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
| Openat                                | in Sound                                 | 59.5 (4)           | 47)         |                | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |
|                                       |                                          |                    |             |                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |       |

🙀 Facin las Facin. Suv-based links

.



| Client/Location            | Project Nu        | imber          |           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conducted By                        |
|----------------------------|-------------------|----------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Terramon Bai ba            | nbo- a&m-2022-    | -0833          | 9/10      | /w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S. Manchester                       |
| -                          | Sound Level Meter | Mierooi        | ione      | Calibrator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pic-Ant<br>Pistonphone              |
| Model                      | L0824 .           | 377 B20        |           | CAL 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| Serial Number              | H2585             | LW 134         | 525       | 8779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2544                                |
| Calibration Results        | 1000 hz (94,0 db, | 035001201-2012 | (HD)      | 250 hr (174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 dB, 115.0 dBA <sup>2</sup> 0,5dB) |
| Initial                    | 94.1              |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Final                      | 94.1              | )              |           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Winds                      | Temperat<br>70    | ture ·         | -         | midity<br>'7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Precipitation<br>None               |
| Colm                       |                   | ·              | . 0       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Site Locatio               |                   | Test J         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Time Period                         |
| BH-D                       | AW                |                | 4         | 39 0906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |
| SPL                        |                   | (circle one) ( | )ctave Ba | nd Sound Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s (dB)                              |
| Decriptor 25 31            | 5 40 50 6         | 3 80 1         | 00 125    | 160 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 250 315 400 500                     |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| .630 81                    | 00 1K 1.3K T      | K 26 2         | 5K 3.2K   | 4K 5K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.3K 8K 10K                         |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Weighting                  |                   | lotal Sound L  | avals (dB | dBA, or dBC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |
| (Lin/A/C) L <sub>max</sub> |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | unit Lea Lan                        |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Intrusive Events           |                   | Traffic Inform | nation    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Site Location Sketch                |
| Source                     | dBA 56 Stree      | t              | Cou       | and the second se | 2 - 2 ·                             |
| Vehicle Passby / Park &    | C/                | thy full       | 111-111   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|                            | 45 antreffic      |                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| 42751                      | 10 in case off    |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Nos Barte on D Loop        | 2 39 6 M. Back    | ground Sour    | ces       | Rank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                            | Unsharay          | hoppe          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|                            |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| L                          |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
| Comments Vehicl            | i smud is prin    | narity from    | fire g    | iny over a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tone and est enjure sound           |
| bravel on main day         |                   |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |
|                            | K1527 1533, 1539  |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     |

١



## Sound Level Survey Field Form

| -   | Tenamine Bar                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                      | Date<br>0/22                            | S. Marshaster                      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------|
|     | Model<br>Serial Nomber                                                                                                                                                                                         | Sound Level Meter<br>LD824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Microphone<br>377 B20                                                                  | Calibratus<br>CAL 200                   | Pre-And<br>Philosophics<br>DRM 902 |
|     | Calibration Results                                                                                                                                                                                            | A 2585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.8 dBA 0.5dB                                                                         | 8779<br>250 hz (124.0 d                 | 2544<br>3.1130 aBA 0.5dB           |
|     | Jortia)                                                                                                                                                                                                        | 94.0<br>94.D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                      | +>                                      |                                    |
|     | Winds<br>Culm to I Vari<br>Sm                                                                                                                                                                                  | Ceiriperi<br>Ne 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | Liumidity<br>83                         | Esto Wone                          |
|     | Site Inca<br>BH-B                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test <b>ID</b>                                                                         | 440 0940                                | Fine Period                        |
|     | SPE 25                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | Band Sound Lievels (d)<br>25 150 200 25 |                                    |
| -1  | 630                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 <u>B</u> 25 <u>8</u> 3                                                               | 28 28 53 53                             | 8 8K 10K                           |
|     | Weighting<br>(Lin/A/C) Lmar                                                                                                                                                                                    | THE REAL PROPERTY AND AND A REAL PROPERTY AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Iotal Sound Levels (u                                                                  | B, dBA, or dBC)                         | Leo Lun "                          |
| бъе | Litterserve Boren<br>Sinter<br>Collicant own brong<br>Voga Jussbruchter<br>- William<br>Chist augm30~1001<br>Operator chip boosd<br>(1046)<br>Post yoga Telhenj<br>Chisty anatructer)<br>turnees on farth (11) | 111A Stree<br>60,63 Vericleso<br>42-51 Gelfcarbo<br>5'awag<br>-52 19 Carson li<br>61:3 19<br>61:3 19<br>61: | Shot 40     <br>m justh   <br>ot clo at shift best<br>scround sources<br>or instructor | Sil                                     | e Location Skerch                  |
|     | Cullpit actor de<br>Starkenternal<br>Pane 27:29 po -                                                                                                                                                           | e. Yoge comple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ted - 1003 / part<br>+ + vert + instruct<br>haved @ 1008 EUT                           | to gone at -resco                       | into run.                          |



| Client/Location                                         | Project Nu                            |                                        | -1           | Date                |                                       | SMan                | hoted By                               |
|---------------------------------------------------------|---------------------------------------|----------------------------------------|--------------|---------------------|---------------------------------------|---------------------|----------------------------------------|
| Teina mor Bin Harbo                                     | AQM- 2022 -                           | 033                                    | 7/           | 0/22                | <u> </u>                              |                     | Pac-Ant                                |
| Soun                                                    | SLevel Meters                         | Micz                                   | ophone       | E.                  | dibrator                              |                     |                                        |
|                                                         | 824                                   | 3776                                   |              | ت                   | AL 200                                | 5                   | Rem 902                                |
|                                                         | 2585                                  | LWI                                    | 34525        |                     | 3779                                  |                     | 2544                                   |
| · · · · · · · · · · · · · · · · · · ·                   |                                       | ······································ |              |                     |                                       |                     |                                        |
|                                                         | 00 hz (94,0 d).                       | 93.8 dBA                               | (0.5dB)      | 250                 |                                       | <u> 1953 (1957)</u> | dBA*0.5dB)                             |
| Initial                                                 | 94.0                                  |                                        |              | <u> </u>            |                                       |                     |                                        |
| Final                                                   | 94.0                                  |                                        |              | 1                   | · · · · · · · · · · · · · · · · · · · | 1                   | ,                                      |
| Winds                                                   | Tempera                               | ture                                   | İ            | lunaidity           |                                       | Pre                 | apitation                              |
| Jalm to 2 SW/W<br>variable                              | 74                                    |                                        | •            | 72                  |                                       | None                | -                                      |
|                                                         |                                       |                                        |              |                     | -                                     | Tome Re             |                                        |
| Site Location                                           | A.                                    |                                        | st ID        | म्म                 | 1672                                  | -1053               | 63012                                  |
| 3H-M                                                    | An                                    | <u>.</u>                               |              |                     | 1040                                  | -1033               | ······································ |
| SPL                                                     | 1/1 or 1/5                            | i (circle ou                           | e) Octava B  | and Sout            | ni Levels                             | (633)               | -                                      |
| Recriptor 25 31.5                                       | 40 50 6                               | 3 80                                   | 100 12       | 5 160               | 200                                   | 259 31              | 5 400 50                               |
|                                                         |                                       |                                        | ļ            |                     |                                       |                     |                                        |
|                                                         |                                       |                                        |              |                     |                                       |                     | A LOTA                                 |
| 630 800                                                 | <u>1K 1.8K 10</u>                     | <u>ok – 2K</u>                         |              | 55 455              |                                       | 0.53                |                                        |
|                                                         |                                       | •                                      |              |                     |                                       |                     |                                        |
|                                                         |                                       |                                        |              |                     | <u> </u>                              | l                   |                                        |
| Weighting                                               |                                       | logal Secon                            | d Levels (d) | 3) (1B) <b>A</b> (1 | n à <b>B</b> (C)                      |                     |                                        |
|                                                         | Las Line                              | Lse                                    | . Lon        | La                  | L                                     |                     | Jag Log                                |
|                                                         |                                       |                                        |              |                     |                                       |                     |                                        |
| Intrusive Events                                        |                                       | Traffic In                             | formation    |                     |                                       | Site Loca           | rion Siketch                           |
| Source dBA                                              |                                       | £                                      | C            | ant                 |                                       | × ·                 |                                        |
| Crow 53                                                 | . Displan-                            | I                                      |              |                     |                                       |                     |                                        |
| 165haray 102/193 45                                     | Golf Cant                             |                                        | (            |                     |                                       |                     |                                        |
| itishing 103/198 45<br>anplane 44<br>alflant (28000+)49 |                                       |                                        |              |                     |                                       |                     |                                        |
| allent (+28,00") 97                                     | Bac                                   | keround S                              | ources       | R                   | ank                                   |                     |                                        |
|                                                         | . Kheh                                | way for                                | .2 (198/102  |                     | ,                                     |                     |                                        |
|                                                         | - 0                                   |                                        | •            |                     |                                       |                     |                                        |
|                                                         |                                       |                                        | •            |                     |                                       |                     |                                        |
|                                                         | ·····                                 |                                        |              | (7.3.6 stan         | )                                     |                     |                                        |
| Sommenta Slon<br>uperchar sour                          | 2 "120 51.4 dA                        | A : chabo                              | ard \$157    | 64. 004)            | •                                     |                     |                                        |
| ¥                                                       |                                       | ŧ                                      |              |                     |                                       |                     | <u></u>                                |
| 🛞 korrenti farre. Bay-dassa laku                        | · · · · · · · · · · · · · · · · · · · |                                        |              |                     |                                       | <u> </u>            |                                        |
| Cars solation and solation mars                         |                                       |                                        |              |                     |                                       |                     |                                        |



Enclosure C. Bar Harbor Source Sound Field Data Sheets NOISE SURVEY DATA SHEET

Aliance

|             |                       | INSTRUMENT                  | MANUFACTURER | CTURER     | ~       | MO         | MODEL    |                      | ß         | SERIAL NUMBER | IBER                                    | _                | MST         | S NUMBER    |        |
|-------------|-----------------------|-----------------------------|--------------|------------|---------|------------|----------|----------------------|-----------|---------------|-----------------------------------------|------------------|-------------|-------------|--------|
| Sound       | Sound Level Meter:    | ¥r:                         | Lanon G      | Erney      |         | PURAU 824  | 824      |                      | 23.2      | 2000          | 377 500 A2 582                          | S                | /           |             |        |
| Octave      | Octave Band Analyzer: | lyzer:                      |              |            |         |            | -        |                      |           |               |                                         |                  |             | 1           |        |
| Sound Level | Level Cal:            | Calibrator:                 | Lanso        | Funed      |         | Corres     | 2        |                      | 00        | 612           |                                         | 130              | 94,0 (1453) |             |        |
| Other:      |                       |                             |              |            |         |            |          |                      |           |               |                                         | 5                | 93.9 Ci434  | 11/16       | (1943) |
| Test        | Time<br>Measure-      | Location of Measurement     | 46. of       | Pair Baily |         |            | SOUND    | SOUND PRESSURE LEVEL | E LEVEL   | (In dB r      | re: 20 Mici                             | 20 Micropascals) |             |             | Peak   |
| No.         | ments                 | and Comments                | People       | Exposure   |         | Weighting  | 3        | when a               | Octave B  | and Cente     | Octave Band Center Frequencies in HERIZ | icies in         | HERTZ       |             | Impact |
|             | Iaken                 | c                           | cypused      |            | 1       | (Fert) FL  | Flat 6   | 63 12                | 125 25    | 250 5(        | 500 1000                                | 2000             | 4000        | 8000        |        |
| -           | 5130                  | 100 - 4 w MT + 2 m Pas      | 00) 65       | 600        |         | ę          | N        | Splish               | Jurbark   | ST -          |                                         |                  |             |             |        |
| d           | 4050                  | er bened                    | *            |            | 65      | 30         | 7        | Voldes               | 1         | ch. Johner    |                                         |                  |             |             |        |
| 2           | 1459                  | Trula st-unde               |              |            | 53      | 10,        |          |                      |           |               |                                         |                  | _           |             | '      |
| m           | MEI                   |                             | 15chaugy     |            | 60      | - 22 -     |          | convers              | - &       | asherry       | 1-Pan                                   |                  | ĩ           |             |        |
| 1           | 1437                  | · Q                         | 220          |            | 10 Ma   |            |          |                      | _         |               |                                         |                  | ,           |             |        |
|             |                       | 1 3                         |              |            | Pyra -  | 200        |          | Inclota              | · some    | 12/20         | more                                    | free             | tok Luna    | 2           |        |
| 9           | 1440                  | Dirol +                     | 10.86        | 6120       | Sa to 1 | The second |          | at No                | North L   | cut -         | Mark S                                  | Some has         | N.          | prov of     | 2-60   |
|             |                       |                             |              | ·          | mud 60  | 12 Sofeed  | हे       | the                  | -2-2      | to den        | hord -                                  | . den            | me to have  | Levery tub. |        |
| 4           | (818)                 | 1 adye Dimen / music husede | icle         |            | 245     | 100        | W        | Mes. Le              | barely a  | di scenutil   | 0                                       | 45084            | Shered      | 0           | _      |
| 10          |                       | in Pry Reit                 | -Barking 64  | 8-772      | 60-     | 50         |          |                      |           |               |                                         |                  |             |             |        |
| 8           | 20745                 | Knuber Misicu Colle         |              |            | 535     | 60'        |          | From on              | open dear | \$            | Eside                                   | of Lada          | N.          |             | _      |
|             |                       | - Service Mic'd. to         | Burg necken  |            |         |            |          | -                    |           |               |                                         |                  |             | $\int$      | _      |
|             |                       |                             | 2 .          |            |         |            |          | •                    |           |               | $\frac{1}{1}$                           |                  | 5           |             |        |
|             |                       |                             |              |            |         |            |          |                      | +         | -             |                                         |                  |             |             |        |
|             |                       |                             |              |            |         |            | 1.       |                      |           |               |                                         |                  |             |             |        |
| Ĺ           | 4                     |                             |              |            |         |            | <u> </u> | -                    | -         | +             |                                         |                  |             |             |        |
|             |                       |                             |              |            |         |            |          |                      |           |               |                                         | Н                |             |             |        |
| Ì           |                       |                             |              |            |         |            |          |                      | i         |               |                                         |                  |             |             |        |
| Manager:    | 1.                    |                             | Hygienist:   | st:        |         |            | ٠.       |                      |           | Sam           | Sampler:                                |                  |             |             |        |

Alars

NOISE SURVEY DATA SHEET

|             |                         | INSTRUMENT                              | MANUFACTURER | CTURER   |          |                   | MODEL    |                          |           | SERIAL        | SERIAL NUMBER |                                         | Cell         | Callacetra Cherk | 햜         |        |
|-------------|-------------------------|-----------------------------------------|--------------|----------|----------|-------------------|----------|--------------------------|-----------|---------------|---------------|-----------------------------------------|--------------|------------------|-----------|--------|
| pq          | sound Level Meter:      | £4                                      | (ann 1       | ספיון    |          | 8                 | 824      |                          |           | A2585         | 8             |                                         |              | 1                |           |        |
| ave         | Octave Band Analyzer:   | yzer:                                   |              |          |          |                   | -        |                          |           |               |               |                                         |              |                  |           |        |
|             | Sound Level Calibrator: | brètor:                                 | Lanso        | Daris    | <u>-</u> | .b<br>V           | Liller   |                          |           | 8779          | a             |                                         | - 2991       | - V I            | 1500:94.1 | 34.1   |
| Other:      |                         |                                         |              |          |          |                   |          |                          |           |               |               |                                         | Caler        | Land,            | ſ         |        |
| Γ           | Time                    | Source /                                | 2            | 40 614   |          |                   | SO       | sound pressure level (in | sure lev  | er (in dB     | re:           | 20 Micropascals)                        | cals)        |                  |           | Peak   |
| Test<br>No. | Measure-<br>ments       | Location of Measurement<br>and Comments |              |          |          | <u> Weighting</u> |          |                          | Octav     | e Band C      | enter Fr      | Octave Band Center Frequencies in HERIZ | in HERI      | 21               |           | Impact |
|             | Teken                   |                                         | 5            | In Hours | V        | 154               | Flat     | 63                       | 125       | 250           | 500           | 1000                                    | 2000         | 4000             | 8000 .    |        |
|             | 1309.                   | Folls Cant - Wey 22 love 20 mg          | 18 74        | 61       | ÉS       | -65               | ус<br>С  | Darchy                   |           |               |               |                                         |              |                  |           |        |
| ~           | 13.64                   | Lar Enterna (sur) checkin               |              |          | SS       | S                 |          |                          | ·         |               |               |                                         |              |                  |           |        |
| ~           | 1322                    |                                         |              |          | 5        | 5d                |          |                          |           |               |               |                                         |              |                  |           | :      |
|             | 1333                    | Can Iranine cleckin area                |              |          | री       | 1, 58-05          |          |                          |           |               |               |                                         |              | -                | -         | ļ      |
| 5           | 1336                    | When have                               | •            |          | 53       | ,<br>S            | au       | bank                     | J.        | ਸ਼<br> <br>   | ceti          | 1000                                    | Ę            |                  |           |        |
|             | 1                       | tence of water hubbling - No guest      | すべざ          | les >    | ړ≎ړ      | קסי<br>לי         | Same     | e traffic                | אור א     | Ywe           | 1             | 1                                       | 1 × 1        | and here         |           |        |
| -           | 1453                    | 201 0                                   |              |          | 62       | 101               | Left Sid | Side a                   | forme     | June house    | 64740         |                                         |              | Ī                |           |        |
|             |                         |                                         |              | •        | 62       | ~30'              | Pers     | 2 Jal                    | ן<br>גיין | Per-belinary) |               | \$ 71 m                                 | 6            |                  |           |        |
| 5           | 1420                    | Pump BID. Maint RdS                     |              |          | <45      | - mulsi           | 109 701  | 21614                    | THE       | aud           | bled          | 454                                     | 1 <u>e</u> . |                  |           |        |
| 2           | 14258                   | 1425-10 ICE Fruch dewing anory          |              |          | 53       | 25-               | 3        | ž                        | 5         |               |               |                                         |              |                  |           |        |
|             | 149                     |                                         | •            |          | 65       | 102               |          | L Sw                     |           |               |               |                                         |              |                  |           |        |
| 2           | 148                     | Aus.                                    | 92           | 53       | 63       | 331               | 3.4      | ting he                  |           |               |               |                                         |              |                  |           |        |
| 6           | 1647                    | fer f                                   |              |          | 29-65    | 201               | Addwells | 13 - 5                   | 464       |               |               |                                         |              |                  |           |        |
| E           |                         | the hissee durt of balan                | ł            |          | CB<br>CB | 29                | No.      | - ranhag                 | N<br>N    | 27175         | dae           | E N                                     | 2 plant      | ¥                | ach       | Ker    |
| ·           | • •                     |                                         |              |          |          |                   | •        |                          |           |               |               |                                         |              |                  |           |        |
|             | 4.                      | *                                       |              |          |          |                   |          |                          |           |               |               |                                         |              |                  | •         |        |
|             | ₩÷<br>                  |                                         |              |          | .<br>    |                   |          |                          |           |               |               |                                         |              |                  |           |        |
| Ì           | <br>                    | •                                       |              |          |          |                   |          |                          | ÷         |               | ·             |                                         |              |                  |           | · ·    |
| fanaqer:    |                         |                                         | Hvaienist:   | ist:     |          |                   | -        |                          |           |               | Sampler:      |                                         |              |                  |           |        |

Last Page of Report